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ON THE EXISTENCE OF COOK SEMANTICS*

ARIE DE BRUIN

Abstract. In [SIAM J. Comput., 7 (1978), pp. 70-90] Cook defines the operational semantics of a
programming language in the following way: a function is introduced which takes a program R and a state
tr and yields a possibly infinite row of intermediate states as a result. This row is meant to be the trace
resulting from executing program R starting in state or. This function is characterized by a number of
equations. However it is not immediately clear whether these equations have a solution. In this paper we
show for a simple language, the most sophisticated feature of which is that it has parameterless procedures,
that the corresponding equations have a unique solution. The techniques used here can also be applied to
other languages described in the same way, for instance to the language in Cook’s paper.
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1. The problem. In this paper we investigate a certain way of defining operational
semantics of programming languages, which has been introduced by Cook in his paper
on soundness and completeness [6]. Cook remarks that this semantics has been derived
from one of the operational semantics studied in Lauer’s thesis [10], and also in Hoare
and Lauer [7], which is a condensed version of the thesis. This style of definition has
later on been employed by de Bakker in his book on the theory of program correctness
[3].

The technique is as follows" a meaning function Comp is described which takes
a program and an initial machine state and yields a row of states as a result. This row
gives the trace left by evaluating the program starting in the initial state. A terminating
computation yields a finite row, and ifevaluation does not terminate then the outcome
is an infinite row.

We will study Cook semantics using a simple language. Before giving its syntax
we introduce some notational conventions.

Rows will be indicated by angular brackets. For instance we have (xl,.. ’,

which denotes a finite row of n elements, and (x l, x.,...> which denotes an infinite
row. The empty row is denoted by >. Function application associates to the left, that
is fabc is an abbreviation of ((f(a))(b))(c). Correspondingly, the -operator used in
forming function domains associates to the right. The above function f should have
functionality definition f:A B C D, which should read as f:A (B (C D)).

We next describe the syntax of the language. We distinguish the following syntactic
classes:

P Pvar Procedure variables.
A Atst Atomic statements. The structure of these statements is not

specified further, but think of assignments.
B Bexp Boolean expressions. These are also considered to be atomic build-

ing blocks.
R Prog Programs. These have the form (EIS) and must be closed, i.e. all

procedure variables in E and S are declared in E.
E Deci Declarations. These have the form (PS1,"" ,Pn,(=S) where

all P are different.
S Star Statements. This class is defined bythefollowingBNF- like syntax.
S Star Statements. This class is defined bythe followingBNF- like syntax.

S ::=A]P] if B then Sa else $2[S1; $2.
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We now turn to the semantics. There are the following semantic classes.
tr States. The internal structure of states is not specified. Notice that ,v_,

is a set, not a cpo. There is for instance no such thing as _1_ in E.
r E Rows of states. We define E E* t.J E’. E* contains the finite sequen-

ces and the empty row and ,E the infinite ones.
We define the following operators on rows of states.

Concatenation, defined by the axioms:
7"1 ^7"2 7"1 for all zx E

(0"1,""", O’n)^(O’, 0")"-" (0"1,"’", O’n, O’i,""",
(, ",)^(i,’" ")= (,""", , i,’" ")

K Last element extraction, defined by

K - # for all z e E, where c? is an arbitrary (but fixed from now on)
element of E.

Finally we distinguish the following elementary valuations.
A" Atst E ,E, Meaning of atomic statements. Notice that atomic statements

always terminate.
B: Bexp- F_, {tt, if}, Meaning of boolean expressions.
As the internal structure of Atst and Bexp has not been specified, we cannot do

more than postulate the existence of functions A and B with functionalities as above.
We now have enough tools to formulate the equations which are intended to

define a function Comp" Prog--> E --> E.
Comp(ElA)o- (AAo-)
Comp(ElPi)cr (r)^Comp(EIS)r, with Pi Si in E.

(o-)^Comp(EIS)o-, if BBo" tt
Comp(EI if B then S else S2)r

(cr)^Comp(ElS2)r, otherwise
Comp(ElS; Sa)cr (cr)^r^Comp(ElS2)(uz), where z Comp(ElS1)cr.

In the sequel we will refer to this set of equations as CE, which is an abbreviation of
"the Cook equations." Now there are some questions to be answered. Does there
exist a function with the above properties? If so, is this function unique? We cannot
provide the answers immediately because the above equations can be interpreted as
a recursive definition which is not inductive.

Cook also was aware of these questions as the following quotation from [6] shows:
"The definition is recursive, in the sense that Comp appears on the right side of the
clauses. This may appear ironic in a paper on program verification, since one of the
important issues in programming language semantics is interpreting recursively defined
procedures. However, one does not have to understand recursive procedures in general
in order to understand this specific definition. Suffice it to say that we intend Comp
to be evaluated by "call by name," in the sense that occurrences of Comp are to be
replaced successively by their meanings according to the appropriate clauses in the
definition."

In this paper we will provide the answer to the above questions; there is a unique
total function which satisfies the equations. We will show this in four different ways.
The first idea is to derive from the recursive definition an inductive one which defines
the elements of the outcome of Comp one by one. This is treated in 2. The other
techniques are based on a standard idea from denotational semantics" transform
recursion into iteration. From the Cook equations an operator can be derived, and
iteration of this operator yields a sequence of approximations which should tend to
a limit, a function satisfying CE. In order to be able to talk about convergence, the
relevant semantical domains are turned into cpo’s.
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However these techniques cannot be applied here straightforwardly, because the
approximations will generally not converge. This phenomenon is analyzed in 3. To
make the basic idea work we have to extend the standard approach somehow and
this can be done into three directions. First of all we can enrich the domain E by
adding to it a class of finite rows marked as "not yet complete." Secondly, we can
rephrase the Cook equations such that the standard approach does work. Lastly, we
can make use of the fact that E has more structure than a cpo, it is a complete metric
space. These solutions will be treated in 4-6.

In the sequel we will need the following lemma which gives information on all
total functions satisfying CE. The lemma states that a definition through a set of
equations like CE is independent of the particular way we defined K- for z () or
z E’. This holds because CE is such that in it K is never applied to (), and if is
applied to an element of E‘, then its value is irrelevant because it will be used only
to determine a row which is appended to an infinite row, which means that it will be
neglected.

LEMMA 1.1. For every total function dp in Prog-> E--> Z which satisfies CE the
following holds.

1. For all R and tr we have dpRtr ().
2. If we construct a set of equations CE’ which is like CE, except for the fact that

it uses another last element extraction function ’ which differs from only when applied
to or elements from Z’, then dp is also a solution of CE’.

2. A straightforward solution. The idea is the following. We define a new function
C which is like Comp but takes besides R and cr an extra argument, a natural number
n, and which yields an element from E. This element should then be the nth element
of the row CompRcr. Now it is possible to give an inductive definition of.C. First of
all we have to introduce an extra element fl ("undefined") because in the setup, as
proposed here, it is possible to ask for the third element of a row of two elements.
In such cases we then deliver fl. We define

DEFINITION 2.1. The function C: Prog-> --> N--> X {12} is defined by induction
on n as follows:

AAo- ifn=l,
C(EIA)an

fl otherwise;

C(EIP,)o’n=
C(E[Si)tr(n-1)

ifn =1,
otherwise, where Pi ,:S occurs in E;

C(Elif B then $1 else S2)o’n

o" ifn 1,
C(EiSl)r(n 1) if n 1 and BBr tt,

[C(E[S)r(n-1) otherwise;

C(EIS1; S2)o’n

C(E[Sx)tr(n 1)
C(ElS2)(C(E[S)o’k )(n k 1)

ifn 1,
if n 1 and C(EIS)r(n 1) fl,
if n # 1, C(ElS)o’(n- 1)= f,
and V := {mlC(EIS)o’m f and

C(ElS)o’(m + 1)= 13, and m < n } ,
where k min V,
otherwise.
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Because we had to be careful about little details, the above definition has an awkward
appearance. It can be made more tractable by realizing that for all R and 00 the infinite
row (CR00k)k contains either only elements from E, or has the form
(O1, 002," , 00k, ", ’, ", ). This observation enables us to rephrase the case Sl;S2
in the above definition as follows.

LEMMA 2.2.

C(EI$1; Sa)00n IC(E]$a)(C(E]$)00k)(n -k 1)

Now, the function Comp defined by

if C(E[S1)00(n 1) # D, and n 1,
otherwise, where k is such that
C(ElSl)00k # and
C(E[$I)00(k + 1)= l].

(CR00 1,. , CROon) if CROon # l] and CR00(n + 1) f,
CompR00

t(CR00 1, CR002, ..) otherwise

satisfies CE, as one can check straightforwardly.
Finally, we show that there is exactly one total function satisfying CE by the

following argument. For any function Comp and for any R, 00 and n we can calculate,
using only the clauses from CE, the nth element from the row CompR00, like we have
done in Definition 2.1. So we have that the equations CE determine, for every R and
00, every element from the row CompR00, that is, this row must be unique, that is
Comp must be unique. Note that the above reasoning would no longer be valid if we
allowed partial functions in Prog E E to be solutions of CE.

3. There is a problem if we try to use the fixed point approach. It is tempting
to try to use fixed point theory to answer the questions raised in 1, because any
solution of CE will be a fixed point on the operator :D D, with D Prog ,E ,E
defined by

qt Aao.AR.A00.
R =-(E[A)-(AA00),
R =- (EIPi)--,
R --(Elif B then $1 else $2)

--> (BB00 tt --> (00)^(I)(EIS1)00, (0-)^(I)(E[S2)00),
g --- (E]S1, S_) --> (00)^dP(E]S1)00^dP(E[S2)(K ((I)(E[S1)00)).

Now it is a well-known fact from denotational semantics ([12], [13], [14]; see
also [15] or [3] which both give an introduction to the subject) that qt has a least fixed
point tz qt if this operator is continuous. In that case tz qt equals the lub of the chain
_L =_+/- =_(+/-)_....

So, if we manage to make D a cpo such that is continuous then we obtain the
required existence result immediately. Again, it is well known that D is a cpo if there
is an ordering _= on Y_, which makes this set a cpo. Now the intuition behind zl =_ 72
is that ’2 contains more information than zl, or that ’2 is a better approximation of
some final result than 71. A technique for turning a set into a cpo that is often used
is to make this set a flat cpo. That is, add a totally undefined element +/- to it and
define ’1 -72 iff T1 T2 or T1 +/-.

However, this construction is not suited for our purposes, because we obtain a
least fixed point/x qt which yields the right result for terminating processes,, but which
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yields 3_ for nonterminating processes. By way of an example we will evaluate some
elements of the chain 2_ _q’ 3-

_
q 3- _. approximating/z xI,, applied to the program

<PIP.P>"
1. 3- <PIP P>o" 3-
2. ( 2. )<PIP P>o- <o-> 2. <PIP <=P>o- <o-> 3_ 3_

3. (: 3_ )<IP <=P>o- <o’>^( 3_ )<PIP <=P>o- <o->^<o’> 3_ <PIPP>r
<>^<>^

_
+/-

4. (33_ )(PIP <=P>o- (o-> (: 3_ )(PIP <= P>o-
<cr>^<r>^<tr> 3_ <PIP <=P>tr <cr>^<tr>^<o’> _L _t_ etc.

The problem is that the ordering in a flat cpo is not refined enough" an approximation
’1 of a final answer - (’1 =- ’) contains either all information (- -) or no information
at all (’1 _1_ ). Now because all finite approximations of an infinite row are necessarily
unequal to this row we must have that all these approximations are equal to 3_. That
is we get a chain 3_

_
3- _. with lub 3- and this is not what we want.

This analysis also shows a way out. What the sequence of approximations given
above should do is yield longer and longer initial segments of the final outcome. That
is, the ordering should be such that (or>___ (or, o’>__ (tr, or, or>m__. is a chain with the
natural lub (o’, o-, or,...>. This leads us to trying the prefix ordering on E" Zl - ’ iff
’1 is a prefix of 2. One easily checks that y.oo with this ordering is a cpo with the
empty row as bottom element. This ordering yields a correct approximation sequence
for the program (P}P @P> as one easily can check. However, this approach does not
work in general because is not continuous under this ordering. This stems from the
fact that the operators , and are not continuous, not even monotonic under the
prefix ordering. For instance, <O"1> <O"1, 0"2> but r <o"1> o’1 and <0"1, 0"2> 0"2 might
very well be incomparable.

We can also show in a less technical way that the new approach does not work.
Consider the sequence _L (=,R.,tr.<)), qt_t., xI’2 _L, ..) and apply some of the elements
thereof to the program R (EIP; A2> (where E (P <=A 1>) and initial state or. We get

3_ Ro" >, ( 3_ )Rtr <tr>, (2 3_ )Rtr <0", 0", AA2tr>,

(3 +/- )Ro" (o’, o-, AA 10", 42(/kA lO’)>,

and it follows that q23_ q3_t Therefore the prefix ordering on is such that the
sequence (3_, 3_, q:3_,...> is not a chain, and thus q cannot be continuous.

If we investigate what went wrong here, we see that in evaluating (23_)Ro- we
apply the last element function : to a row of states which is not yet finished; that is,
we start evaluating A2 "too early," namely in a state o- which is not the final state
resulting from evaluation of P. This analysis suggests two solutions for the difficulty.
The first one is to enlarge so that it contains also rows of states which are marked
as "not yet completed" and to let the operators and act in the "right" (continuous)
manner on these rows. Another possibility is to rewrite in such a way that it does
not use the noncontinuous operators and any more. Finally we observe that,
though the above approximation sequence is not a .chain, the right outcome has been
obtained in the end. This suggests that might be continuous if we would use a more
subtle notion of continuity. The next three sections will be devoted to a discussion of
these possibilities.

4. Adding unfinished rows to X. We observed that in X finished and unfinished
rows of states must be distinguished. We will arrange this as follows: a row (try, ,
will be marked as unfinished by adding the element I to it, so that we get
(o’1, , tr,, 3_). Notice that only finite rows can possibly be unfinished; infinite rows,



6 ARIE DE BRUIN

which model nonterminating computations, cannot contain more information than
they already do. The ordering (orl,’’’, 0% _l_)c_ ritt (o’1,..., r,) is a prefix of z is
natural. Furthermore, should not append its second argument if its first argument
is an unfinished row. All this leads to the following list of definitions and properties.

DEFINITION 4.1.
1. Y.- Y..*+/- 13 o, with y.,o as before, and where* is the set of all rows consisting

of zero or more states followed by the symbol .L.
2. For 7"1, 7"2 -" we define 7"1 7’2 iff either

and (rx, ’, r,) is a prefix of z2.
3. +/- U {_1_ }, the flat cpo derived from
4. x Z- + Z+/- is defined by

,(r) { +/- ifz,rE*-rz=(),
o’. if r (try, ", or,,) E*\{( )}.

5. ^:- Z’-- is defined by

7"1 if rl e E tA Z*+/-,
<O’1)"’’ )O’n)O’1)"’" )O’> if "/’1 (O’1, O’n) *, ’r2 (O’, O’)6 *

TI^T2 <0"1,"’’ ,O’n,O’,"’’ ,O’;, ]->

if "rx <o’1, ", o’.>
,<0"1,"’’, O’., O’,’" "> if rl= <or1,

LEMMA 4.2..
1. (, =_) is a cpo with smallest element <+/->.
2. and are continuous.
Now that we have added the element +/- to Y_. we have to adapt the definition of

a little bit.
DEFINITION 4.3. :D-+ D, with D Prog-+. , Y.,- is defined by

xI, a .aR.Ao-.o- 2_ -+ +/->,

R

R =- <EIP,> + <o’>^’<EIS,>o,
R (El if B then S, else

R =-- (ElSl; S2) <o’>^,<ElSx>o’^C,<EIS2>(, (<EIS1)o’)).
Remarks.
1. The expression E+/-- E- denotes the cpo of all strict functions from E+/- to

E-, that is, all functions f for which f_L =<_L). This precaution is needed because
otherwise xI, would not be continuous.

2. One easily checks that the operator xI, has the functionality as announced.
That is, for all in Prog-E - E-, R e Prog and o-
(that is, only the last element might be _1_); and also for all e D, R e Prog we have
thatR _L <+/-) (i.e.R is strict again).

3. The fact that is a continuous operator in D-D and thus that xI, exists,
can proved straightforwardly.

The key lemma is
LEMMA 4.4. For all R and o" 3_ we have
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Proof. By contradiction. Suppose the assertion is not true. We then would have
some R and tr _t_ for which (/)Rtr ,E.1. Now (/x)Rtr =lli ((i+/-)Rtr) and
therefore we would have that for all i.,
means that this approximation of evaluation of R in tr is not good enough, because
this row is not yet completed. This suggests that there is a better approximation in
the chain (( +/-)Rtr) and in fact this holds already for the next element in the chain:
we have - E*+/-

’/1 ri (to be proved by induction on i). Thus we have the following
situation: (/z )Rtr is the lub of a strictly increasing chain +/-Rtr ( +/-)Rtr . with
all (k +/-)Rtr Y,,*-. Now we have a contradiction, for such a chain must have a lub
in X’.

THEOREM 4.5. /.6 xI, restricted to the domain Prog X- X*, is the unique solution
of CE.

Proof.
1. Notice that we cannot state that/xq is a solution of CE, because/xW is an

element of Prog

_
-s X- and as such it can never be a solution of CE. Notice also

that we can restrict tz* to the domain Prog-, X -,* only by virtue of Lemma 4.4.
2. [/z W is a solution.] First compare the definition of K and from 1 with the

ones in Definition 4.1 and observe that the restriction of (according to 4.1.5) to
Xx X* is the same operator as in 1, while the restriction of K to ,v,, is almost
the same, the only difference being the cases xz where z Xo, or z (). If these
operators would be the same then we were ready, because from Definition 4.3 we
see that and are applied only to arguments of the form (/x W)Rtr and these are in
X by Lemma 4.4. However the values of and z for z ,v_, are irrelevant, because
the fixed points of, have the same properties as the ones given by Lemma 1.1 for
the solutions of CE.

3. [* is the only fixed point q.] Suppose not. Then there would be a bigger
fixed point , that is, there would be an R and tr such that (/z W)Rtr Rtr. This is
impossible, however, because by Lemma 4.4 (/z W)Rtr X which means that (/ W)Rtr
is a maximal element in

4. [/x q is the only solution of CE.] Suppose there would be another function
C Prog ,E X satisfying CE. We can extend this function to a function C’ Prog
X_ s X by defining C’Rtr CRcr if tr and (_1_) if tr +/-. One easily checks that
C’ is a fixed point of , but then C’=/q, a contradiction.

5. The continuation approach. In 3 we remarked that the direct fixed point
approach failed due to the fact that the operators K and are not continuous. In this
section we will find a way out of this problem by restructing CE in such a way that
these operators are not used any more, or at least not in a noncontinuous way. The
problem stems from the clause on constructs of the form (EIS1; $2). The idea that we
will pursue is to use continuation semantics instead of direct semantics.

Direct semantics defines the meaning of a construct in terms of the rows of states
that correspond to evaluation of the constituents of the construct. Therefore the
operators r and have to be used: the meaning of (E[S1; S2 is obtained by concatenat-
ing the rows of states corresponding to the meanings of (E]Sx) and (EIS2). Continuation
semantics uses another idea" the meaning of a construct is the row of states which is
the result of evaluating the construct itself followed by evaluation of the rest of the
program of which the construct is supposed to be a part. Of course, the effect of
evaluation of the rest of the program cannot be obtained from the construct itself; so
we have to give the meaning function another argument, a continuation which will
be a function from states to rows of states describing the effect of the rest of the
program. One can view this continuation as a coding of the row of statements which
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are to be evaluated once the statement under consideration has been worked through.
More information on continuation semantics can be found in [15].

In this setup we do not have to concatenate two rows any more while defining
the meaning of (EISl; $) because the effect of evaluating S2 can be caught by changing
the continuation which describes what will happen once the whole construct has been
evaluated into a continuation which describes the effect of first evaluating $2 and then
applying the original continuation. This new formed continuation is given as an
argument to Comp(EIS1). All this leads to the following operator.

DEFINITION 5.1. The operator :D - D, with D Prog- [19 19] and 19 E
E is defined by

A .AR.AO.Atr.

R (EIA) (AAr) 0(AAr),

R -= (Elif B then $1 else S2

Remarks.
1. Notice that the operator is not used any more. We do use the concatenation

operator, but only in a continuous way: Ar.(r)^r is continuous with respect to the
prefix order on

2. The fourth clause of the definition can be interpreted as follows: evaluating
(ElSe; $2) followed by evaluation according to 0 amounts to evaluation of
followed by [evaluation of (ElSe.) followed by evaluating according to 0].

3. The domain [t9 O] is the cpo of all continuous functions from 19 to 19.
4. is well defined, in the sense that for all D we have D, or in other

words: /eD R Prog /0
_

02 OR (11 0) I1 ald’dPROi.
5. is continuous and therefore/z exists (notice that D Prog- O- O would

not work).
We now define Comp AR.Atr (/x )R{Atr.( )}tr, and the next thing to prove is

that this function is a solution of CE. The proof is by cases, and the only nontrivial
case is to prove that

(.) Comp(ElS; S2)r (r)^Comp(ElS)r^Comp(ElS)r’

with tr’ as usual. Now

Comp(EIS; S:)r (tx q)(EIS; S){Xr.(

(r) ()(EIS){(q)(EIS)(r.( )}}r,

and the right-hand side of (,) equals

(or)^ (/z q)(E I81){Ar. )}o" (/x q)(EIS){Ar.( )}r’,

where tr’ K ((/x )(EIS){Ar.()}r).
We thus have to establish a correspondence between the old definition of composi-

tion which used K and and the new one which uses continuations. This correspondence
is phrased in the next "continuation removal" lemma, which must be clear if the idea
behind continuations has been well understood.

LEMMA 5.2. Let D Prog- [O O] be a fixed point of , For all R, O and
cr we have that ROtr z^O(’), where - R{Atr.( )}or.
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Proof. Two cases.
1. - is infinite. Then z^0(K-) z. On the other hand, is continuous in 0 and

thus monotonic. This means - R{htr.( )}or =_ ROtr. But z, being infinite, is maximal,
and therefore -= ROtr.

2. The case that z is finite can be proved by induction on the length of z.
THEOREM 5.3. The ]:unction Coml as defined in this section is the unique solution

of CE.
Proof.
1. That Comp is a solution of CE follows from the remarks preceding Lemma 5,2.

2. We now prove that has exactly one fixed point. Let Prog [19 19] be
a fixed point of such that/xm_. We can prove that for all R, O and tr we have
(tz qOROo" dpROo-.

a. If (# )ROo- is infinite then it is maximal in E. The desired equality then
follows from (z qOROo

_
dpROo’.

b. For all finite (# qOROo" the desired equality can be proved by induction on its
length.

3. For every solution C of CE we define aC:=AR.AO.Ao’.CRcr^O(r,(CRo’))
(compare Lemma 5.2). We can show in a straightforward way that every such a C is
a fixed point of . Notice that cCProg->[O-->O] must hold, i.e. aC must be
continuous in its continuation parameter.

4. Suppose CE has more than one solution say C and C’. Then there exist R and
r such that CRr C’Rr. But then aC and aC’ are both fixed points of , with
(aC)ROtr (aC’)ROtr, which contradicts 2.

6. :oo as a metric topological space. At the end of 3 we investigated the
approximation sequence +/-Rr, (q+/-)Rcr, (2+/-)Rr, (at31)Ro", with R (P <:=A liP; A2)
and the operator derived from CE. We observed that this sequence was not a chain
though it converged (in some sense) to the right result. This phenomenon also holds
for nonterminating computations like the evaluation of (PAI; PIP; A2) in some o-.

We can prove that the above observations hold in general, the key lemma is the
following.

LEMMA 6.1. If , d2 are such that for all R and cr the sequences Ro" and
2Rtr agree on their first n places, then for all R and cr we have that ()Rcr and

(2)Rcr agree on at least their first n + 1 places.
Proof. Straightforward by cases (if the sequence z or ’2 has length smaller than

k, we have by definition that r and z2 agree on their first k places iff ’1 z2).
From this lemma we can deduce that for n > m, we have that (" +/-)Rcr and

("+/-)Rcr agree on at least their first m elements. Therefore we can define
lim ((k +/-)Rcr) as the sequence in E that agrees for every n on its first n elements
with (T" +/-)Rcr. Though we have not defined exactly what "convergence" means, it
must be clear that, informally, the sequence ((k +/-)Rtr) converges to this limit. This
convergence is uniform in R and cr in the sense that for all R and cr the first n
elements in (" +/-)Rtr are "correct."

If we define lim(:=+/-) as hR.hcr.lim((k+/-)Rcr)k we have that (lim(k+/-))
lim (k +/-). This holds, because we can prove by induction on n that for all R, cr and
n the rows (lim k+/-)Rtr and lim(k +/-)Rtr agree on their first n elements (i.e. the
first n elements of (" +/-)Rcr). Finally, we can show that has not more than one
fixed point by the following argument. Suppose that there are two fixed points 1
and 2. We prove that for all R, tr the rows (I)xRcr and 2Rcr agree on their first n
elements (by induction on n). The case n 0 is immediate. If Rcr and (I)2Rcr agree
on n 1 elements for all R and tr, then by Lemma 6.1 ()Rcr and (2)Rtr agree
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on n elements. But (I)1 and (I)2 are fixed points and thus we have that (i)Rtr iRo"
for 1, 2.

We can rephrase all this in the language of topology, by defining that El, ZE are
close to each other if they have a big common prefix (viz. Definition 6.2). This makes
oo a metric space and it is possible to formalize the above argument in terms of these
topological notions. However, from Lemma 6.1, we can easily derive that the operator

* is a contraction (Lemma 6.8), and this means that our fixed point result can be
derived in a more elegant way; it is equivalent to a well known theorem from topology.
This approach is inspired by an endeavor to apply Nivat’s results (see, for example,
[11]) to the problem treated in this paper. We saw no way to achieve this, but the
basic facts about y_,oo that he provided were very useful. In fact, the whole treatment
given in this chapter is much in the style of Nivat’s.

DEFINITION 6.2.
1. We denote, for r ,E by r[n the prefix of r consisting of the first n elements

of r, or r itself if its length is smaller than n.
2. We define the following distance function d on :

d(rx, 7"2)={ 2-" ifr[n-1]=’2[n-1]and’rl[n]#r2[n],
0 otherwise.

LEMMA 6.3. d is a metric, i.e. we have the familiar properties:

d( %, rE) 0 iff%
d (’rl, rE) d (r2, r),

d(rl, r2)<-d(rl, r3)+d(r2, "r3).

Now the metric space (oo, d) is complete.
LF.MMa 6.4. Every Cauchy sequence (zi) in oo converges.
Proof [11]. For every k there is an N(k) such that d(r,, r,,) <2-k for all n, m _->

N(k). Define r(k)= rr()[k]. Then r(} agrees on its first k elements with every r, for
n >-N(k). The sequence (r(}) is a chain, say with lub r. Now (ri} converges to r.

The next thing to do is to make Prog + -+ Y_. a metric space by defining
DEFINITION 6.5. d’(tI)l, (I)2) lub {d(lRtr, 2go’)[g Prog, tr X}. We have

that (Prog+ - o, d’) is a complete metric space too.
LEMMA 6.6. The function d’ is a metric, and every Cauchy sequence (()k)k in

Prog Y., y.,oo converges with limit hR.htr.lim dPkRO’.
Proof. Standard topology.
LEMMA 6.7. /f for all R, tr we have d(dpRo’,2Ro’)<=2-n, then for all

R, o-: d((Wl)Rtr, (WE)Rtr) -<_ 2n-1.
Proof. This is Lemma 6.1.
LEMMA 6.8. xlt is a contraction, in particular we have that for all , f2

d’(, q2) <-_ 1/2d’(, ).

Proof. Follows immediately from Lemma 6.7.
THEOREM 6.9. has exactly one fixed point.

Proof. This is the contraction mapping theorem, viz. [5], [8].

7. Conelufling remarks. In a certain sense we have worked in a direction opposite
to the one Scott took when he devised his theory of computing. He wanted to exploit
notions from topology such as limit and continuity, and therefore he introduced cpo’s
because the domains on which programs compute are in general not of a topological
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kind. We found in 3 that Eoo considered as a cpo did not have enough structure to
prove the desired result. However by using the inherent topology on E we were able
to derive this result in an elegant manner ( 6).

The above results have been derived for a rather simple paradigm language, but
the techniques used here can be applied to more sophisticated languages, in particular
the language used in Cook’s paper [6].

The theory as it stands now cannot be applied to nondeterministic programs,
and, as a consequence of this, neither to parallel programs. This is due to the fact
that nondeterministic programs generate trees and not rows. However, it seems that
the techniques presented here can be extended to trees as well. Part of this extension
is reported on in [9].

The central theorem that we have proved four times in this paper holds also if
the Cook equations have expressions in their right-hand sides which do not start with
a constant one element row. Notice that we have to be careful here. For instance we
cannot leave out the (tr) in the second clause on procedure calls in CE ( 1) because
if we had done so, then Comp(P,(=P]P)o- would not yield an infinite row, which it
should do because (P PIP) specifies a nonterminating computation.

Let us investigate the consequences of changing CE such that the fourth clause
is altered into

Comp(ElS,; S)o- Comp(E[S)r^Comp(ElS2)( (Comp(ElS)r)).

The central theorem of this paper would then be much harder to prove. For instance
Definition 2.1 must now be by induction on (n, length (R)) instead of n, and the same
holds for induction arguments in some other proofs (for instance Lemma 5.2). Further-
more, the statement - E*- :ff-+ - in the proof of Lemma 4.4 is no longer true,
as the counterexample R--(ElAn; Az) and 0 shows. A weaker version of the
lemma holds through:

’R, r _t_ ::Ik: OgRr E*+/- =), O+Rr ORr.
In 6 the central Lemma 6.1 does not hold any more, and the sequences (xlto) are
no longer uniformly convergent (for arbitrary ) in R and r. We have to approach
the problem differently. We cannot use the lub distance on Prog--> E-> Y., any more,
but we have to use the pointwise extension of convergence in oo, quite analogously
to how theory has been set up for cpo’s. We now give a brief sketch of how the
theorem can be deduced under these new circumstances.

i. DEIINITION. () converges iff /R, o-: (OgRr) converges. In that case we
define lira Og as hR.,o-.(lim ORr).

2. LEMMA. xI/’ is continuous, in the sense that for all converging sequences
we have lim (lim q).

3. LEMMA. ’dR, r, n :IN: k _->N =),(P, q: d((dp)Ro", (cP)Rcr)_-< 2-".
This is a useful lemma, in some sense the analogue of Lemma 6.7. Notice that

the N in the lemma is in general dependent on R and r. The proof is by induction
on the entity (n, length (R)). The lemma has the following useful consequences (4 and
5).

4. LEMMA. For all p we have that (p) converges.
5. LEMMA. The limit of (dp) is independent of the initial value
6. THEOREM. The (changed) Cook equations have exactly one solution.
Proof. There is a fixed point (for instance lim (_1_)=:/z), by results 2 and

4. If there was another fixed point o, then we would have that/z- limo-
lim (CPo, CPo,...)= qo (the first equality holds by result 5).
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The above remarks show that it pays off (technically) to demand that the right-
hand sides in CE all begin with a constant row. There are other reasons for this. The
operational semantics yields a row of states which is intended as the trace left by
execution of the program under consideration. Now execution of (for instance) A 1; A2

can be divided into three parts’ namely first determining that the statement is a
composition of two other statements, secondly evaluating the first statement, and
lastly evaluating the second one. It is reasonable that each stage of this evaluation
has its effect on the trace. More generally, every clause in the Cook equations should
add an element to the trace because it corresponds either to some elementary action,
or to a decomposition of the statement being evaluated.

Related work and acknowledgments. In a letter to Cook [1]; Krzysztof Apt
suggested a method to compute Comp which is related to the technique of 2: he
proposes to define by induction on k the row Comp’Rtrk which should consist of the
first k elements of CompRtr. Having defined Comp’ he then defines CompRtr " iff
::lk: Comp’Ro-n - for all n => k. He therefore defines Comp only for finite rows. The
same holds for the results of Jeff Zucker in the appendix of [3]. He defines Comp as
a fixed point of a set of equations derived from CE. He does this by using the recursion
theorem. The technique in 4 of adding the bottom element 3_ to mark a row as not
yet completed has been used by Ralph Back in his analysis of unbounded nondetermin-
ism [2]. The results in 6 were inspired by the reading of Nivat’s and others work
on infinite computations, as reported on for instance in [11]. The topology on E was
presented there, and also the proof of Lemma 6.4 can be found there.

A more elaborate version of this paper (more remarks and better worked out
proofs) is registered as Mathematical Centre Report [4].

I acknowledge with pleasure the assistance of the following persons: the members
of the Dutch working group on semantics, in particular Ruurd Kuiper with whom I
had frequent and stimulating discussions on the material presented here. I would like
to thank Jaco de Bakker and the referees for useful comments on the manuscript,
and finally I would also like to thank Nizethe Kemmink and Susan Carolan for doing
such a good typing job on a rather disjointed manuscript.
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Abstract. A more general version of the well-known selection problem is formulated, in which
constraints on the input set are allowed. Selection (and also ranking) problems are solved optimally for
the broad class of inputs constrained to be collections of matrices with sorted rows and sorted columns.
The characterization of problem complexity includes an asymptotically significant dependency on the rank
of the solution element.
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1. Introduction. Consider a set of elements drawn from a universe with a total
order. The problem of selecting an element of given rank has received considerable
attention [FG], [H], [Ki], [PY], [SPP], [Yp] since its complexity was first demonstrated
to be proportional to the cardinality of the set [B]. A more general version of this
problem, and one with several practical applications, allows constraints on the input
set. The constraints can be specified in either of two ways. Certain total orders on
the set can be forbidden by presenting the inputs in a succinct form as, for instance,
the sums of the pairs in a Cartesian product of two input sets, denoted X + Y.
Alternatively, a certain partial order can be specified which the input is known to
obey because of comparisons previously made or relationships between elements that
are implied by construction. Implicitly specified constraints may allow a succinct
presentation of the input in this case also. We have treated the case of Cartesian sums
in a previous paper [FJ1 ].

This paper deals with an important instance of the second case in which the input
obeys any specified partial order which can be described as a collection of what we
call sorted matrices. An n x m matrixX is a sorted matrix if each row and each column
is in nondecreasing order. Individual elements x will be identified by row and column
indices and so that X {xit}. (We use the term "set" and set notation for both sets
and multisets.) A collection of sorted matrices is a set X partitioned into blocks
{X.}jI, where each block X. is a sorted matrix of dimensions nj rn. We may
characterize the simple (unconstrained) selection or ranking problem on N elements
as applying to a collection of N trivial matrices, each one a singleton. Additionally,
some problems on partially ordered blocks of elements may be translated into problems
on matrices by viewing them as padded with dummy entries.

We consider both selection and the complementary problem of ranking in such
sets. Selection in a set X determines, for a given rank k, an element that is kth in
some total ordering of X. Ranking determines, for a given element, its rank in X.

Our algorithms for these problems are asymptotically optimal, and, in all but sets
N

with trwlal structure, are subhnear In the size of the problem, Y’,=I nrn. As we have
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indicated, the inputs may be succinctly presented, for example, as a collection of
sorted sets defining sorted Cartesian matrices or as a collection of functions and a
finite domain of n arguments. When sets are not succinctly presented, sublinear
algorithms have application when the cost of inputting can be distributed over several
computations. Our complexity measure charges unit cost for operations on a random
access machine. We assume that any element x in the set X on which the problem
is posed can be accessed (or constructed) at unit cost, given i.

The complexity of our problems depends not only on the matrix dimensions, but
also on the rank k. For instance, selection in an n m sorted matrix may require
anywhere from constant time up to time that is (R)(m log (2n/m)), depending on the
rank k. This dependence on k in our constrained problems is in marked contrast to
the situation of the unconstrained problem, in which the value of k affects only the
constant factor.

As stated earlier, there are several problems of practical interest in which a
collection of sorted matrices arises. A p-center of a nonnegatively-weighted network
is a set of p "supply" vertices chosen so as to minimize the maximum distance from
any vertex to a supply point. An efficient method to locate p-centers in networks with
tree topologies uses repeated selection of intervertex path lengths [CT1], [CT2], [KH],
[MTZC], [FJ2]. While it is true that the tree itself is a succinct representation of all
path lengths, the tree itself does not facilitate quick selection of a kth path. As we
show in [FJ2], the set of all path lengths may be represented as collection of Cartesian
matrices X + Y where X and Y are sorted. The selection algorithms in this paper
may be used to select optimally in such a collection.

Selection in X + Y (unsorted) may be used to compute the Hodges-Lehmann
estimator in statistics [HL], [MR], [JR], [S]. It is desired to estimate the difference in
the means of the two populations from which sets of observations X and Y, respec-
tively, have been drawn. The Hodges-Lehmann estimator for this difference is the
median of X+(-Y), the set {x-y[xX and y Y}. If there are many sets of
observations, and estimates are to be obtained between all pairs of them, then it will
be worthwhile to sort each set of observations and to use an algorithm in this paper
on the sorted Cartesian matrix for each pair.

Selection in partitions with sorted blocks solves the problem of optimum discrete
distribution of effort where m concave functions {f.} are given [Ko], [GM], [FJ1]. It
is desired to distribute discretely n units of "effort" among the {/} so as to maximize
the sum of the function values, i.e., maximize Y4- f.(ai) subject to Y.__ a n for
nonnegative integers {ai}. The problem is solved by selecting the nth largest element
in X {f.(i + 1)-,(i)1/= 1,. ., m, 0,. ., n 1}, where the concavity of the func-
tions yields one sorted n 1 matrix in X for each/’.

To present the inherent complexity of our problems in a reasonably simple form
we factor out of our discussion certain simple problem reductions. It is reasonable to
expect that any selection problem on N sorted matrices of dimension ni mi will be
presented in what we call reduced form where m =< n _-< k, for all/’, and k -< [21- yv__ mn].
Whenever this is not the case, a problem can be transformed in O(N) time to a
reduced problem with dimensions n m where selection of any element with rank k

< < < < k’ < k. It will be evidentsolves the given problem and m m., n ni, and m n
from the bounds we give on the running times for our algorithms that transformation
to a reduced problem never worsens asymptotic complexity and may indeed improve
it. Thus, while our analyses do not depend on inputs being in reduced form, it may
be assumed in using our bounds either that inputs are in reduced form or that the
parameter values in the bounds should, for purposes of describing complexity, be
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replaced by the parameters following reduction. Bounds in which the effect of reduction
is expressed directly in terms of the given parameters are unwieldy.

The reduction process depends entirely on the parameters {(ni, mi)} and k, and
not on problem values. The first step rests on the observation that any problem
selecting the kth smallest element may be posed as a kth largest selection for

N
k i= mini- k + 1. Since selecting for kth smallest and kth largest are symmetric,
replacing k with min {k, k} can be done in O(N) time. The entire reduction procedure
is as follows.

(1) Transform so that k min {k, k}.
(2) Let m min {mi, k}, ni rain {ni, k} for each j.
(3) If, for some i, mi 1 and ni > ji minj then replace Xi with the portion of Xi

from index k + 1-ii mini to index k, and let k Eji mini.
Application of this procedure yields in O(N) time a reduced problem the solution

to which is a solution to the original problem.
The greater portion of our paper deals with selection. In 2, we give a basic

algorithm for selection in a sorted matrix or, more generally, in a set of sorted matrices
all of the same size. In 3, we show how to aggregate sorted matrices of different
sizes into a form that may be handl.ed by the basic algorithm. The algorithms in these
sections are asymptotically optimal for selecting medians.

Algorithms for selecting optimally for any k are presented in 4, 5 and 6. In
4, we show how to select optimally in a single sorted matrix no matter what rank

is desired. In 5, a selection algorithm is given for a set of thin sorted matrices which
is again optimal for all values of k. The synthesis of the ideas in these sections results,
in 6, in an algorithm for the general problem which is optimal for all collections of
sorted matrices and over the whole range of k for any such collection.

Several algorithms for ranking are discussed in 7. It appears to be conceptually
easier to rank than to select in the sets we have studied although, interestingly, both
have the same asymptotic complexity. As has been noted, all of our algorithms for
selection and rankings are optimal to within a constant multiplicative factor over all
values of the relevant parameters. Lower bounds that meet our upper bounds are
established in 8.

This paper extends preliminary results which appear in [FJ3].

2. Basic algorithm for selection in a sorted matrix. In this section we give our
basic algorithm for selection and apply it to a single sorted matrix of dimensions n m
where 1 < m <= n. (When m 1 a solution can be found in constant time.) The running
time of the basic algorithm is independent of k and will later be shown to be optimal
on reduced problems where k (R)(nm). (As described in the introduction any problem
where n exceeds k can immediately be reduced in dimensions so that m =< n -< k.) The
basic algorithm may also be applied to a set of equal-sized matrices or to an input
with the essential properties of such a set. Later sections will give these results and
the preprocessing of inputs into the desired form, solving optimally all selection
problems posable on sorted matrices.

Our basic algorithm performs a sequence of selections on elements representing
submatrices of the given problem. (See Fig. 1.) The selections are performed in pairs,
yielding upper and lower bounds on the kth element and identifying submatrices that
need no longer be considered. At each iteration the remaining submatrices are
subdivided to allow refined bounds to be gotten by the next pair of selections. These
iterations finally reduce the submatrices to single elements from among which a
solution is found directly by selection.
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ALGORITHM SELECT(CELLS, k)
(1) k’ k
(2) for p to log4 S do

(2.1) Split each cell in CELLS.
(2.2) Let q<-[k’/(S/4P)] +Bp. If q_-<ICELLSI, select a qth element x, in the multiset {min (C)[C

CELLS}. Discard [CELLS[-q + cells from CELLS, retaining every cell C with min (C)<xu
and no cell C with min (C) > xu.

(2.3) Let [k’/(S/4P)J -Bp. If -> 1, select an rth element xt in the multiset {max (C)[C CELLS}.
Discard cells from CELLS, retaining every cell C with max (C)>xt and no cell C with
max (C) < xt. Set k’ k’- r(S/4P).

(3) Select the k’th element in CELLS.

FIG. 1. The basic selection algorithm.

A submatrix of a given matrix is termed a cell. Associated with each cell C is a
smallest element min (C), chosen as the element with smallest row and column indices,
and a largest element max (C), chosen as the element with largest row and column
indices. Initially there is a single cell, the matrix X, of dimensions n m and number
of elements S nm. An iteration begins by splitting all remaining cells into four parts.
If both dimensions of a cell are greater than one, then the cell is called thick, and
each dimension is split in half. If one dimension is equal to one, then the cell is called
thin, and the other dimension is split into quarters. For ease of exposition it is assumed
that S is a power of 4. Hence every cell will be of size a power of 4 and each dimension
greater than 1 will be divisible by 2. It is sufficiently easy to realize this restriction by
means of implicit padding of matrices so that the restriction is of little practical
consequence.

The structure of the matrix induces a partition of the set of remaining cells into
subsets called chains. If the cells are thick, then two cells belong to the same chain
if and only if they are in the same diagonal of the matrix of submatrices .obtainable
from the original matrix by partitioning it into submatrices of the same dimensions
as the cells. If the cells are thin, then two cells are in the same chain if and only if
they come from the same column in the original matrix. In either case, it is easily
seen that if two cells C’ and C" are in the same chain, then either max (C’)=< min (C")
or max (C")-<min (C’). Let Bp be the maximum possible number of chains after
splitting cells on the pth iteration. If cells are thick, then the maximum possible number
of chains is 2p+I- 1; otherwise it is m. Since 2p/l- 1 < m if and only if cells are thick,
B, min {m, 2"+1-1}.

After the remaining cells have been split, two selection computations are per-
formed. In the first, the smallest elements of the remaining cells are selected among
to find a qth element xu, where q [k’4’/S] +Bt, and k’ is the rank to be selected
for in the set of elements in the remaining cells. The value xu is an upper bound for
more than k’ remaining elements. Thus all but q- 1 cells may be discarded, such that
each cell C with min (C)>x is discarded, along with some of the cells C with
min (C)= x. Similarly, the largest elements of remaining cells are selected among to
find an rth element xt, where r Ik’4’/S] -B,. The value x is a lower bound for all
but fewer than k’ elements, and thus r cells may be discarded following a discarding
rule similar to the above.

After log4S iterations, all remaining cells will be single elements, and there
will be at most O(m) of them. A linear-time selection algorithm is employed to select
the appropriate element.
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LEMMA 1. The basic algorithm SELECT correctly computes a kth element in a
collection of cells of equal size, a power of 4.

Proof. We first establish that, after every iteration, a k’th element in the multiset
union of the set of cells is a k th element in matrix X. This is shown by induction on
the number of iterations. The above claim is certainly true after zero iterations.
Consider the pth iteration, p >0. Each cell is of size $/4p. Hence there are fewer
than [k’/(S/4P)] cells with all values less than the k’th element. Since there are no
more than Bp chains, there are no more than Bp cells with some values less than the
k’th element and some values greater than or equal to the k’th element in the same
cell. Thus xu is the minimum of a cell in which there are no values smaller than the
k’th element. Therefore discarding according to the rule presented will retain k’
elements no larger than the k’th element and discard no element that is smaller.

By a similar argument it can be shown that the second selection retains an element
that is k’th before the second selection and discards no element greater than this
element. Therefore k’ is adjusted correctly. So, by induction, at every iteration there
is a k’th element which is k th in the original matrix. Hence the final selection in the
set of singleton submatrices yields an element that is kth in the original matrix as
required. U

THEOREM 1. A selection problem on a sorted matrix of dimensions n x m,
1 < m <-_ n, is solved by the basic algorithm in O(m log (2n/m) time.

Proof. Correctness follows from Lemma 1. At most q- 1-r _-< 2Bp cells remain
at the end of the pth iteration of step 2. Since remaining cells are split into quarters,
at most 4(2B) elements are selected among in the (p + 1)th iteration. If a linear-time
selection algorithm [B] is used, then the time per iteration is proportional to the
number of cells. Thus the complexity of step 2 is at most proportional to

log S log S

E B, -<- E min{2P+,m}
p=l p=l

log m-1 log

Y 2p/ + Y, m < 2m + 2m log4 (n/m) O(m log (2n/m)).
p p log4

At the completion of step 2, there will be no more than 2m single elements, so that
step 3 will run in time O(m). ]

Dobkin and Munro have shown a similar result for the .case n m [DM].
Since the dimensions m and n which parameterize the bound in Theorem 1 can

always in constant time be made to satisfy m <-n-<k, they may be taken to be
min {m, k} and min {n, k}, respectively. The bound in Theorem 1 can be improved
significantly when k o(nm). We deal with this case in 4.

3. Selection in a collection of sorted matrices. We consider selection in a collec-
tion of N > 1 sorted matrices {X.}, ] 1,. ., N, of dimensions n x m, where n. -> m
for each ]. The basic algorithm in 2 can solve this selection problem if the input
matrices are first combined into a single matrix-like aggregate with all of the essential
properties of the cells on which the basic algorithm operates. The aggregate is generated
by repeatedly combining four smaller structures of the same size into a larger structure,
until a single structure results. The aggregate and smaller structures will be split and
selected among in a fashion analogous to that presented in 2. As before, it is assumed
in the presentation of the algorithm that nimi is a power of 4, for all/’.

In order to combine all matrices, it may be necessary to create additional matrices,
with all elements of value oo, called dummy matrices. Structures created by combining
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are called synthetic cells. A synthetic cell C of size S is a collection of four structures
{C1, C2, C3, Ca} of size 6:/4, where a structure is an original matrix of any shape, a
dummy matrix, or a synthetic cell. It is not hard to combine matrices so as to minimize
the total number of dummy matrices. If this is done, there will be no more than three
dummy matrices of each size less than the size of the aggregate. It follows that the
number of original and dummy matrices is one more than three times the total number
of synthetic cells. The number of synthetic cells is thus less than the number of cell
sizes used plus one third the number of original matrices.

Synthetic cells are handled in a fashion similar to cells representing submatrices.
When split, a synthetic cell is replaced by its four components. Any dummy matrices
so generated are discarded immediately. Associated with a synthetic cell C are two
values, min (C) and max (C), upon which selections are performed. The value min (C)
is min {min (C’)[C’ C}, and max (C) is similarly defined. Each synthetic cell is defined
to be in a chain by itself.

With these conventions established it may be seen from the proof of Lemma 1
that the basic algorithm selects correctly in any synthetic cell. Let S be the number
of elements in the largest synthetic cell, and let Bp be, as before, the maximum possible
number of chains after splitting cells on the pth iteration. The value of Bp may be
described as follows. For /= 1 N, let B be the maximum possible number of
chains in X- on the pth iteration, if the current cell size is not larger than the size of
X., and zero otherwise. Let Bo be the maximum number of synthetic cells active on
the pth iteration. Then

N

Bo=Bp+ Bo.
i=1

Let S. be the size of X.. Then it can be seen that B min {mj, [2P/1/$i/8] 1}p

THEOREM 2. A selection problem in a collection of sorted matrices {X, Xr}
in which X. has dimension n ml, n >= mj, can be solved in O(YY=I mj log (2nj/ m1)) time.

Proof. The method, aggregation into a single synthetic cell followed by application
of the basic algorithm, has been described in the preceding paragraphs. Correctness
of this method follows from Lemma 1. If the objects to be aggregated are bucket
sorted according to size, aggregation can be performed in time proportional to

N S. ThusN + log S. By construction, S < 4

__
N N

|og4 S < E |og4 (4nm) -<_ mj log4 (4n/m).
j=l j=l

It follows that aggregation is O(__ mi log (2ni/mi)).
In a fashion similar to that in Theorem 1, the complexity of step 2 of the basic

algorithm is found to be at most proportional to
log,t S log S N N log, S log S

Z Z B+ Z B.
p=l p=l /=0 ]=1 p=l p=l

The second sum is the total number of synthetic cells which, by previous remarks, is
less than log4 S +N/3. For any f 1, , N, we have

log S log S

Y’, B Y’, min{[2p+l/s]-1, m}
p=l p=l

log4 S

=< Y min {2+, m} O(m log (2nj/m)).
p=l
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Using the bound just obtained for log4 S, it follows that the complexity of step 2 is

O

__
m log (2n/m)

At the completion of step 2, there are O(F.; m) single elements remaining, in which
to select.

We note that it is not necessary to combine all matrices into a single synthetic
cell. The combining process need only be continued to the first point at which all
structures to be combined are the same size. The basic algorithm may then be applied
to this set, with the value of $ set to this size. It may be verified that the time complexity
of this variant is no greater, and that correctness follows from the correctness of the
algorithm presented. We also note that the bound of Theorem 2 does not depend on
reduced inputs though, as later results show, the bound is optimal for selecting medians
in reduced inputs, i.e. when m_-< n-< k for all ] and k O(F= mn). The bound of
Theorem 2 can be improved when k- o(2__ mn). This case is considered in its
complete generality in 6, after preliminary results are established in 4 and 5.

4. Selection in a sorted matrix when k is small. The basic algorithm is correct
for any k, but when applied to a single matrix the running time is suboptimal if
k o(nm). To realize an optimal running time as a function of k, m, and n, it suffices
to extract from the given matrix a certain set of submatrices guaranteed to contain
all elements less than the kth and at least k elements no larger. Although these
submatrices are of different shapes, they are of equal size and thus the basic algorithm
may be applied directly without the combining presented in 3. We continue our
assumption that nm is a power of 4.

The submatrices are identified as follows. Let K be the smallest power of 4 no
smaller than k, and let H min {/, m}. Let Xo be a submatrix with dimension
K/H H in the upper left corner of X. Extending downward (in the direction of
increasing row number) is a series of submatrices X1,"’,Xog2i-x of dimensions
n x m (2-IK/H) x (H/2-1) for j 1,. ., log2 H. Thus X. is the submatrix of X
with index range (2-IK/H, 2iK/H]x[1,H/2i-]. If n <K, then X is assumed to be
padded implicitly with elements of value o. If H- x/, then there is an analogous
sequence X,..., Xog to the right of Xo, of dimensions (H/2-1) (2-K/H) for
/" 1, , log2 H. As before, implicit padding is used as necessary.

It is sufficient to confine the search for a kth element to the union of these
submatrices. Since the rows and columns ofX are sorted, it follows that every element
discarded is no smaller than k elements that are retained. Thus a kth element in the
elements retained is k th in the original matrix.

TI-IEOREM 3. Selection of a kth element in a sorted matrix of dimensions n m,
n >-_ m > 1, can be performed in O(h log (2k/h 2)) time, where h min {,/, rn }.

Proof. The preprocessing just described generates a problem that can be solved
by the basic algorithm. Correctness follows from the above arguments of correctness
for the preprocessing plus those in Lemma 1. From the proof of Theorem 2, it can
be seen that selection in the collection of submatrices uses O(Y=gHmj log (2nj/mj))
time. We have

log H log H

m log (2nj/m)= (H/2-1) log (22-lK/H2)
/=1 =1

log H log H

H log (2K/H2) Y 1/2-1 + 2H Y (/- 1)/2-1
j=l j=l

< 2H log (2K/H2) + 4H.
Since h is 0(H) and k is 0(K), the above expression is O(h log (2k/h2)). [3
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5. Selection in a collection ot thin matrices when k s small. While we have
shown how to take advantage of a small value of k to yield a faster algorithm for
selection in a single sorted matrix, the running time of our algorithm for selection in
a collection of sorted matrices is insensitive to k. In this section we give an algorithm
for selection in a collection of sorted matrices that will later be shown optimal for all
k. The collection of matrices on which it operates, however, is restricted to the form
{X.},/= 1, , N, where each matrix X. is of dimension n 1. We call such matrices
thin matrices. The thin matrix algorithm will be an essential component of our most
general algorithm, given in the next section. We again assume that N > 1.

An algorithm of equivalent complexity on matrices all of which are of equal size
can be found in our earlier paper [FJ1] where techniques were used that could also
be applied to unsorted Cartesian matrices. The approach presented here is simpler
as well as more general in the context of sorted matrices. The matrices are preprocessed,
yielding a problem which is solved by the basic algorithm. The preprocessing is in
two steps. First the matrices are truncated to satisfy requirements on matrix sizes that
reflect the value of k. Then the matrices are combined as in 3.

Truncation is done according to the following generalization of the truncation
given in [FJ1]. Let i* [(k + 1)/([N/2[ + 1)]. The matrices X1,’’’ ,Xn are reordered
so that for a _-< [N/2I _-< b, the i*th value in X is not greater than the i*th value in
X. If i*> n., assume the i*th value of X. to be c. Truncate matrices X.,/= [N/2J +
1, , N, by resetting n min {ni, i* 1}. Repeat the process recursively with the first
[N/2I matrices, until i* > ni for all X..

When the discarding is completed, at least k elements remain and any element
that is k th among them is a k th element in the original problem. This follows since
whenever a (noninfinite) element is discarded there must be at least ([N/2J + 1)i*- 1 >_-
k elements retained that are no larger than it.

A linear-time selection algorithm may be used among the i*th elements to
determine the reordering of the matrices. The time for the first reordering is O(N),
and thus the total time for the truncation is proportional to at mostN + [N/2I +. + 1,
which is O(N). The resulting set of truncated matrices has an order that satisfies

n. =< [(k + 1)/(N/2)] 2 tog (r/j)j 1 < 4k//- 1

for all/.
The truncated matrices are aggregated as in 3 and the basic algorithm is then

applied. To analyze the time required for completing the problem, the following
lemma is useful. We call ,9’( {kj} an N-partition (or simply a partition) of k when 5r(

consists of N nonnegative integers that sum to k. We allow k. 0 to deal with the
case k <N which arises in a later section.

LEMMA 2. For all {n.}, f 1,. ., N, for which 0 < ni <- [4k//] and N <-_ k <-

[1/2 ]IV= ni] there exists a partition Y{ {1 <- ki <- ni}, / 1,. ., N, o[ k for which

27= log ni <_- 2i__ log k + 5N.
Proof. The proof is by

N
Induction on M=Yq= nj. The basis s where M

Yq= [4k/]]. A partition of k may be generated for which ki is either [k/N] or [k/N]
for each/’. Then

N N N

2 log nj _<- 2 log 4k/f N log (k/N) + Y log (4N/])
i=1 j=l i=l

<N log (k/N) +N(2 + log e)
N

<N log (k/N) + 4N < log ki + 5N.
j=l
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For the induction step, M < Yju__ [4k//’]. We assume that the lemma is true for
all W’ with -’j/v__ 1/’//. =M + 1. Let a ={ni} be a set with =1 ni =M. Since M <., [4k/]] there is a set’ in which n ni for all/" except i l, for which n n + 1
Thus

N N

log ni log n + log (nt/n )
j=l j=

N
_-< Y’. logk +5N+log(nt/n)

i=l

for some partition yC’ of k, by the induction hypothesis. If k< n I, then if{" r{’, is a
partition of k, satisfying the lemma. Otherwise, let ’{ differ from Y" only in that

+ 1 _-< nr for some r l. Thenkt =k-I and kr =k,
N N

Y log n <- Y log k + 5N + log (kt/kl)
i=

N

< Y log ki + 5N.

Let Y’{" {/.} be a partition of k where/i -<- nj for all j. is called a maximizing
partition ofk if ;j>0 log ki is maximized. As the following theorem states, the running
time of the thin matrix algorithm is bounded by a quantity proportional toi log (/i +
1). The theorem states this bound in a form compatible with later results.

THEOREM 4. Selection of a kth element in a set ofN > 1 sorted matrices {Xi},/’.=
1,. ., N, ofdimensions n x 1 can be solved in time O(N + tZj>o log/.), where Y*{"
is a maximizing partition of k.

Proof. The recursively applied preprocessing costs O(N) time. Upon completion,
no more than N’= min {k, N} nonempty matrices remain. Let the resulting sizes be
n -< n. for all j under an appropriate reindexing. By Theorem 2, the algorithm of 3

N’
will require O(N’+.i= log n) tme to complete the solution. From Lemma 2, this

N’quantity is O(N /i= log ki for some partition if{’ of k for which 1 _-< k _-< n for all

f..Since n -<_n for a suitable reindexing of.the given {hi}, Eil log k -<->0 log/, for
Y{, a maximizing partition of k for which ki -<-hi.

Later results show the bound in Theorem 4 to be optimal on reduced inputs.
Therefore, the reduction as described in the introduction (since it takes O(N) time)
should be a first step in solving any problem on thin matrices, it is useful also to note
that this bound is a restriction to thin matrices of the bound we obtain in the next
section for the general problem,

O(N -- 2hi>0 m log (2/i/h)),
where hi min {x/, mi},/" 1,. ., N.

6. Selection in a collection of sorted matrices for general k. The preceding
sections have developed ideas that can now be brought together to give an asymptoti-
cally optimal algorithm for selecting a kth element in any set of sorted matrices
{X.}, j 1,. ., N, of dimensions n mi. As in the preceding sections we assume that
N > 1 and m =< n. The algorithm follows the same pattern as before" preprocessing
of the matrices, aggregation, and application of the basic algorithm to the aggregated
problem. (See Fig. 2.) The preprocessing is done in three stages. First the matrices

zv (n+m’are cut down to dimensions n mi, where Y,i= i)=<2k, by applying the
thin matrix algorithm to the set of all first rows and first columns of the given matrices.
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ALGORITHM GENERAL_SELECT ({Xt}, k)
(1) Using the thin matrix algorithm, split the first row and first column of each matrix on a 2kth element

in this set so as to discard elements no smaller than the 2kth element, retaining exactly 2k elements.
In each X retain the origin-containing n xm submatrix induced by this splitting. Transpose matrices
implicitly as necessary so that nj m for all j.

(2) In the matrices that remain from step define index set Q {(s, t,/’)1 s and are powers of 2 with
s <-_n i, _-<mi,/’ 1,..., N}. Element q Q has weight wq st. Let q* be a 6kth weighted element in
Q according to wq relative to a lexicographic order on the pairs (x,, wq). Let/i {wlq is in X and
does not follow q* in the lexicographical order} for/" 1, , N.

(3) Use ’. in each X to construct the set of logarithmically-dimensioned matrices as in 4.
(4) Aggregate as in 3. Then apply the basic algorithm to all the submatrices from step (3).

FIG. 2. The general algorithm to select a kth element in any collection of N sorted matrices {X/} with
dimensions nj x mi.

Next, consider a partition {kj} of k, for which a kth element in (.J Xi has (virtual) rank
kj in X., for each/’. We find upper bounds {-j} for the {k}. The upper bounds {-},
obtained by weighted selection in the matrices of dimensions n x mj, have the property

L"-- l O(k) and therefore serve as estimates of {k}. The upper bounds can thus
be used in the final stage of preprocessing to identify sets of submatrices in each X.,
as in 4, to which the search for a kth element may be confined. It is this entire
collection of submatrices from each given matrix that is aggregated for submission to
the basic algorithm.

If necessary, the first step of preprocessing cuts the given matrices down to
dimensions nxm where XV=l (n+m;)<=2k. If X=I (n+m)>Xk, then a 2kth
element is selected in the set of all first rows and first columns of the given matrices.
These rows and columns are thin matrices and thus the thin matrix algorithm of the
preceding section can be used. The 2kth element is then inserted into each first row
and each first column to discard enough columns and rows that begin with elements
at least as big as the 2kth element so as to leave exactly 2k rows and columns
altogether. When necessary the submatricesX which remain are viewed as transposed
to ensure that n rn for each/’. A kth element in these submatrices will be a kth
element in the original problem since no element smaller than the 2kth is discarded
and, when any element is discarded, at least 2k elements are retained.

Let X {k} be a partition of k induced in {X.} by a kth element. The second
step of the preprocessing generates a set {’} of upper bounds such that k _<-. and

Y=I ’ < 6k. This is accomplished by performing a weighted selection on a subset of
elements from {X } with the following index set" Q {(s, t, f)l s and are powers of
2 with s <_-n and t-< mi, ] 1,..., N}. The element Xq, with index q (s, t,/’) is in
the sth row and tth column of X. It is accorded weight wa st and is used to represent
all elements in the cell (submatrix) Ca consisting of elements in rows s through 2s- 1
and columns through 2t- 1. (The matrices are viewed as padded out to dimensions
that are powers of 2.) Let q* index a 6kth weighted element, relative to a lexicographic
order on the pairs (xa, wa). The weighted selection may be carried out in time linear
in the cardinality of Q, using an algorithm from [JM].

Let Q’ be the subset of all indices preceding q* in the lexicographic order. By
the property of the order, if (s, t,/’) is in Q’, then every (s’, t’, ]) is in Q’, where s’<= s
and t’_< t. Let QL---Q’ be the set of indices of cells containing some elements larger
than xa*. Of these, cells in the first row or first column of any matrix account for
weight no greater than 2k/2 k. Each remaining index (s, t,/’) in QL (.J{q*} can be
paired with index (s/2, t/2, ]) in Q’-Q, representing a cell with no elements greater
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than xq.. Hence there are at least (6k -k)/5 k elements no greater than Xq. in cells
indexed by Q’. Since there are no elements smaller than xq. in cells indexed by Q -Q’,
a kth element in the cells index by Q’ will be a kth element in {X.}.

Let j be the sum of the weights, of cells in X. indexed in Q’. A kth element in
{X.} can have rank no greater than - in X., for each ]. Thus in matrix X., the set of
logarithmically dimensioned matrices based on j is formed, as was done for a matrix
in 4. This completes the preprocessing. Then the submatrices from all the X. in {X.}
are aggregated, and the basic algorithm is applied.

LEMMA 3. Let {(mi, ni)}, 1,..., N, satisfy 1 <-_ mi <-_ ni and Y,j (mi + ni) <- 2k.
There exists a partition {ki} of k for which ki<-mjni and (log mi)(logni)=

2O(hi log (2kj/hi )) for all f, where h min {/, mi}.
Proof. It suffices to treat the case when Y--_ (mi + nj)= 2k. Let ki (mi +hi)

Then ki <-mini. Note also that mj-<_ ki-<_ ni < 2k. Thus

(log mi)(log hi) < 2(log hj)(log 2ki)
22(log hi)(log (2ki/hi)) + 4(log hi)2

O(h log (2kj/h)). ]

We now extend the definition of a maximizing partition of k to a general set of
sorted matrices. Call ={/} a maximizing partition of k if maximizes the
expression h,>O (h log (2k’./h)), where h. =min {x/, mj} for j 1,... ,N.

THEOREM 5. Selection of a kth element in a collection of sorted matrices {X.},
f= 1,...,N, in which X. has dimensions nimi, nj>-m/, can be solved in

O(N+hj>,_hj log (2/j/h)) time where = {/} is a maximizing partition of k, and

h min {x/kj, mj}, = 1,..., N.
Proof. The algorithm of Fig. 2 has been shown to be correct in the preceding

discussion. We now show that it runs within the stated bound.
By Theorem 4, selection in the set of 2N thin matrices will use time O(2N +

2N /t.Yq=.>o log, ), where Y’= {/;} is a maximizing partition for 2k For a suitable
indexing of ,9’’ compatible with the definition of a maximizing partition, this quantity
is O(N/Y= log k) and in fact, within a constant factor, {/}--1 can be taken to be
a maximizing partition of k. To show that the application of the thin matrix algorithm
is bounded asymptotically by the expression in the theorem it suffices to let h;
min {x/;, mj}. Then

v2log/;. 2 log 4.<_- 2hi log (4-/hi)=hi log (l;/h.i).

The selection in N’ =<N matrices using index set Q will use no more than
O(Y. (log m)(logn)) time. By Lemma 3, there is a partition {k} of k for which
(log m;)(log n)= O(h; log (2k; ,2/h )) where h =mn{x/k,m} for each ]. Since

m m, the selection in O is bounded by the expression in the statement of the
theorem.

The aggregation and final selection can be shown to use O(Y.>0 h. log (2-//)),
where / =min {x/k, m}, by an argument similar to that in Theorems 2 and 3. Since

1/ < 6k, this expression is bounded asymptotically by the expression in the state-
ment of the theorem.

The bound in Theorem 5 reduces to the bound for medians in single matrices
(Theorem 1) when N 1, k 6)(nm), and m > 1, and the bound for medians in
collections (Theorem 2) when k i(Y nm); it reduces to the bound for small k in a
single matrix (Theorem 3) whenN I and rn > 1; it reduces to the bound for collections
of thin matrices (Theorem 4) when m 1 for all/’. The bound of Theorem 5 is shown
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in 8 to be optimal on reduced inputs. Since reduction costs O(N), it is reasonable
to assume inputs will be reduced.

7. Ranking in a collection of sorted matrices. Ranking in a collection of sorted
matrices may be done by ranking in each matrix independently and summing the
ranks. Let be the value to be ranked. We encode the value as an element identified
by index by creating a singleton matrix with the value in it. By this reduction, ranking
can be seen to be the complementary operation to selection. This reduction is also
useful in deriving the lower bound in 8.

To rank in a thin matrix, we use one-sided binary search [BY]. A one-sided
binary search starts at the beginning of a sorted array instead of the middle, probing
at indices 1, 2, 4, 8, , until an element xi greater than or equal to the test. element

is found. The search is completed by performing an ordinary binary search in the
range of indices i/2 to to find i* such that x.<-_t <x.+. The cost of a one-sided
binary search is O(log (i* + 1)).

Since it is not known on which side of the median falls, the one-sided binary
search should be applied in an interleaved fashion starting at both index 1 and index

n in each thin matrix. A similar interleaving strategy may be applied to thick sorted
matrices as we see below. To simplify presentation, we give only the portion for the
case where precedes the median.

In a sorted matrix X, the idea of one-sided binary search may be applied as
follows. Our search first finds the insertion position in the first column, i.e., the largest
i, such that xi <-- t. Then moving across row i it finds the largest xi for whichx _-<
at a cost of O(log (]-/ + 2)), etc., following the step-shaped boundary induced in X
by the value and finding the points at which the boundary "changes direction." Thus
at a cost proportional to no more than

1-1

tr=log(jl+l)+ . (log(fp+l-fp+2)+log(ip-ip+l+2))
p=l

a sequence of indices (1 il,/’1), (il,/’2), (i2,/’2), (i2,/’3)," ’, (it, ft 1) is found from
which the rank can be determined as k =tp= (ip--ip+)fp. We notice that l<=
min {x/-, m}.

THEOREM 6. Ranking in a sorted matrix with dimensions n and m, m <= n, can
be done in O(h log (2k/h 2)) time when the element ranked has rank k <= [nm/2] and
h min { [x/], m}.

Proof. We can maximize the contribution to tr of the ip’s when/’t l-< m, giving

cr <= jl log 3 + 2’ E log (ip ip+ + 2).
p=l

If/’t l, then k lp= p(ip- ip+). We may then apply Lemma 4 below, to yield the
desired result. [

It is important to note that h log (2k/h 2) is always O(/), since h <-/. When
k =(R)(ran) the bound of Theorem 6 is O(m log (2n/m)). Also, by symmetry, the
algorithm may rank for k th smallest and (nm- k)th largest simultaneously, so that k
in the above bound may be taken to be rain {k, nm -k}.

LZMMA 4. Let a set of real numbers {ai}i-, with a >-1, satisfy_ i= iai k, for
any <--m. Then i= flog ai =O(h log (2k/h)), where h =min {[/],/m}.

Proof. It can be shown by induction that, for any fixed integer l, I-[= iai 7rl is
maximized by ai k/(il) for 1,. ., 1. Thus
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By Stirling’s foxmula, zr=O((1/x/-l)(ke/12)t) so ln zrt=O(lln(ke,/12)). Since
t<4 and l=O(h), we get lnr=O(hln(2k/h2)). Since Y.’--1 [log a]<
+ Y.= log ai, and =< min { [x/], rn }, we obtain our result.

To rank in a collection of sorted matrices, let be identified by index in a singleton
matrix. To allow for the case where k may exceed the median, let k be the rank of

in {X.} and let / be equal to (--1 nj)-k + 1. Then is a maximizing partition
of mink,/} if maximizes the expression ,h,>o(hjlog(2k./h)), where h.=
min {x/k., mi} for/" 1,. ., N. The general result for collections now follows immedi-
ately.

THEOREM 7. Ranking of an element in a collection of sorted matrices
{X1,’’’ ,Xv}, where is identified by index in a singleton matrix can be solved in

O(N+,h,>o (h log (2//h))) where ={/} is a maximizing partition of min {k,/}
with respect to {hj}, as defined above.

8. Optimality. In this section we give lower bounds on running times for any
algorithm that solves the selection or ranking problems treated in previous sections.
These lower bounds coincide asymptotically with the running times of our algorithms,
thus establishing the optimality of these algorithms in the context of a general
comparison model of computation.

The lower bounds which we present are based on counting arguments in decision
trees, extending the results of [FJ1] to the problems addressed here. We consider two
varieties of decision trees. If algorithms are restricted to making comparisons between
single input values, as is the case with every algorithm in this paper, then the lower
bounds hold for any input domain with a total order. If comparisons are allowed
between linear functions over the input values then our lower bounds hold for any
dense domain on which a total order is defined on the set of all linear functions of
values in the domain. Bounds on other problems have been obtained in a similar
manner by [PY], [Yo], [JK], [FG], [FW].

Any finitely presented algorithm which solves a problem by means of the com-
parisons which we allow may be represented by a family of decision trees, one tree
for all inputs of a given problem size and a given set of constraints on the total orders
allowed for the inputs. (Certain algorithms which are not finitely presented may have
this representation also.) Each tree contains interior nodes, representing comparisons,
which have three children, one for each of the outcomes <, and >. Leaves of trees
for selection or ranking are labeled with a single answer of the form "the kth element
has value t." A selection tree is uniform for a given k, and at each leaf is given by
index in the input. A ranking tree is uniform for a given by index, and at each leaf
the correct k is given. A leaf that is reached over a path from the root on which only
< and > branches are taken is called strict, as is also the path to a strict leaf.

For any input X {X} regardless of its structure, a configuration of X with
respect to drawn from the same domain is a set Ix for which {ilxi < t} Ix {ilx <-- t}.
When all members ofX are distinct, as we may assume in arguments for lower bounds,
then Ix is uniquely specified by X and t. We call an input with distinct members a
simple input.

We need two results which we present together in the following lemma.
LEMMA 5. Any algorithm that can determine that value is kth in inputs where

all values are distinct
(a) using only elementary comparisons and over any input domain with a total

order, or
(b) using only comparisons between linear forms of the input and over any dense

input domain with a total order defined on the comparands
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must expend f(log P) comparisons, where P is the number ofdistinct input configurations
allowed by the parameters and constraints of the problem.

Proof. It is easily shown by an adversary argument that any algorithm must
determine xi < t, xi t, or xi > for every i. Thus for part (a), there must be P leaves
and some path of length [log P], because if two simple inputs with distinct con-
figurations were to choose the same leaf it will be asserted that x < and x-> for
some single input value xi.

For part (b), assume some strict leaf is reached by two simple inputs X’ and X"
the configurations of which are distinct. Hence the decision tree identifies the/’th
element in each as equal to t. Since the inequalities specified by the path to the leaf
in question define an open and convex set in the input domain, every linear combination
of the inputs X’ and X" also select the same leaf. As in [FJ1] it is easily shown that
there is a possible input Y in an e-neighborhood of a linear combination of X’ and
X" for which the configuration Iy satisfies k + 1, contradicting the correctness
of the tree. It follows that each strict leaf accepts inputs with exactly one configuration.
Therefore there are at least P leaves and some path of length flog P].

It is convenient to define the following. Given a maximizing partition rt" of
k <= [1/2 ,]N__ nim], a partition fit" {ki} can be constructed which satisfies [//2J -< k -<_

[nimi/2] for all/’. Any partition so constructed is asymptotically maximizing since it
maximizes the expression N + Y,h>0 hi log (2ki/h to within a constant factor. Also,
let the largest thin matrix be identified by index it.

LEMMA 6. Selection of a kth element in a collection of thin sorted matrices
{X, Xn}, of dimensions ni 1, requires time

I(N+ . log/j)
k >0

where {k.} is a maximizing partition of k.
Proof. Let {xj} be indexed so that iL 1 and kj >-kj+l, j 1,..., N-1, for an

asymptotically maximizing partition {k.}. Let f= min {f[Yv__i/ kl <- (k -kl)/2} and
tr =Y.v_-f/lkt. Configurations of the form {(ii,/’)l/"= 1,... ,N} are achievable for
O<=ii<=kj, /’>/’ and d<-if<=d+(k-kl)/2-cr, for d a function of Y.i<fi.. (To be
specific, d max {0, k -Y..<fni-Y.>fij}.) Thus the number P of achievable configur-
ations satisfies P>-((k-kl)/2-tr)I-Ii>f(ki+ 1). Since this expression is no smaller

f-1than either I-Ii--2 (ki + 1) or kf+ 1, we have p3__> =2 (ki + 1), from which it follows that

logP f(N+ Y. log/i),
i>0
jiL

since {k} is asymptotically maximizing. 1
LEMMA 7. Selection of a kth element in a sorted matrix X of dimension n m,

1 < m <-n, requires time f(h log (2k/h 2)), where h min {/, m} and k <- [nm/2].
Proof. We construct a basic "step-shaped" configuration as follows. If m 2, an

initial configuration will have k elements in column 1. A valid configuration may be
obtained by moving up to [k/2J elements into column 2. If m- 3, an initial con-
figuration will have [2k/31 elements in column 1 and [k/3] elements in column 2.
This allows moving up to [k/3J elements from column 1 to column 3. So, for the
cases m 2 and m 3, P ft(k) and log P lq(log k), which is l)(h log (2k/h 2)).

For m->4, let a =min {m, [x/]}, s [2k/a 21, and b [2k/a]- [sa/4]. The
basic configuration has b + s(a + 1- i) elements in each column, 1,. ., [a/2J 1,
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and no more than b + s(a + 1- i) elements in each column, la/2J, ’, a. Thus it
is possible to move up to s elements from any column 1,. ., la/2J -1 to some
column with index greater than /a/2J, and this may be done independently for each
of the first [a/2J 1 columns. Therefore P >- s la/2J-1 and log P l](h log (2k/h 2)) as
required. We now verify that the basic configuration claimed exists for all values of
k, m, and n for which 1 <-k <= [nrn/2] and n -> rn -> 4.

It is sufficient to show the following for rn => 4,
La/2J -1

Y (is+b)<-_k<-_ Y. (is+b).
i=1 i=1

To obtain the first inequality, we obtain

b L2k/aJ- rsa/4] <-_ Lk/[a/2JJ- rstal2Jl] <-k/(La/2J-1)-s[a/2J/2,
which implies

s [a/2J (La/2J 1)/2 + b([a/EJ 1)_-< k,

which is the first inequality in closed form. As to the second, since a _-> 2 and k/a _-> 1/2,

b [2k/aJ [sa/4] >-k/a-s(a + 1)/2,

which implies

k <__sa(a .+.. 1) + ab,
2

the closed form for the second inequality.
We may now combine these results to obtain lower bounds for the general

problems.
THEOREM 8. Selection of a kth element in a collection of sorted matrices

{X, Xr} in which matrix Xi has dimensions ni x mi, mi <-_ ni <-_ k, is of complexity

(R)(n + h, log (l,lh))
hi>O

where {/i} is a maximizing partition of k <- [=1 rnini/2], and h min {x/k, rni}
fori= l, ,N.

Proof. The upper bound has been established in Theorem 5. For the lower bound,
consider an asymptotically maximizing partition fig {ki} of k. Let I = {1,..., N} be
the set indexing the thin matrices of the problem, with i: indexing the largest. Consider
selection of the (it ki)th element in {Xs}it. By Lemma 6, there are Pr configurations
satisfying log PT l(k>O,ii,, log ki). For each remaining matrixX with ki > 0, there
are Pi configurations, where log Pi f(h log (2ki/h)), and hi min {/, mi}. Since
the configurations of the collection of thin matrices and of the individual thick matrices
are independent, we may multiply to get a total number of configurations. Since the
problem is reduced, k,.-<_ [n,] <-_ [k/2], and thus we get log P
fl(Yh>o hi log (2ki/h)). The I)(N) term arises for case (a) of Lemma 5 because each
matrix must be examined, and for case (b) it follows from Rabin’s results [R ].

COROLLARY 1. The algorithm of reduction, as given in the introduction, followed
by Algorithm GENERAL_SELECT (see Fig. 2) is optimal on any selection problem
on sorted matrices.

Proof. This result follows directly from Theorem 8 and the fact that reduction
to satisfy m _-< n _<-k -<_ [1/2 Y.i= mini] can be accomplished in O(N) time.
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THEOREM 9. Ranking an element in a collection ofsorted matrices {X1, , Xr},
where is identified by index in a singleton matrix, requires fl(N_ + Y’-hj>0 hj log (2/./h))
time, where r {kj} is the collection of ranks induced by t, k min {k,mjn -k}, and
h rain {ffff/, m}, ] 1,..., N.

Proof. The lower bound is constituted independently for each matrix, thick or
thin. For a thin matrix, there are lkff2J positions i, [kff2] < i-<_ ki. Hence searching
for an element with rank in this range will require I(log (k + 1)), for kj _-< [nff2]. For
a thick matrix, configurations may be constructed and counted as in Lernma 7, but
using actual values kj. The additive term N arises as in the proof of Theorem 8. D

[BY]

[CT1]

[CT2]

[DM]
[FJ1]

[FJ2]

[FJ3]

[FW]

[FG]

[GM]

[HL]

[H]
[JK]

[JM]

[JR]

[KH]

[Ki]

[Ko]

[MR]

[MTZC]

[PY]

REFERENCES

J. L. BENTLEY AND A. C. YAO, An almost optimal algorithm for unbounded searching, Inform.
Proc. Letters, 5 (1976), pp. 82-87.

M. BLUM, R. W. FLOYD, V. R. PRATT, R. L. RIVEST AND R. E. TARJAN, Time bounds for
selection, J. Comput. Syst. Sci., 7 (1972), pp. 448-461.

R. CHANDRASEKARAN AND A. TAMIR, Polynomially bounded algorithms for locating P-
centers on a tree, Math. Prog., 22 (1982), pp. 304-315.
,An O((n log p)2) algorithm for the continuous P-center problem on a tree, SIAM J. Alg.

Disc. Meth., (1980), pp. 370-375.
D. DOBKIN AND J. ][. MUNRO, private communication.
G. N. FREDERICKSON AND O. B. JOHNSON, The complexity ofselection and ranking in X + Y
and matrices with sorted columns, J. Comput. Syst. Sci., 24 (1982), pp. 197-208.

Finding kth paths and p-centers by generating and searching good data structures,
J. Algorithms, 4 (1983), pp. 61-80.

Generalized selection and ranking, Proc. 12th Annual ACM Symposium on Theory of
Computing, Los Angeles (April 1980), pp. 420-428.

M. L. FREDMAN AND B. WEIDE, On the complexity of computing the measure of U[ai, hi],
Comm. ACM, 21 (1979), pp. 227-238.

F. FUSSENEGGER AND H. N. GAaOW, A counting approach to lower bounds for selection
problems, J. Assoc. Comput. Mach., 26 (1979), pp. 540-543.

Z. GALIL AND N. MEGIDDO, A fast selection algorithm and the problem ofoptimum distribution
of effort, J. Assoc. Comput. Mach., 26 (1979), pp. 58-64.

J. L. HODGES AND E. L. LEHMANN, Estimates of location based on rank tests, Ann. Math.
Statist., 34 (1963), pp. 598-611.

L. HYAFIL, Bounds for selection, this Journal, 5 (March 1976), pp. 109-114.
D. B. JOHNSON AND S. D. KASHDAN, Lower bounds for selection in X + Yand other multisets,

J. Assoc. Comput. Mach., 25 (1978), pp. 556-570.
D. B. JOHNSON AND T. MIZOGUCHI, Selecting the Kth element in X + Y and X1 +X2 +" +

X,,, this Journal, 7 (1978), pp. 147-153.
O. B. JOHNSON AND T. A. RYAN, JR., Fast computation of the Hodges Lehmann estimator--

Theory and practice, Proc. Ann. Statistical Assoc. 138th Ann. Meeting, San Diego, 1978,
pp. 1-2.

O. KARIV AND S. L. HAKIMI, An algorithmic approach to network location problems I: The
p-centers, SIAM J. Appl. Math., 37 (1979), pp. 513-538.

D. G. KIRKPATRICK, A unified lower bound for selection and set partitioning problems, J. Assoc.
Comput. Mach., 28 (1981), pp. 150-165.

B. O. KOOPMAN, The optimum distribution of effort, J. Oper. Res. Soc. Amer., 1 (1953), pp.
52-63.

J. W. MCKEAN AND T. A. RYAN, JR., ALGORITHM 516: An algorithm for obtaining
confidence intervals and point estimates based on ranks in a two-sample location problem,
ACM Trans. Math. Software, 3 (June 1977), pp. 183-185.

N. MEGIDDO, A. TAMIR, E. ZEMEL AND R. CHANDRASEKARAN, An O(n log2 n) algorithm
for the kth longest path in a tree with applications to location problems, this Journal,. 10 (1981),
pp. 328-337.

V. R. PRATT AND F. F. YAO, On lower bounds for computing the ith largest element, Proc.
14th Annual Symposium Switching and Automata Theory, Iowa City, 1973, pp. 70-81.



30 G. N. FREDERICKSON AND D. B. JOHNSON

[R]

[SPP]

IS]

[YO]

[Yp]

M. O. RABIN, Proving simultaneous posititity of linear forms, J. Comput. Syst. Sci., 6 (1972),
pp. 639-650.

A. SCH)NHAGE, M. PATERSON AND N. PIPPENGER, Finding the median, J. Comput. Syst.
Sci. 13 (1976), pp. 184-199.

M. I. SHAMOS, Geometry and statistics: problems at the interface, in Algorithms and Complexity:
New Directions and Recent Results, J. F. Traub, ed., Academic Press, New York, 1976,
pp. 251-280.

A. C.-C. YAO, On the complexity of comparison problems using linear functions, Proc. 16th
AnnualACM Symposium Foundations of Computer Science, Berkeley, CA, 1975, pp. 85-89.

C. K. YAP, New upper bounds for selection, Comm. ACM, 19 (1976), pp. 501-508.



SIAM J. COMPUT.
Voi. 13, No. 1, February 1984

1984 Society for Industrial and Applied Mathematics

0097-5397/84/1301-0003 $01.25/0

LINEAR TIME ALGORITHMS
FOR TWO- AND THREE-VARIABLE LINEAR PROGRAMS*

M. E. DYER’

Abstract. O(n) time algorithms for linear programming problems with two or three variables and n
constraints are described. The approach uses convexity, dominance of linear functions and linear-time
median finding algorithms. The algorithms improve the previously known best bounds of O(n log n) time
for both of these problems.

Key words, linear programming, computational complexity, geometric algorithm

1. Introduction. Algorithms for linear programming (LP) have recently been a
subject of great interest. Khachiyan [6] has shown that LPs are solvable in time
polynomial in the total number of digits in the problem description, and this result
clearly places LP in the class of "easy" computational problems. However it may be
argued that the model within which Khachiyan’s algorithm is polynomial is not entirely
satisfactory for LP, since it deals at a very low level with arithmetic precision in the
data. A more appropriate model is perhaps the RAM with real arithmetic, commonly
used in the analysis of geometric algorithms (see, for example, [11]). In this model
the atomic operations are arithmetic, comparisons and accesses of real numbers. (Since
real numbers are essentially infinite objects it may be observed that this approach
does beg some important questions about the nature of the computations, but this
will not be considered here.) Within this model, we seek an LP algorithm for which
the complexity is polynomial only in the numbers of constraints and variables. However
at present no such algorithm is known. Even if such an algorithm is discovered, it
will still, of course, be of interest to minimize the degree of the polynomial involved.

This paper considers LP under the real-arithmetic RAM model in the simplest
nontrivial cases, where the numbers of variables are either two or three. For such a
problem with n constraints, it is shown that algorithms requiring only O(n) time and
space are available. The approach uses convexity, dominance of linear functions, and
well-known ideas for the design of linear time algorithms. The paper is divided into
two main sections. Section 2 deals with the two-variable case, and then 3 generalizes
this to the three-variable problem.

2. Two-variable LP. This section examines the solution of the two-variable LP
problem:

maximize ClXl "1-2X2,

subject to aix + ai2x2 <= bi (i 1, 2, , n),

where c, c2, a, ai2, bi are given constants.

The simplex method can be used to solve this problem in time O(ng). However,
it has been known for some time (see [11]) that an O (n log n) time solution is possible,
based on determining all the O(n) vertices of the constraint set. From results concern-
ing convex hull determination 13], it would seem that this approach is also l(n log n ),

* Received by the editors April 2, 1982, and in revised form December 2, 1982.
t Department of Mathematics and Statistics, Teesside Polytechnic, Middlesbrough, Cleveland, United

Kingdom TS1 3BA.
A similar approach to LP problems has been discovered independently by N. Megiddo.
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though Bentley and Shamos [1] have shown that an O(n) expected time algorithm,
under various distributions for the inputs, is obtainable in this way.

Here we continue this work by showing that an O(n) worst case algorithm is
available for this problem. Such a method is clearly optimal to within a constant factor.
The method is based on minimizing convex functions defined as the maximum of a
set of linear functions on the real line, R. The section is divided as follows. Section
2.1 considers the fundamental minimax problem just described, and presents the basic
pairing algorithm. Then 2.2 concerns the solution of the LP when a point satisfying
the constraints is known. Finally 2.3 considers how such a point may be determined.
All algorithms work in linear time.

Note that the problem considered here is not closely related to the "two-variable
per constraint" linear programming problem (see, e.g., [12]) which has also been
referred to as two-variable LP.

2.1. The pairing algorithm. Suppose a function F is defined on R by:

F(x) max {aix +/3,}
l<--i_n

where (aix +/3i) are given lines (i.e., linear functions of x). It is well known that F is
a convex function [10]. Consider the problem of determining

F(xo) min F(x).
xR

For notational convenience, it will be assumed that we are working in the extended
real line R, i.e., R augmented with the symbols + oo and -oo (see [10]). In any closed
interval of R, we will say that the ith of the n lines (aix +/3) is dominated in ! if for
all x el there is a/" such that ajx +/3j >-cix +/3 and either (a,/3i) (c,/3) or (ai,/3j)
(a,/3) and/" < i. Thus, a line is dominated if there is another line which lies above it
at all points of L Otherwise line is undominated in L It is straightforward to show
that F has the following form. There is a partition of R into (m + 1)<=n closed
intervals L ={x" Zr X Zr+l} (r=0, 1,’’’ ,m), with Zo =-oo, z,,+a +oo. In each L
there is a single undominated line (a* * * *x +/3 ). Then F(x) a x +/3 (x L). By the
convexity of F, {a *} is an increasing sequence. Now Xo is clearly one of the z since
F is linear (and hence monotonic) between such values. First, let us exclude the cases
Xo +/-. From the above, it follows that Xo +oo if and only if max c < 0, and Xo -o
if and only if min a > 0. These conditions can be detected in O(n) time and hence it
will be assumed that Xo is finite (or equivalently min a-<_ 0_-<max ai). It follows that
F is as shown in Fig. 1 in the neighborhood of Xo.

Clearly, as far as the determination of Xo is concerned, only two lines are relevant,
those two which intersect at Xo and are undominated in every neighborhood of Xo.
Any line which is dominated in any neighborhood of Xo is irrelevant for this purpose
and could as well be removed altogether from the definition of F. This observation,
together with the convexity of F, provides the basis for the following algorithm, in
which lines are successively deleted from the definition of F by dominance. In the
algorithm, F is assumed to be represented by a list of length n, giving the a,/3. Each
element of the list has a third data field x which is used in the algorithm. Note that
as deletions occur from the F-list, n is reduced. Thus, in the algorithm description,
n is to be read as referring to the current length of this list at the commencement of
Step 1 of the iteration.

Step O. Check if min a >0. If so, set Xo-Oo, F(xo)- and stop. Check if
max a < 0, if so, set Xo +oo and stop.
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Step 1. Proceed through the list, dividing the n lines into knJ pairs of successive
lines. For each pair (aix +/3i), (ai/lX +//1) perform the following operations. If the
lines are parallel, i.e. ai =a/x, then if/3 <//1, delete line i, otherwise delete line
(i + 1). (One or the other of the lines is dominated on R.) Otherwise, calculate the
(unique) intersection xi of lines i, (i + 1). Thus xi (Bi-i+l)/(ai+l-ai). (Xi/l will be
left undefined.) Observe that if the left half of the pair i, (i + 1) is the line corresponding
to min (a, a+x) and the right half is that corresponding to max (ai, ai/x), then the
right half dominates the left half on the interval {x->x}, and the left half dominates
the right half on {x =< x} (cf. Fig. 1).

Step 2. Let k-< [n/2J be the number of values x created in Step 1. If k 0,
return to Step 1. Note that [1/2n lines will have been deleted from the list. Otherwise,
using a linear-time median finding algorithm [2] determine the median x* of the k
values x (i.e., x* is the [1/2k]th xi in ranked order).

Step 3. Evaluate F and its left and right gradients A, p at x*. That is, determine

and

F(x*) m__<__<x, {ax* +/3i}

A min {at" ax* +/ F(x*)},

p =max {ai’ ax* +/3i F(x*)}.

Clearly, A -<p and equality is possible. By the convexity of F, these can be used to
determine whether x0 < x* * *,Xo=X orxo>x

Step 4. If A _-< 0 _-< p, x * is minimal. Thus, set Xo x*, F(xo) F(x *) and stop. Else
if A > 0, then x0 < x* and thus Xo < xi for all xi >-- x*. Thus the right half of pair i, (i + 1)
is dominated in a neighborhood of Xo. Therefore, go through the F-list deleting the
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right half of all pairs i, (i+1) having Xi X*. Clearly [1/2k] lines are deleted, and thus
it follows that, in Steps 1 and 4, at least [1/2[1/2nJ] [)(n 1)] lines are deleted. Return
to Step 1. Similarly if p < 0, x0>x*. In this case, delete the left half of i, (i + 1) for
xi <-x* and return to Step 1. This completes the description of the algorithm.

The algorithm will eventually terminate in Step 4, since at least [1/4(n- 1)] lines
are deleted at each iteration of Steps 1 to 4. Thus, at least one line is deleted when
n > 2. When n 2, the algorithm must terminate since x* is then x0, the unique
intersection of the two remaining undominated lines. An examination of each of Steps
1 to 4 shows that they can be carried out in O(n) time, where n is used here as in
the algorithm. In each such iteration, approximately a quarter (at least) of the F list
is deleted. Therefore, returning to the original meaning of n as the initial number of
lines, only O(log n) iterations can occur. Since Step 0 clearly takes O(n) time, the
total time for the algorithm is

O(n + -In + (-])n +...) O(n).

It is also obvious that any algorithm for this problem is f(n) and thus the pairing
algorithm is essentially optimal.

2.2. Solving the linear program. We return now to the solution of the LP"

maximize ClXl + c2x2,

subject to ailx q- ai2x2 <= bi (i 1, 2, , n),

when a point x , x satisfying all the inequalities is given. (The determination of such
a point is considered in the next section.)

First, note that if c c2 0, then x , x is an optimal point, and hence this case
can be detected and discarded in constant time. It is, therefore, assumed that c2 0,
if necessary after applying the transformation

X <"’> X 2, C <’> C2, ai <-> ai2

to the data in O(n) time. (The transformed problem is solved and the optimal solution
to the original problem obtained by interchanging its x and x2-coordinates.) The
problem is now transformed into a form similar to that of 2.1. The transformation
can be carried out in one pass through the data, though for clarity it will be presented
here in three parts. Each takes O(n) time.

First make the transformation

X1 -Xl-X1, X2-x2-x.

in order to map x , x to the origin. This results in the problem:

maximize Co + cX +c2X2,

subject to ailXx + ag2X2 <- Bg (i 1, 2, , n)

where Co cx’ +c2x2, Bi =bi-aix’ -ai2x’2.
The constant Co can be added in once the problem is solved, and hence, it will

be ignored. Now the problem is transformed to bring the gradient direction of the
objective function to the ordinate axis"

X X1, Y c1X1 -- c222
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This is nonsingular since C2 0. The transformed problem is:

maximize Y,

subjectto AilX+Ai2Y<=Bi (i=l, 2,...,n),

where Ail all ai2c 1/c2, Ai2 ai2/c2.

Now, since X Y 0 satisfies the constraints of this problem, we must have
Bi _-> 0 for all i. Also, since this known solution has Y 0, we can assume Y- 0 in
the optimal solution. There is, therefore, no loss in adding this as a constraint to the
problem. Now, the third transformation is projective"

X 1
X-y, y -,

which produces:

minimize

subject to

Y

AilX +Ai2 -<- Biy,

since maximizing Y is equivalent to minimizing its reciprocal for Y _-> 0. The inverse
of the three transformations applied can be readily determined. It is

XI.X () 1--ClX+ X2--X2
c2y

This will be needed to reinstate the solution to the original problem. The value of
(c ix + c2x2) can then be calculated.

In the above transformed problem, it is necessary to partition the constraints into
those with Bi 0 and B > 0. Let these be the sets Io, I respectively. The constraints
in Io can be reduced to: u <=x =< u2, where

and

Ai2u max -11:A> 0, B 0

Ai2 }U2 min -11: Ail < 0, Bi 0

The constraints in I1 can be rewritten"

y >-aix

where

Ail Ai2
0i [

Bi Bi

Therefore, the problem can finally be stated"

minimize y F(x)

where F(x)=max {aix +8i} and u-<_x =<u2.
iI1

This problem is a slight generalization of that of 2.1 in that the interval U [Ul,//2],
from which x must be chosen, may be finite or semi-infinite. However, the pairing
algorithm is easily modified to deal with this problem, as follows.
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First, if ul > u2, then min y + and it follows that the solution to the original
problem is X =x’ .1, x2 x This can be checked in Step 0. Next, if u u2, then the
solution is x u 1, and y F(u 1) must be evaluated in O(n) time. Again, this can be
done in Step 0. This leaves the case u < u2. The following changes can be made in
Step 0. Evaluate F(u 1) and its right gradient p, as described in Step 4 of the pairing
algorithm. If p > 0, stop, the optimal solution is x u 1, y F(u 1). Otherwise, determine
F(u2) and its left gradient h. If h < 0, stop, the optimal solution is x u2, y =F(u2).
Otherwise the optimum x lies in the interior of U. Modify Step 1 as follows. If, in
the pairing process, xi => u2, then delete the right half of the pair and ignore this xi in
the determination of x* in Step 2. Similarly, if xi -< Ul, then delete the left half of the
pair and ignore this xi. In both cases, the deleted line is dominated on U. Note that
with these modifications, u < x* < u2 at each iteration. It is clear that the transforma-
tion process can be carried out in linear time, and that the modifications to the pairing
algorithm do not alter its linear-time behaviour. Thus the algorithm can be carried
out in time O(n).

2.3. Finding a feasible point. It remains to consider how a point satisfying the
constraints

ailx + ai:x2 <= bi (i 1, 2, ., n)

can be determined, or the nonexistence of any such point proven. First observe that
if any constraint has ail= a2 0 then, if bi < O, there is no solution to the constraints.
Otherwise, the constraint is redundant and can be deleted. Such constraints can
obviously be processed in linear time and thus it will be assumed that nosuch constraints
are present. Now the constraints will be partitioned into three sets, Io, I1, I., corre-
sponding respectively to ai2=0, ai2<0 and ai2>0. The constraints can now be
rewritten:

x >- aix + [3i (i

where

--X2OliXl -Jr’i (i I),

/,/1 Xl

Oli ail/lai2[, [3i--bi/lai2l,
u max {bi/ail: ail < O, Io},

u min {bi/ail nil > O, Io}.

Writing Xl x, F.(x) maxiii {nix + fli}(] 1, 2) and U [Ul, u2] the constraints
can thus be expressed in the form

Fl(x)<-Xz<=-Fz(x) and x s U.

There is a point satisfying the constraints if there exists x U such that -Fz(x)>=
Fl(X) or equivalently ,5 (x F1 (x +Fz(x <= O. (A point satisfying the original con-
straints is then given by Xl=X and Xz=1/2(Fl(x)-Fz(x)).) Since F1 and F2 are convex
functions (of the form considered in 2.1), it follows that 8 is also convex. The problem
of finding a feasible point can therefore be reduced to the problem"

determine 6 (Xo) min {6 (x): x U}.

If 6(Xo)<= O, we can find a point satisfying the constraints, otherwise there is no such
point. In fact, noting that if U > u2 there is no solution, and if u u2, the constraint
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set is included in the line X u (and thus the problem is essentially one-variable),
it follows that the constraint set has an interior point if and only if 8(Xo)< 0 and
u < u2. The above rule will then give an interior point. The pairing algorithm, with
the amendments of 2.2, can be further modified to solve this more general problem
of minimizing a sum of two convex functions of the appropriate form. The necessary
changes are as follows. We have two lists, one for F1 and one for F2, of total length
O(n). The calculation of 8(x) and its left and right gradients as required in Steps 0
and 4 is carried out by determining F(x), Aj, pj (/" 1, 2) as described in the original
algorithm. Then ,(x)=Fl(x)+F2(x), A =A1 +A2, p =01 +p.. The tests of Steps 0 and
4 are carried out using this A and p. Otherwise all operations are for the two lists
separately, with one exception. In forming the median in Step 2, the xi values from
both lists are pooled together. The median x* is determined from this pooled set.
The modified algorithm clearly still runs in O(n) time. This completes the solution
of the two-variable LP problem.

3. Three-variable LP. This section considers the three-variable LP problem"

(1)
maximize C1X1 / 2X2 /3X3

subject to ailx / ai2x2 / ai3x3 <= bi (i 1, 2, ", n),

where the c., ai, bi (/" 1, 2, 3, 1, 2,..., n) are arbitrary real numbers presented
as data. The previous best known bound for this problem is again O(n log n), using
the algorithm of Preparata and Muller 19] to determine all the O(n) vertices of the
constraint set, which is a convex polyhedron in R 3. Here an appropriate generalization
of the method of 2 to this three-variable problem is considered, and an O(n)
algorithm is developed. The section is divided in a similar way to 2. Subsection 3.1
considers the relevant minimax problem. A component of the algorithm for this is
the line-search, which is considered in 3.2. Then 3.3 first examines the LP problem
when any point of the feasible region is known, and subsequently considers how such
a point can be determined.

3.1. The minimax problem. Here R will denote the real line, R 2 the plane and
R 3 space of three dimensions. Also, if ui (i 1, 2, , p) are any real numbers, then
med (ui) will denote their median, i.e., the [1/2p]th in ranked order. As already remarked,
it is well known [2] that med (u) can be determined in (R)(p) time. It is assumed
throughout that such a linear-time algorithm is employed for median calculations.

Let s (x, y) be a typical point of R E. Then a flat will mean any affine function
of the form (fix +fEy /fa) and a restraint any half-plane inequality of the form
hlx +hEy +h3-<0.

Now consider a function F defined as the maximum of n fiats’

max {fix +fi2y +fi3}
F(I, y)=1i<=n

where D is the intersection of m restraints:

if (x, y)D,

otherwise,

hilx + hi2y + hi3 <= 0 (1 <= j <= m ).

Now F is a polyhedral convex function with effective domain D [10].
Consider the problem of determining

F(xo, y0)= min {F(x, y): (x, y) R2}.
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We will construct an O(m + n) time and space algorithm for determining So (Xo, yo).
The basic ideas behind the algorithm are as follows. Since F is convex, only the flats
which are maximal, and the restraints which are binding, in an arbitrarily small (open)
neighbourhood of so are relevant in determining the location of so. Thus any flat or
restraint not satisfying this condition can be discarded from the definition of F without
disturbing So. This condition is checked directly for restraints in the algorithm, but
for the fiats the idea of dominance is employed. Consider any two fiats (fix +f2y +3)
and (f’ax +f’2y +f’3). If they are parallel (i.e., fl f, f2 f) then the value of one is
always greater than (or equal to) the other on R 2. (The one which attains max (f3, f)
is the larger.) We say the larger dominates the smaller on R 2 and clearly any flat of
F which is dominated by another on R 2 is irrelevant. If the flats are not parallel then
they take the same value on the critical line

(fl-f )x + (f2-f )Y + (f3 -f 0

in R 2. On one side of this line (i.e., in one of the two half-planes which it defines)
one of the flats will be greater in value, and on the other side the other flat will be
the larger. Again we say that one of the flats dominates the other on each half-plane.
Thus, if So is known to lie in one or other of these half-planes, then only the flat which
is not dominated in that half-plane needs to be retained in order to locate So. These
ideas are used to successively remove flats and restraints from the definition of F. In
order to do this, line-searches of F are employed. Thus, given an arbitrary straight
line L in R 2, we must determine whether So L, or if not, on which side of L it lies.
In 3.2 it is shown that any line-search of F, as defined above, can be carried out in
O(m + n) time. Here we presume this result. It should be observed that if F is
unbounded below on any line, then min F -o and So is the relevant point at infinity
on the line.

The algorithm to determine So will now be described. It will be assumed that F
and D are represented by linear lists, giving the coefficients of each flat or restraint.
Various calculated numbers are associated with entries in these lists in an obvious
fashion. Note that m and n, the lengths of these lists, are reduced as the algorithm
proceeds.

Step O. Determine any point S D, using the algorithm of 2. If no such point
exists, stop with So, chosen arbitrarily, and F(so)= +o. Otherwise, if n 0, stop with
So Sx, and F(so) undefined.

Step 1. If n 1 then the problem reduces to a two-variable LP problem with a
known feasible point s. Solve this using the algorithm of 2 and stop. Otherwise,
proceed through the F list, dividing the n flats into [1/2n pairs. For each pair perform
the following operations. If the flats are parallel (see above), delete the one which is
dominated on R 2. (If they are equal, delete either, but not both.) Otherwise, calculate
the critical line for the pair. Thus at the end of this step we have r <_- [nJ lines and
d ([21-nj -r) flats have been deleted.

Step 2. Add the m lines, hjax + h.2y + hi3 0, corresponding to the restraints, to
the r lines determined in Step 1. Thus we have (m + r) lines, which can be expressed
in one or other of the forms

y ax +/3i (i e Io) or x ui (i I1).

Now calculate a* med {ai: I0}, and then partition Io into three subsets 12,13,/4
corresponding to ai a* ai < a* and ai > a* respectively. Let k ]Iil (f 1 2, 3, 4)
so we have

m +r=ka+k2+k3+k4
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and k.+min (k3, k4)>1/2(m +r-k1). (The latter inequality follows from the fact that
a* is the median.)

Now, as far as possible, pair the lines in 13, I4 so that each pair contains one line
from each. Suppose these pairs are indexed by the set O, say, where
For each pair q O, determine the point of intersection of the lines in the pair. Thus
if pair q contains the lines y cix +/3i and y cjx +/3j, this is the point (uq, vq) where

Note, by construction, a. Oi. Now add the uq (q Q) to the u (i 11) to give a
set of p kl +min (k3, k4) urvalues. Now calculate x* med (u.).

Step 3. Conduct a line-search along the line x x*. If So is not located, then we
will know either x0<x* or Xo>X*. By symmetry, we will consider only the case
Xo > x *. Now for all 11, with u <= x*, we can delete either a fiat from F or a restraint
from D. Suppose d3 such deletions are made. Then there are at least (p- d3) of the

uo (q O) such that uq-< x*. Let these u be indexed by the set O’, say. Thus there
are at least (1/2p-d3) pairs in O’ which do not intersect in the half-plane x > x*. For
each such pair, consider the line y a*(x u) +v of median slope passing through
their point of intersection. Add these to the lines of Ia to give a set of at least
k2 + (1/2p-d3) parallel lines of slope a*. Determine the median line in this set. We do
this by determining the y-intercept of each line. For lines from I we have y-intercept
/3, and for pairs from Q’ we have y-intercept yo=vo-a*uo. Then we calculate
y * med i, /" 12, q O’}. The required line is then y a *x + y*.

Step 4. Conduct a line-search along the line y c*x + y*. If So is not determined,
we will know either yo<a*x *o+y or y0>a*xo+y*. Again, by symmetry, we will
deal only with the case yo <a*Xo + y*. Now, for all lines I2 with y =/3i >-y*, we
can delete either a fiat from F or a restraint from D, since we know yo < a*Xo +/3
aiXo+Bi. Also, for all pairs in Q’ with yj=vq-a*u>=y *, the line in the pair with
a > a * does not meet the region {x > x*, y < c *x + y *} which is known to contain So.
The situation is illustrated in Fig. 2. We have Xo>Uo, >a*, v-a*uq>=y *

..-" .... y =a*x +y
/

o

u x
FIG. 2
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and yo<c*x0+y*. Hence yo<o*xo+y*<=o*xo+vq-o*Uq=a*(Xo-Uq)+vo<
ai(xo- u) + v, aiXo + (v -aiuq) aXo + Bi. Thus, for each pair in O’, either a fiat from
F or a restraint from D can be deleted. Suppose d4 deletions have been made. Clearly
d4>=1/2(k2+1/2p-d3). Now return to Step 1.

Call each repetition of Steps 1 to 4 an iteration of the method. We will determine
how many fiats or restraints are deleted in each iteration, assuming there are n and
m respectively at the start. The total is clearly dl + d3 + d4, where

[1/2n] -r, d4>=1/2(k2+1/2p -d3).

Thus,

1/4(k2 + k + min (k, k4))

_-> 1/4(k2 + min (k3, k4) +k1).

But ka+min(k3, k4)>-1/2(m+r-kl) from above. Hence, d3+d4>-(m +r). Thus the
total number of deletions

dl+d3+d4>=(m +r)+ [1/2nl -r
_->(m + [1/2n])
>-(m +n/3) forn_->2

>-(m +n).

Therefore at least of the flats and restraints are deleted in each iteration. Note also
that at least one deletion must occur whenever m > 0 or n > 1. However, all cases
with n -< 1 are trapped in Steps 0 or 1, and thus the algorithm must eventually terminate
either in Step 1 or in one of the line-searches of Steps 3 and 4. The work for each
line-search is O(m + n) as is proved in 3.2. All other work in each iteration is also
O(m + n) in any reasonable implementation. It follows from an argument similar to
that used in 2.1 that the whole algorithm is therefore O(m + n) since a constant
proportion of the data is discarded at each iteration. Note that we have used the weak
bound (m + n)/24. In fact the lower bound will be nearer (m/8 + n/16).

3.2. Line searching. Here we consider the subsidiary problem of 3.1, that of
determining whether F is minimized on a given line L ={s eR2: ClX +a2y =/}. If
not, we have to decide which side of L contains So. The first step is to note that we
need only consider the case of minimizing on the line y 0. Otherwise, we make the
substitutions:

X’=2X--cely, y’=CelX +ce2y--

in each fiat and restraint. This substitution can be carried out in O(m + n) time and
reduces L to the line y’= 0, and its two sides to the upper and lower half-planes. Its
inverse is:

x (c2x’ +cl(y’ +/3))/(a + c.),
y
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Henceforth, in this section, we will drop the primes and consider only minimizing
F, subject to its restraints, along the line y 0. This gives rise to the problem"

minimize G(x) ia<=x. {]:ilx +.t’i3},

subject to hjlx + hj3 <= 0 (1 <-] <= m).
Each line in G corresponds to a flat of F, and each inequality to a restraint of D. An
O(m + n) algorithm for the solution of this problem has been described above in 2.
Here we will consider only the possible results of applying that algorithm. Suppose
G takes its minimum value at the point x. Then if G(x) +oo, we choose the side
of L containing the point s determined in Step 0 of the algorithm of 3.1. By
convexity, this side contains all points satisfying the restraints. If G(x) -oo (whence
o +oo), then F(x, 0) -oo and the algorithm of 3.1 should terminate with theX

indication that F is unbounded below in the appropriate direction on L. Otherwise,
G(x) is finite. Now determine all restraints/" J, say, which are binding at (x , 0),
i.e.,fJ if

hilx+h3=O.
Similarly, determine all flats e I which are maximal at (x , 0), i.e., e I if

f,x +f,3 G(x) F(x O)

Now consider the restricted problem"

minimize F’(x, y)=max{flax +fi2y +fi3},
iI

subject to hilX + hi2y + hi3 <= 0 (] J).

This problem is identical to the minimization of F over D in any small enough
neighborhood of (x , 0). Thus, by convexity, if F’ is minimized at this point, then so
is F. Similarly, the side of y 0 which contains (all) points (x, y)eD with F(x, y)<
F(x, 0) is the same side which contains points satisfying the restraints of J with
F’(x, y)<F’(x, 0). Now, using the defining relationships, the restricted problem may
be rewritten"

minimize F*(x, y)=max{fil(X-X)+fi2y},
iI

subjectto hil(X -X)+hi2y <-0

where F*(x, y)=F’(x, y)-F’(x, 0). Therefore, we must determine whether F* is
minimized at (x , 0) or else which of the lower or upper half-planes contains points
with F*(x, y)< 0. Since F* is certainly minimized at this point on the liney 0, we
need only consider points at which y#0. Let X-(x-x)/lyl and G*(X)=
F*(x, y)/lyl. Also write tr =sgn (y). Then the restricted problem may be further
rewritten:

minimize G*(X) max {filX -[-fi2o’},
iei

subject to hiX + hi2tr <= 0 (j J).

Now r can take only the values +1,-1. Also G*(X) can take negative values if and
only if F*(x, y) can do so. Thus, in at most two applications of the algorithm of 2,
we can decide whether F is minimized at (x , 0). Otherwise there will be exactly one



value of tr sgn (y) with negative G*. This determines the half-plane, y > 0 or y < 0,
in which values of F smaller than F(x, 0) may be found. The whole process can
clearly be carried out in O(m +n) time. In fact, it is possible to determine the
appropriate value of tr in a slightly easier way. Since F*(x, 0) is minimized at (x , 0),
it follows that there must exist either"

(a) p, q I with fp lfql < 0 (it is possible that p =q),
(b) p eI, q eJ with fpxhql <=0.

Because we require G*(X)< 0, we can unite these two cases by noting that we have
two inequalities of the form,

(2) glx + g2o" <0= with gx>0,-- g’lX+g’2o-<O= with g’l =<0

and strict inequality in at least one of these. If g 0 then g2r < 0, so cr sgn (-g2);
similarly, if g 0. Otherwise, eliminating X we have

(g’gz g lg’2 )tr > O, i.e. o sgn (g’lg2 glg’2 ).

These can be checked quickly. Observe that if (g g2 gag) 0, so the sign is undefined,
then it follows that F is minimized at (x, 0). Note also that p, q can be determined
by a single pass through the data-structure for G*. (In fact, the algorithm of 2 gives
these as a by-product without computation.) This completes the description of the
line-search. It is clear that, in any reasonable implementation utilizing the algorithm
of 2 where appropriate, the search can be done in O(m + n) time.

A slightly more general line-search is required in 3.3, in which we are minimizing
the sum 6 of two minimax functions F1, F2 (of the form of F above) over the region
D. The algorithm for the one-dimensional form of this problem was also outlined in

2. The above discussion requires little modification. The restricted problem is again
equivalent to at most two one-dimensional problems of the same form. The above
quick method for determining tr requires a minor change. We will have sets 11,12, J
defined similarly to the above. Using a superscript k to denote the fiats belonging to

Fk (k 1, 2), then J is defined exactly as before and Itc if

fiklx 0 +flk3 --Fk(X O, 0),

where x is the point at which 8 is minimized on y 0. Then the cases (a) and (b)
preceding inequalities (2) need to be changed to the following. There exist either

(a) p, q 11, and t, u 12 with (flpl + ft21 )(fql +f2,1) <= 0 (again p q or u is a
possibility),

or

(b) p 11, q 12 and J with (fp11 +f2 )h,1 =< 0.

Now, if in case (a), we define gi--fpi+ft2i and gi--fi+f2ui (i= 1,2) or vice versa
depending on signs, then the inequalities (2) and the subsequent analysis carry through
unchanged. This follows from the facts that, in analogous notation to the above, we
must have

O>-G(X)+G(X)
2_->max (flplX +f2cr, flqlX +fq12cr) + max (f2tlX +f,20", f2,X +f2,2cr)

_->max ((flpl +ft21)X + (flp2 +ft22)o", (fql +f2u)X + (fq2 +f2u2)o’).
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Case (b) is dealt with similarly. Thus, the modifications needed for line-searching
in this more general problem are relatively straightforward. The remaining details can
be easily worked out by direct analogy with the previous case, and therefore will not
be considered further. Again the procedure runs in O(m + n) time, where n is now
the total number of flats in Fa and F2 combined.

3.3. The LP problem. The solution of the LP (1) can now be obtained by reducing
it to that of the previous sections. The reduction process is very similar to that given,
in more detail, in 2.2. First we consider the problem when a point (x , x, x) of
the feasible region to (1) is given. If c c2 c3 0, then clearly the point is optimal.
Thus we will assume c3 0, possibly after a simple permutation of the variables. (The
corresponding data permutation is evidently linear time.) Then we make the substitu-
tion X (xr-x)(f 1, 2, 3) to bring the problem to the form"

maximize Co+caX --c2X2--c323
subject to ailXl+ai2X2-I-ai3X3<:Bi (i 1,2,... ,n),

where Co--" CIX1 -["C2X2 "[-C3X3 and Bi bi-ailxl q-ai2x2 q-ai3x3 >=0.

The constant Co can obviously be ignored. Now we make a further linear transformation
X Xa, Y X2, Z caX1 + c2X2 + c3X3. (Note that this is nonsingular.) The problem
will now be:

maximize Z

subject to

where

AilX +Ai2Y -k Ai3Z

Air air -cjai3/c3 (/" 1, 2), Ai3 ai3/c3.

Now, since the feasible point X Y Z 0 attains Z 0, there is no loss in assuming
Z > 0. If this assumption leads to an infeasible problem, the zero solution is obviously
optimal. Thus we make the further projective transformation x =X/Z, y Y/Z,
z 1/Z. The problem now has the form:

minimize z,

subjectto AilX +Ai2y ff-Ai3 <=Biz.

Now, let Io be the set of such that Bi-" 0, and Ia the set for which Bi > O. Define

hit Aij (i Io) and fir Air/Bi (i Ix) for f 1, 2, 3. The problem now becomes:

minimize max (filX -[fi2Y -[-fi3),
ii1

subject to hilx + hi2y + hi3 <: 0 (i to),

which is the problem of 2. Since the data transformations are all linear-time, and
the resulting problem can be solved in linear-time, we have a linear-time algorithm
when a feasible point is known.

We now turn to the problem of determining a feasible point, or showing that
none exists. We consider only the inequalities of (1)"

ailx -b ai2x2 q- ai3x3 bi (i 1, 2, , n).

First we partition these inequalities on the value of ai3. Let s I/ if ai3 )> 0, I if
ai3 0 and I- if ai3 < O. (The partition takes linear time.) For constraints in I/, I-



we divide through by [ai3] and rearrange the inequalities to give

where

X3 OgilX + Ogi2X2 "Jr" Ogi3

X3 >= oeix + otiaX 2 -t- ozi3

ailx + ajax2 <= bi

otq aq/[ai31

oli3 -bi/lai3[.
Now, writing

Fl(x l, x2) max (OtilX -t- oti2x2 t- 0/3),
ii-

(i sI-),

(i s/+),

(i io),

(/’= 1,2),

F2(x 1, x2) max (OgilX -Jr- Ogi2X 2 -1- Oi3),
iI

the problem can be expressed as

FI(Xl, X2)<=X3 <=-F2(xI, x2) with ailxl+ai2x2-bi<=O (isI).

A suitable x3 exists if there are x 1, x2 satisfying the restraints of I for which Fl(X 1, x2) <--
-F2(xl, x2). Letting 8(x 1, x2) Fl(X 1, x2) +F2(x 1, X2), this is precisely when a(x 1, x2) <_-
0. Thus the problem of determining a feasible point, or demonstrating that none
exists, is equivalent to minimizing the convex function ; =F1 +F2 subject to the
restraints of I. If the minimum value of is positive, then the feasible region is
empty, otherwise a point may be readily calculated. This problem is a slight generaliz-
ation of that of 3.1. The line-searches in this case were discussed at the end of 3.2.
The algorithm of 3.1 then requires also the following modifications. Separate lists
for F1 and F2 must be maintained. Also, the initial pairing in Step 1 must be done
on the two lists separately. Otherwise the algorithm requires only trivial change. This
completes the description of an O(n) algorithm for three-variable LP.

4. Comments. We have outlined O(n) time and space algorithms for two- and
three-variable LPs. This obviously settles, for most purposes, the LP problem in R d

for d _-< 3. Thus the first interesting case of linear programming occurs in R 4. (This is
also the simplest case which is still, apparently, open for enumerating all the vertices
of the feasible region. See [3].) A bound of O(n 2) for LP in R 4 follows directly from
the above. This results from solving (in O(n) time) the n LPs in R 3 which result from
taking each inequality as an equality in turn, and choosing the best. However, this
bound is far from optimal. It may also be observed that the results given here imply,
in a fairly straightforward manner, a linear time solution for the problem of determining
a point in the intersection of two polyhedra in R 3 [7]. The author has previously
described a somewhat different solution for that problem in [4]. Moreover, since with
the above methods we can determine a point in the intersection of half-spaces in R 3

in linear time, the results given here imply the equivalence in linear time of the
problems of determining the intersection of half-spaces [9] with that of determining
the convex hull [8] in R 3. This settles one of the open problems discussed in [3]. In
consequence, the polyhedra-intersection problem seems of less central importance
than previously believed. Another question concerns the practicality of the algorithms
described here. Certainly the algorithm for the two-variable problem appears simple
enough to be of practical, as well as theoretical, interest. However no evaluation of
these methods has yet been attempted in comparison with, say, the simplex method.
In this respect it may be noted that, while practical LPs generally have large numbers
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of variables, efficient algorithms for solving problems with only a few variables could
form an effective adjunct to the simplex method itself, by allowing multiple, rather
than single, column selection at each iteration. Finally, it may be noted that the
methods employed in the algorithms given here generalize to certain other problems.
See, for example, [5].
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Abstract. This paper introduces probabilistic choice to synchronous parallel machine models; in
particular parallel RAMs. The power of probabilistic choice in parallel computations is illustrated by
parallelizing some known probabilistic sequential algorithms. We characterize the computational complexity
of time, space, and processor bounded probabilistic parallel RAMs in terms of the computational complexity
of probabilistic sequential RAMs. We show that parallelism uniformly speeds up time bounded probabilistic
sequential RAM computations by nearly a quadratic factor. We also show that probabilistic choice can be
eliminated from parallel computations by introducing nonuniformity.
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1. Introduction. Probabil&tic choice is the use of independent randomly chosen
moves in an otherwise deterministic computation given a fixed input. The introduction
of probabilistic choice in sequential computations [see the landmark paper of Rabin
(1974)] leads to considerable improvement to the computational complexity of various
number theoretic problems [Berlekamp (1979), Rabin (1974), Solovay and Strasser
(1977), Adleman, Manders and Miller (1979), Rabin (1980), Zippel (1979)] to com-
binatorial problems on graphs and matroids [Lovfisz (1980)] to testing polynomial
identities [Schwartz (1980)], and testing program equivalence [Ibarra and Moran
(1980)].

Recently, Rabin (1980), Lehman and Rabin (1980), Francez and Rodeh (1980),
Reif and Spirakis (1981), (1982a, b) have utilized probabilistic choice in synchroniza-
tion algorithms for asynchronous multiprocesses systems. This paper investigates the
use of probabilistic choice in synchronous parallel machines. Section 2 provides the
relevant definitions.

In 3 we provide some concrete examples of probabilistic parallel algorithms for
combinatorial problems. We give an O(log n)2 time algorithm for testing if a graph
of n vertices has a perfect matching. We give an O(log n) time, n2/log n processor
algorithm for testing the product of n n matrices. (Note. These algorithms are simply
derived by parallelizing known sequential algorithms, and are merely examples of the
power of probabilistic choice in parallel computations. Later sections of our paper
give deeper and more substantive theoretical results.)

Probabilistic choice has also recently been used in parallel algorithms for routing
[Valiant and Brebner (1981)] and sorting. Reischuk (1981) has shown that a probabilis-
tic RAM can sort in time O(logn) with n processors, and Reif and Valiant (1982)
give an O(log n) time algorithm for sorting in constant valence, fixed connection
networks with n processors.

We present in 4 a pair of simulation results (Theorems 4.1 and 4.2) which relate
probabilistic sequential and probabilistic parallel computations on RAMs. By parallel
simulation of previously known probabilistic sequential algorithms [Aleliunas et al.

* Received by the editors November 20, 1981, and in revised form November 25, 1982. This work
was supported in part by National Science Foundation grant NSF-MCS82-00269 and Office of Naval
Research contract N00014-80-C-0674.

t Aiken Computation Laboratory, Division of Applied Science, Harvard University, Cambridge,
Massachusetts 02138.
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(1979)], our Theorem 4.1 immediately yields as corollaries O(log n) time probabilistic
parallel algorithms for a variety of combinatorial problems such as testing if there
exists a path between two vertices of an undirected graph and testing if graph is
bipartite. Both these probabilistic parallel algorithms use a polynomial number of
processors. Reif (1982a) describes related O(log n) time, polynomial processor prob-
abilistic parallel algorithms for constructing minimum spanning forests, k-connectivity,
k-connected components, and recognizing chordal graphs, comparability graphs, inter-
val graphs, split graphs, permutation graphs, and constant valence planar graphs.
Previously the fastest known parallel algorithms for any of these problems required
lq(log2 n) time.

We have an interesting theoretical result (Theorem 5) for speeding up a unit-cost,
probabilistic sequential RAM computation of time T(n), by simulation on a probabilis-
tic parallel RAM in unit-cost time O(T(n)(log T(n))log (T(n)I(n))) 1/2, where I(n)
is the maximum integer operated upon the simulated unit-cost probabilistic RAM.
Our simulation result also holds for deterministic computations. Previously, Dymond
(1980) showed a quadratic speedup of deterministic multitape Turing machines.
However, no such speedup has been previously proved for deterministic RAMS.

Theorem 6 of 6 proves that probabilistic choice can be eliminated from prob-
abilistic parallel RAMs with both errors of acceptance and errors of rejection by
introducing nonuniformity, with some increase of time and processor bounds which
may be traded off. For example, this implies there exists nonuniform deterministic
parallel RAMs which can in unit-cost time O(log n) test if a graph of n vertices is
connected, and in time O(log n)2 test if a graph of n vertices has a perfect matching.
Previously, Adleman (1978) and Bennett and Gill (1981) had shown that probabilistic
choice can be eliminated in probabilistic sequential computations with bounded error.

At the end of this paper we provide an extended list of references to literature
on probabilistic and parallel algorithms which may aid further research in this area.

2. Definitions of probabilistic machines.
2.1. Abstract machine types. Before describing our probabilistic parallel

machines, it is useful to define probabilistic (and also deterministic and nondeterminis-
tic) machine types abstractly, without reference to the particular details of operation
of the machines.

Let M be a fixed machine. A configuration of M is a finite string I over a fixed
finite alphabet describing the current state and storage contents of M. Let 5 be the
set of configurations of M. Let o,A be the set of accepting configurations of M.
Let E be the finite input alphabet of M. Given an input string to E*, let I0(to)o
be the corresponding initial configuration of M. Let - ___

3 o be the next move relation
for M; for each I 5, NEXT (I)={I’lI I’} is the set of possible configurations
derived from I by a single move of M. (We assume there is no next move from an
accepting configuration.) In a nondeterministic machine, any I’ NEXT (I) may be
chosen nondeterministically. In a probabilistic machine, each I’ NEXT (I) is chosen
with equal probability, independently of previous and succeeding choices. In a deter-
ministic machine M, INEXT (I)l =< 1 for all I J.

Given a fixed input string to E*, a computation sequence of M is a maximal
length sequence of configurations Io, I,." such that Io=I0(to) and I-l-I for

1, 2, .. The computation sequence is accepting if it is finite and the last configur-
ation is accepting. In a deterministic or nondeterministic machine, M accepts to iff
there exists an accepting computation sequence from I0(to). In a probabilistic machine,
M accepts to iff Prob (COMP (to) is accepting) >1/2, where COMP (to) is a random
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computation sequence from Io(O) (generated by random next moves as defined above).
Let the language accepted by M be L(M)= {o e :*IM accepts o}.

2.2. Error restricted probabilistic machines. Let M be a probabilistic machine
which accepts language L(.V/). Let the acceptance error ea(n) and the rejection error
eR (n) be the minimum functions such that for all n -> 0, o ",

(i) if o_L(M) then Prob {COMP (o) is accepting} =< e,(n);
(ii) if o L(M) then Prob {COMP (o) is rejecting} =< eR (n).

Note that by definition e,(n) -< and e (n) <= 1/2.
For deterministic or nondeterministic machines M, M’ let M =M’ if L(M)=

L(M’). For two probabilistic machines M, M’, let M M’ if L(M)= L(M’) and both
M and M’ have the same error of acceptance and the same error of rejection.

Let M be a BP-probabilistic machine if there exists a constant e < 1/2 such that for
all n _-> 0, e >- max (e, (n), e (n)). Thus a BP-probabilistic machine has a constant upper
bound, which is less than 1/2, on errors of acceptance and rejection.

Let M be a R-probabilistic machine if there exists a constant e < 1/2 such that for
all n > 0, e -> e(n), and M never has an accepting computation on any input string
o Y,* L(M).

2.3. Probabilistic sequential machines. A nondeterministic Turing machine may
be made a probabilistic Turing machine by allowing next moves to be chosen randomly
with equal probability, as described in .2.1. See Simon (1975) for a discussion of
probabilistic Turing machines with unrestricted errors and see Adleman (1978) for
some results for R-probabilistic Turing machines. Bennett and Gill (1981) discuss
these and various other classes of probabilistic Turing machines.

Our principal sequential machine model is the probabilistic _Random _Access
M_achine (RAM), which is defined here similarly to Aho, Hopcroft and Ullman (1974),
except that we allow the RAM probabilistic choice. A probabilistic RAM consists of

(1) an infinite sequence of memory locations too, m,.., each of which are
indexed by and contain a nonnegative integer;

(2) a fixed set of registers R each of which contains a nonnegative integer;
(3) a probabilistic finite state control which allows the following operations’

(a) for any registers r, r R, store (or read) the contents of r into (or from,
respectively) the contents of global memory location mi, where is the
current contents of register r.;

(b) for any registers r, r, r3 s R, apply an addition, subtraction, multiplica-
tion, or division operation on the contents of registers r, r and load the
result into register r3.

(Note. We round noninteger rationals to the next lower integer. Also, we substitute
0 for the result of subtraction which is negative.)

A unit cost RAM is charged 1 step for each of the above operations; a log-.cost
RAM is charged [log (x + 2)] steps for each of the above operations which are on
integers of size x.

We assume a binary input alphabet {0, 1}. Given an input string o {0, 1}*, each
memory location mi-1 initially contains the ith bit of o for 1 _-< i-<_ [ol, rn, contains 2,
and all other memory locations and registers are initially 0. The memory locations
m0,’", rn,, are read-only, and cannot be stored into. Also, we assume the finite
control has distinguished initial and accepting states. A configuration is accepting if
the machine is in the accepting state. The probabilistic RAM accepts input o if with
probability > 1/2 a random computation sequence is accepting. The probabilistic RAM
has time bound T(n) (space bound S(n), integer bound I(n)) if on all inputs of length
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n and accepting computation sequences, the machine takes <-_T(n) steps (uses <-_S(n)
space, operates on integers <-_I(n), respectively). Note that we have defined steps
differently for unit-cost and log-cost RAMs. Furthermore, a log-cost RAM (unit-cost
RAM, respectively) is charged log (x +2) (1, respectively) unit of space for each
noninput memory location and register utilized in an accepting computation, where
x is the largest integer stored in that memory location or register.

2.4. Probabilistic parallel RAMs. Our principal parallel machine model is the
_Parallel _Random A_ccess M_achine (P-RAM), similar to that defined in Fortune and
Wyllie (1978) and Wyllie (1979). However, we allow these machines probabilistic
choice. Initially, given an input string to {0, 1}*, a probabilistic P-RAM consists of
a single probabilistic RAM initialized as defined in 2.3, with an additional operation"

fork which allows the original RAM to create a new "clone" RAM sharing the same
memory, with copies of the original RAM’s registers with the same contents, with an
identical finite state control, and initialized at some given state. Any new RAMs may
also create new RAMs by the fork operations. All these RAMs operate synchronously
with the original RAM. Furthermore, their probabilistic choices are assumed to be
independent. RAMs are allowed to simultaneously read the same memory location.
However, if two distinct RAMs simultaneously store into the same memory contents,
then the entire computation of the P-RAM fails and the P-RAM rejects the input.
If on a particular computation sequence the original RAM enters its accept state and
there have been no such simultaneous memory store conflicts then this computation
sequence is considered to be accepting. The probabilistic P-RAM accepts an input
string to {0, 1}* if with probability > 1/2 a random computation sequence is accepting.
(See 2.2 for definitions of errors of acceptance and rejection.) The probabilistic
P-RAM has time bound T(n) (space bound S(n), integer bound I(n), processor bound
P(n)) if on all inputs of length n and accepting computation sequences, the machine
taken <=T(n) steps, (uses <=S(n) space, operates on integers <-l(n), uses <-P(n)
processors, respectively). Note that space and time are charged in units depending on
whether the machine is unit-cost or log-cost as defined in 2.3.

3. Some fast probabilistic parallel algorithms. This section describes some time
efficient algorithms for probabilistic P-RAMs which we easily derive by parallelizing
known probabilistic sequential algorithms. (For more substantive theoretical results
the reader should read later sections; for example, 4 gives a uniform method for
parallelizing any probabilistic sequential algorithm.) All the algorithms described here
can be made R-probabilistic (with rejection error < 1/2 and no errors of acceptance) if
the probabilistic trials are made twice.

THEOREM 3.1. There are unit-cost R-probabilistic P-RAMs with time bound
O(log n) and polynomial processor bound, which given a graph G with n vertices,

(a) can test if G has a path between two given vertices, and
(b) can test if G is bipartite.
Proof. Aleliunas et al. (1979) give for these problems R-probabilistic sequential

algorithms which can be implemented on a unit-cost R-probabilistic RAM in unit
space (using integers size -<n 2 for representing edges)and O(tl 3) time. Our probabilistic
parallel algorithms are derived immediately by applying Theorem 4.1. U

Note that the fastest known deterministic P-RAM algorithm for testing undirected
connectivity requires fl(log n)2 time [Hirschberg, Chandra and Sarwate (1978)].

THEOREM 3.2. A unit-cost R-probabilistic P-RAM with time bound O(log n)2

and processor bound O(n TM) can test if a graph of n vertices has a perfect matching.
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Proof. Let G =(V,E) be an undirected graph with vertices V ={1,... ,n}.
o()Lovsz (1980) gives a probabilistic sequential algorithm which chooses an N n

and constructs a symmetric n x n matrix B where for 1 _-< i,/" <_- n
(a) Bi is a random element of {1,..., N} if </and (i,/) e E,
(b) Bi -Bi if >/" and (i,/) e E,
(c) Bij 0 otherwise.
G has a perfect matching if the determinant of any such B is not 0. If G has no

perfect matching, then for n sufficiently large the determinant of B is 0 with probability
=> 1/2. The parallel matrix inversion algorithm of Csanky (1976) as improved by Preparata
and Sarwate (1978) can be used to compute the determinant in time O(log n)2 and
0(/’/TM) processors on a P-RAM.

THEOREM 3.3. A unit-cost R-probabilistic P-RAM with time bound 0(log n) and
processor bound O(n 2/log n) given n n integer matrices A, B, C can test A B C.

Proof. Choose a random column vector x {-1, 1} and test A(Bx) Cx. This
test can be done by a probabilistic P-RAM within time O(log n) and processor bound
O(n2/log n) by forming n/log n binary trees of processors, each of size 2n and depth
O(log n), and pipelining the required dot products. Freivalds (1979) shows that if
A B C then Prob {A (Bx) Cx } < 1/2.

Note that the naive pipelining algorithm for testing A B C in time O (log n)
on a deterministic P-RAM requires (n3/logn) processors, and requires time
(n log n) given only n2/log n processors.

4. Simulation results between probabilistic RAMs and probabilistic P-RAMs.
Fortune and Wyllie (1978) and Wyllie (1979) characterize the computational com-
plexity of their deterministic P-RAMs in terms of the complexity of deter-
ministic complexity classes. It is the aim of this section to do the same for our
probabilistic P-RAMs. Our simulation methods are similar, except for the use of
probabilistic choice to insure that the probability of errors of acceptance and rejection
are preserved.

4.1. Simulation of a probabilistic RAM by a probabilistic P-RAM.
THEOREM 4.1. Let M be a probabilistic RAM with constructible time bound

T(n) >- n, space bound S(n) >- log n, and integer bound I(n). Then there is a probabilistic
P-RAM M’ such that M M’ (see 2.2 for definition of the equivalence relation
and note that ifM is deterministic, then M’ is also deterministic); ifM is unit-cost then
M’ has unit-cost time bound O(S(n)logI(n)+logT(n)), and processor bound
O(I(n)S(n)T(n)); ifM is log-cost then M’ has log-cost time bound O(S(n)+log T(n))2

and processor bound o(4S(n)T(n )).
(Note. Theorem 4.1 gives a speed-up for unit-cost RAMs only if S(n) log I(n)<

T(n); Theorem 5.1 provides a uniform quadratic speed-up even if S (n) T(n).)
Proof. Fix some input string to s E" and let Io(tO) be the initial configuration of

M. Let o be the set of configurations of M with space S(n). Let p I[(T(n)+ 1).
Let each I e o and each t, 0_-< -< T(n), be encoded as a distinct integer =(/, t), where
1 <_- <_- p. We can assume that the encoding and its decoding are computed in a constant
number of steps of a unit-cost RAM or in O(log p) steps of a log-cost P-RAM.

Our simulating probabilistic P-RAM M’ will begin by a series of fork operations
yielding RAMs M1,’’’, Mp. This takes unit-cost time O(log p) and at most log-cost
time O(log p2). Each RAMM, 1 _-< _-< p, has a local register ri and an associated global
memory location NEXT which is initialized as follows: suppose (L t) then if I has
any immediate successor I’, let M randomly choose some such I’ and store (I’, + 1)
into NEXT/and otherwise if I has no successors then let M store into NEXT. After
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this initialization, each Mi, for 1 -< -< p, synchronously:
(1) reads the contents of NEXTi into register ri where/" is the contents of NEXT,

and
(2) then stores NEXTi with the contents of r.

This is repeated flog p] times. We can assume (Io(to), 0)= 1 and M1 is the original
RAM of M’. We let M1 enter the accepting state (so M’ accepts) if NEXT1 ever
contains integer (L t) where I is an accepting configuration of M.

If M’ enters the accepting state on a particular computation, then there must be
a sequence of memory locations NEXT<xo.O>,’’’, NEXT<x,_I.t-I> which are initialized
to (I1, 1), ., (It, t) where Io(to) Io, 11, ,/t is an accepting computation sequence
of M, and <= T(n). Thus the memory essentially forms a path from NEXT(xo.O to
NEXT(z,,o. On each iteration the path length decreases by a factor of 1/2. Thus after
flog p iterations, NEXT<Io,0> contains (It, t).

Suppose Io, I1,"" is an execution sequence of M, derived from a particular
sequence of probabilistic choices 0. Suppose also that the RAMs of M’ make a
sequence of probabilistic choices 0’ such that M<,,t> initially loads NEXT<I,.t> with
(L+I, + 1) for 0, 1, ., T(n) 1. ThenM errors on acceptance (rejection, respec-
tively) of to when making probabilistic choices O iff M’ errors on acceptance (rejection,
respectively) of to when making probabilistic choices O’. Since O and O’ are chosen
randomly, it follows that MM’. If M is unit-cost, then 15l<-I(n)s(n); so M’ has
unit-cost time and unit-cost space bound O(logp)=O(S(n)logI(n)+log T(n)) and
the processor bound is p O(I(n)S(n)T(n)). If M is log-cost, then Io _-< 22"s(") 4s(n);
so M’ has log-cost time bound O(logp)E=o(S(n)+log T(n))2 and processor bound
is p o(4S(n)T(n)).

4.2. Simulation of a probabilistic P-RAM by a probabilistic RAM.
THEOREM 4.2. Let M be a probabilistic P-RAM with time bound T(n), space

bound S(n), and processor bound P(n). Then there is a probabilistic RAMM’ with
space bound O(S(n)+P(n)) such that M =M’. Furthermore, ifM is unit-cost then M’
has unit-cost time bound O(T(n )P(n )), and ifM is log-cost then M’ has log-cost time
bound O(T(n )P(n log P(n )).

Proof. The simulating probabilistic RAM will have only 5 registers; the first
register of M’ will store an integer p giving the total number of RAMs currently being
executed, and the second register of M’ will store an integer designating the RAM
currently being simulated; the other 3 registers of M’ will be used for arithmetic
operations and indirect addressing of memory locations. Suppose each RAM of M
has r registers. The registers of the simulated RAMs of M will be stored in a special
block of memory locations, which is increased by r / 1 on every fork operation. The
simulation of M’ by M is straightforward; on each move of M, M’ must simulate a
move by each of the currently active RAMs of M. This requires O(P(n)) steps if M’
is unit-cost, and O(P(n)logP(n)) steps if M’ is log-cost. By storing two copies of
the memory of M, it is easy to detect simultaneous store conflicts. M’ is allowed to
enter its accepting state just when the original RAM of M enters its accepting state
and there are no simultaneous store conflicts. Since the probabilistic choices taken by
the individual probabilistic RAMs are assumed to be independent, and the simulating
probabilistic RAMM’ takes independent probabilistic choices, the probability of
errors of acceptance and rejection of M and M’ are identical. Thus M -M’.

5. Parallel speed-up of probabilistic RAMS.
THEOREM 5.1. Let M be a probabilistic RAM with constructible unit-cost time

bound T(n)>-n and integer bound I(n). There is a probabilistic P-RAM M’ such that
MM’ and M’ has unit-cost time bound O(T(n)(log T(n)) log (T(n)I(n))) 1/2.
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Proof. Let to {0, 1}* be an input string of length n. There is a constant c _-> 1
such that M has at most c choices for next moves at each step. Thus the choices can
be represented by a sequence p =po,""", pT-(n)-i where p, {1,..., c}. The parallel
simulation ofM byM’ begins by making independent random choice of p0, ,
in O(log T(n)) parallel time, and storing these choices in distinct memory locations.

The fundamental idea (previously used in Hopcroft, Paul and Valiant (1975) and
Dymond (1980) for speed-up of deterministic Turing machines) is to partition the
T(n) steps into consecutive intervals of length L, 1 -<_ L =< T(n) to be determined below.

Let q be the number of states in the finite control of M. Suppose in the following
that M is unit-cost. Then M can read from and store into at most 3L registers and
memory locations within a time interval A of length L. Furthermore, we can encode
by a positive integer not more than s=q(T(n)I(n))3L the current state and the
contents and addresses of the registers and memory locations read from (or stored
into) during

Let H [T(n)/L] 2. For each O, L, 2L, ., HL the simulating M’ con-
structs in global memory a table PREDICT,. Given a positive integer <=s encoding
possible state of M and contents and addresses of all registers and memory locations
to be read during time interval A, ={t, + 1, .., +L- 1}, PREDICT,(/) is a positive
integer not more than s encoding the contents and addresses of all registers and
memory locations to L stored into during A, using the predetermined choice sequence
p,, pt/l,’",p,/L-1. However, let PREDICT,(/)=0 if this choice sequence requires
reading a register or memory location whose contents are not defined by i, or if the
contents of a register or memory location are provided by but are not read from.
These tables can be constructed in parallel by M’ in unit-cost time O(L + log s).

T(n) distinguished global memory locations of M’ are used to store the contents
of the memory of M. Also, a special register is used to store the state of the finite
control of M. These are initialized as in the initial configuration of M. The simulation
of M by M’ will then proceed sequentially in H phases, each corresponding to a time
interval A,, for O, L, 2L, , HL.

Suppose at the start of the phase corresponding to interval A,, M’ is currently
storing (as described above) the configuration L of M, where Io, I1,’",I, is the
sequence of configurations of M induced from Io Io(to) by the choice sequence
po, pl,"" ’, p,- chosen by M’ at the start of the simulation. Then there is a unique
sequence of configurations It, It/l,’" ,It/ induced by the predetermined choice
sequence p,,p,/l,’",p,+-. Hence there is a unique i,,l<=i<=r, such that
PREDICT,(/,) 0 and i, encodes contents of registers and memory locations consistent
with/,. PREDICT,(/,) is encoded and is used to update the memory of M’ to store
the configuration L+. After the phase associated with time interval AH:, M’ simulates
M step by step sequentially for (H + 1)L, (H + 1), ., T(n). Let the original RAM
of M’ enter the accepting state if the simulated M does. Since the choice sequence
po, ’, p7-(,)-1 is chosen randomly by M’, it induces a random computation sequence
of M from I0(to), so M M’.

The unit-cost time for initialization and computation of the PREDICT tables is
O(L + log s) O(L log (T(n)I(n))). The unit-cost time for each phase is O(log log s)
O(log (L log (T(n)I(n)))) since encoding and decoding of elements of the PREDICT
tables is done in parallel. There are <T(n)/L phases. Thus the total unit-cost
simulation time is

O(L log (T(n)I(n)))+(r(n)/L)O(log (L log (T(n)I(n))))+L

O(T(n)(log T(n)) log (T(n)I(n)))/:,
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for

L (V(n)(log T(n)))/log (V(n)I(n)) 1/2.

6. Elimination of probabilistic choice in parallel computations. Let M be a
(uniform) probabilistic P-RAM with time bound T(n) and processor bound P(n).
Let Z(n) be the maximum number of probabilistic choices made by all the RAMs of
M on any input of length n. (Note that Z(n)<=T(n)P(n).) Let ea(n),eR(n) be the
acceptance and rejection error functions for M, and let e (n) max (ea (n), eR (n)).
Also, let A (n) (1 + 2n)/log (1/(4e(n)(1 -e(n)))). We assume e(n) <so A (n) is finite.

The following theorem states that we can eliminate the probabilistic choice in M
by introducing nonuniformity with advice bound A (n)" i.e., we allow the nonuniform
P-RAM to have in the initial configuration for each input length n >_-0, a distinguished
sequence of A (n) memory locations each initialized to either 0 or 1 and fixed for all
inputs of length n.

THEOREM 6.1. For any z(n ), 1 <-_ z(n) <- h (n), there is a deterministic nonuniform
P-RAM A/which accepts L(M) with time bound O(T(n )z(n + log (h (n )/z(n ))), pro-
cessor bound O(P(n)h(n)/z(n)), and advice bound O(h(n)Z(n)).

Note. Thus to eliminate probabilistic choice we have a trade-off between an
increase in time bounds and an increase in processor bounds. However, if e(n)
decreases exponentially, then neither the time bound nor the processor bound are
asymptotically increased.

Theorem 6 will be proved as follows" first we show that we can eliminate
probabilistic choice from M if e (n) is sufficiently small; then we show how to make
e (n) sufficiently small.

We can assume a constant c -> 1 such that M has <_-c (") choices of moves next
from any configuration. Fix some input length n ->_ 0. A parallel choice sequence p is
of the form po, p, , pa(,)-x where p s {1, , c "(")} for 0, 1, , T(n) 1. Let
RT-(,) be all choice sequences of length T(n). Given an input w s{0, 1}", a choice
sequence in St(,) induces a computation sequence of M. Let
{p RT-(,)l(to sL(M) and M has an accepting computation sequence on input to and
choice sequence O) or (wL(M) and M has a nonaccepting computation sequence
on input to and choice sequence p)}.

LMMA 6.1. Suppose e (n < 2-". Then there is a deterministic nonuniform P-RAM
371 which accepts L(M) with time bound O(T(n)), processor bound P(n) and advice
bound O(Z(n )).

Proof. It suffices to show (,)"

(,) if e(n)< 2 then there exists some choice sequence p*s R-(,) such that for
all to {0, 1}n, p * R-(,)(to).

Our proof is by contradiction. For each pR-(,) let f(p)=
[{to{0,1}"loRr(,)(to)}[ and let r=lRr(,)]. Note that for each tos{0,1}",
IRr(,)(to)l>-_r(1-e(n))>r(1-2-"). Suppose (.) does not hold, so 2">[(0) for all
p Rr(,,). Hence

r(2"-1) -> Y f(p)= [R(,)(to)[>r(1-2-")2"=r(2"-l),
ORT(.) to{0,1}"

a contradiction.
LEMMA 6.2. For any ’(n), 1 <-_ z(n) <- h (n), them is a probabilistic P-RAM M’

which accepts L(M) with acceptance and refection errors e’A(n), e’R(n) where
max (e’A(n), e’R(n))<2-", and time bound O(T(n)z(n)+log (h(n)/z(n))) and pro-
essor bound O(P(n )h (n )/-(n )).
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Proof. Let o {0, 1}" be the input string, for some n ->_ 0. Our probabilistic P-RAM
M’ will simulate M on input o a total of h (n) times; these simulations will be done
by [h (n)/z(n)] groups of P(n) probabilistic RAMs, with each group simulating M
z(n) times. M’ is allowed to enter an accepting configuration only if M enters an
accepting configuration on at least h (n)/2 of the h (n) trials. (This technique of
determining the consensus of a series of trials is due to Bennett and Gill (1981).) The
count of successful trials can be computed in log (h(n)/z(n)) parallel time. The
acceptance error of M’ is

eA(n) E e(n)i(1-e(n))x")-i
i=a(n)/2

-<_ (4e(n)(1 -e(n)))(’)/2 by bounds of Chernoff (1952) also
given in Feller (1957)

<2-" for given h(n)>2n/log(1/(4e(n)(1-e(n)))).

Also we can similarly show the error of rejection e.(n)<2-". Hence
max (e’a(n), e,(n))<2-" as claimed.

Theorem 6 follows immediately by applying to Lemma 6.1 the probabilistic
P-RAM M’ derived by Lemma 6.2. By applying Theorem 6 to Theorems 3.1-3.2 we
have

COROLLARY 6.1. Them exist unit-cost nonuniform deterministic P-RAMs with
time bound O(log n), polynomial processor and advice bound, which given a graph G
with n vertices, can test (a) whether G has a path between two given vertices and can
also test (b) whether G is not bipartite.

COROLLARY 6.2. There exists a unit-cost nonuniform deterministic P-RAM with
time bound O(log n), processor and advice bound n a) which can test ira graph of n
vertices has a perfect matching.

7. Conclusion. This paper has primarily considered the power of probabilistic
choice for parallel RAMs. Theorems 3.2-3.3 also hold for fixed connection parallel
networks with probabilistic processors. Theorems 4.1 and 4.2 can be extended to
similar simulation results for other probabilistic parallel machines, such as the hardware
modification machines (HMMs) of Cook (1980) augmented with probabilistic choice
[see Reif (1981)]. Some similar results were obtained in an independent investigation
of Borodin et al. (1980). Also Theorem 6 easily generalizes to other probabilistic
parallel machines such as HMMs and circuits with probabilistic choice.
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CLIQUE COVERING OF GRAPHS IV. ALGORITHMS*

NORMAN J. PULLMANS-

Abstract. We present linear time algorithms for computing the minimum number of complete subgraphs
needed to cover or partition the edges of any simple graph G with maximal degree less than 5.

Key words, clique, covering, partition, algorithm, complete subgraph

1. Introduction and summary. For our purposes, graphs have no self-adjacent
vertices or multiple edges. The graph K, on n vertices in which every pair of distinct
vertices is joined by an edge is said to be complete. The literature lacks agreement
on a noun to describe a complete subgraph of a given graph. Bondy and Murty [21
for example, describe the vertex set of such a graph as a "clique" while Harary [5-1
uses that word to describe maximal complete subgraphs. We have steered a middle
course with Orlin [7] and describe any complete subgraph K of a graph G as a clique
of G. If K has k vertices we call it a clique of order k or a k-clique. If k 1 then K
is just a vertex, if k =2 we refer to K as an edge and if k =3 we refer to K as a
triangle. A clique-covering o] G is a family of cliques of G such that every edge of
G is in at least one member of . If the members of are pairwise edge-disjoint
then c is said to be a clique-partition of G. The cardinality of is denoted by Il. A
cliqUe-covering (respectively, -partition) is said to be minimal if I ’l for all
cIique-coverings (-partitions) ". The clique-covering number of G, cc (G) is the
cardinality of a minimal clique-covering; the clique-partition number of G, cp (G) is
the cardinality of a minimal clique-partition. Since every clique-partition is a clique-
covering, we have immediately that cc (G)<_-cp (G); and equality holds when (but not
only when) G is triangle-free, in which case cc (G)= cp (G) is the number of edges
of G. If G has no edges then cc (G)=cp (G)= 0.

Various authors have considered the problem of estimating and calculating these
numbers: for example, Erd6s, Goodman and P6sa [4], Harary I-5, pp. 17-20], Lovfisz
[6], Orlin [7], and (in matrix-theoretic terms) Ryser [11] and [12]. Recently, further
results were obtained by the present writer with deCaen [8], [10] and Donald [9].

In this paper, algorithms are presented for determining minimal clique-coverings
and -partitions and clique-covering and -partition numbers of.graphs with maximal
degree at most 4.

A brute-force approach to the calculation of these entities for graphs on n vertices
would involve an exponential function of n operations (exponential time) even if the
maximal degree is at most 4. The algorithms we propose accomplish their work in
O(n) operations (linear time).

Since the general problem (arbitrary maximal degree) of computing cc (G) is
known to be NP-complete and that of computing cp (G) is probably NP-complete
(see [7]), we feel that linear time algorithms for a moderately large subclass of graphs
may be of interest.

The five algorithms are presented in 4. Mathematical preliminaries are in 2
and 3. The longer proofs are in 6.

* Received by the editors January 14, 1981, and in revised form November 29, 1982. This work was
supported in part by the Natural Science and Engineering Research Council of Canada under grant A4041.

5- Mathematics and Statistics Department, Queen’s University, Kingston, Ontario, Canada K7L 3N6.
Note added in proof. The NP-completeness of the clique partition problem was proven in I. Holyer’s

paper: The NP-completeness of some edge partition problems, this Journal, 10 (1981), pp. 713-717.
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Here is a summary of the concepts behind the algorithms and an outline of how
they operate.

A subgraph H of G separates the cliques of G if every clique of G has either all
or none of its edges in H. The graph G is clique-separable if a subgraph H, whose
edge-set is a nonempty proper subset of the edge-set of G, separates the cliques of
G. The maximal clique-inseparable subgraphs of G are called clique-blocks. They
partition the edges of G. Moreover, if B1, B2," are its clique-blocks, then cp (G)=
Y’.i cp (Bi) and cc (G) Y.i cc (Bi).

Suppose G has n vertices, none of which has degree exceeding 4. If G is
clique-inseparable, and contains some edges, then G is one of sixteen possible graphs
if n _<-6 and one of three possible graphs if n > 6. This fact (Theorem 1) is the basis
of our algorithms.

Algorithm 1 works as follows. Given G,
(a) a clique-block B containing a triangle of G is determined,
(b) identified (as one of the nineteen possibilities) by easily ascertained earmarks;
(c) the number of its edges e (B), cc (B) and cp (B) are then known. The quantities

e (B) cc (B) and e (B) cp (B) are then subtracted from subtotals initially
equal to e (G), the number of edges in G.

(d) B is deleted from the graph and, if any triangles remain, the cycle (a) (b)
(c) (d) is repeated. When none remain, the subtotals are then, cc (G) and
cp (G) respectively.

The peculiar method of accumulating subtotals for cc (G) and cp (G) given in (c)
was chosen because the algorithm stops when there are no more triangles, and this
method automatically includes the one-edge clique blocks in the totals.

To carry out the steps (a), a graph associated with G whose vertices are triangles
in G is computed. One of its connected components is determined at each iteration
of (a). This can all be done in a total of O(n) operations.

Algorithms 2 and 2’ for finding cc (G) and cp (G) respectively, work in a similar
way, but they have a routine built into them that calculates the blocks directly. This
may make them more convenient to use than Algorithm 1. Here is how they work.

(a) an edge of G is chosen and the clique-block B containing it is found,
(b) B is identified (as in Algorithm 1),
(c) the numbers cc (B) and cp (B) are then known and added to running subtotals

which were zero initially, and
(d) the edges of B are removed from G. If any edges remain the cycle is repeated.

Eventually G is emptied of its edges and the subtotals give the required
numbers.

Algorithms 3 and 1’ only calculate cp (G). They operate on a somewhat different
principle. A subgraph D of G is deletable if cp (G)= cp (D)+cp (D), where D is
obtained by deleting the edges (but not the vertices) of D from G. For example all
4-cliques are deletable. Algorithm 3 tries to avoid the computation of a whole
clique-block containing an initial edge e. Instead, it first finds the number of triangles
sharing edges with those triangles containing e. Next, by subjecting the numbers to a
short list of tests, it determines a deletable edge, triangle or set of triangles. It then
removes the edges of these deletable objects from the graph, while adding the
appropriate number (e.g., 1 if the object is an edge or triangle) to a running subtotal.
A new pass is then begun if any edges remain in the graph. When no edges remain,
the subtotal is cp (G). Algorithm 1’ is similar but much simpler. Unlike the other four
algorithms, it can only be used when G has no 4-cliques.
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These algorithms each remove a positive number e of edges at each pass. Each
pass takes a total of at most ce operations, where c is a constant independent of G.
This is mainly due to the fact that the maximum of the degrees of the n vertices is
at most 4. Since G has at most 2n edges the algorithms run in at most 2cn operations,
i.e., in linear time. It G is presented as a vertex-incidence table then the input involves
at most 5n symbols, so O(n) operations are required from input to output.

2. Preliminaries. Following Bondy and Murty [2], as we do for most of the
notation, we use H(G) to denote the subgraph of G obtained by deleting the edges,
but not the vertices, of H from G. This subgraph H(G) is called the complement of
H in G. We write H instead of H(G) when it will cause no confusion.

We say that a subgraph separates the cliques of G, if, for every clique K of G,
either every edge of K lies in H or every edge of K lies in H.

The proofs omitted from the following lemmas can be found in [8].
LEMMA 2.1 [8, Lemma 2.1.1]. The following statements are equivalent"
(a) Hseparates the cliques of G.
(b) H separates the cliques of G.
(c) IfK is a triangle in G then all its edges l& in H or all its edges lie in H.
LEMMA 2.2 [8, Theorem 2.1]. If H separates the cliques of G then cp(G)=

cp (H)+ cp (H) and cc (G) cc (H)+ cc (H).
LEMMA 2.3. If is a family of subgraphs each separating the cliques of G then

the union of the subgraphs in separates the cliques of G.
Proof. Let K be a clique in G and L be the union of all members of . If K: L,

then KH for all H ; therefore K
___
H for all H 6 o, consequently K g

71 {H" H o} L. Therefore L separates the cliques of G.
Suppose H is a subgraph of G. Define the neighborhood of H, N(H), to consist

of H and every vertex and edge of G adjacent to vertices of H. Letting A(G) denote
the maximum of the degrees of the vertices of G, we have"

LEMMA 2.4 [8, Lemma 2.1.2]. If A(G)=k and K is a k-clique, then N(K)
separates the cliques of G.

If v is a vertex of G adjacent to, but not a vertex of, a subgraph H, we say
v is externally adfacent to H. If vx is an edge of G, v is externally adjacent to H
and x is a vertex of H, then we say that vx is externally adjacent to H (at x). Let
u’(H) and e’(H) denote the number of vertices and edges of G externally adjacent
to H.

LEMMA 2.5. If A(G) k and K is a k-clique of G then u’(K) <- k, e’(K) <- k and,
unless N(K) is a (k + 1)-clique, cc (N(K)) 1 + u’(K) and cp (N(K)) 1 + e ’(K).

Proof. See 6.
If H is a subgraph containing some, but not all of the edges and vertices of G,

then we say that H is a proper subgraph. If a proper nonempty subgraph separates
the cliques of G, then we say that G is clique-separable. Otherwise G is clique-
inseparable. Note that empty graphs (those with no edges) are clique-inseparable. If
a subgraph B of G separates the cliques of G, but no proper nonempty subgraph of
B does so, then B is called a clique-block of G. Note that B is then clique-inseparable
in itself. (If L were a proper subgraph of B separating the cliques of B then L would
also separate the cliques of G because L(B)L(G).) Therefore a subgraph B is a
clique-block of G if and only if B is a clique-inseparable graph and B is not a subgraph
of any other clique-inseparable graph contained in G. The definitions directly imply
the following lemma.
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LEMMA 2.6. (a) Edges contained in no triangles of G, and (b) triangles sharing
edges with no other triangles of G, are clique-blocks in G.

LEMMA 2.7. The family of all clique-blocks in G partitions the edge-set of G.
Proof. See 6.
A subgraphD of G isdeletable if cp (G) cp (D) + cp (D). For example, byLemma

2.2, subgraphs that separate the cliques of G are deletable. Applying Lemma 2.4
(and Lemma 2.5 for part (e)) we have’

LEMMA 2.8. The following are deletable subgraphs of G"
(a) isolated vertices,
(d) neighborhoods of A(G)-cliques (in particular, (A(G)+ 1)-cliques),
(c) triangles sharing no edges with other triangles of G,
(d) neighborhoods of A(G)-cliques (in particular, (A(G)+ 1)-cliques),
(e) A(G)-cliques.

Moreover, if) if H’ is a deletable subgraph of H and H is a deletable subgraph of G,
then H’ is a deletable subgraph of G.

3. Triangle graphs and their properties. If G has some triangles let T be the
graph whose vertices are the triangles of G, with two distinct vertices of T deemed
adjacent in T if, as triangles in G, they share a common edge. We refer to T as the
triangle graph of G and denote it by T(G). If G is triangle-free, then we define
T(G)=.

LEMMA 3.1. If every edge of G lies in some triangle of G, then the triangle graph
of G is connected if and only if G is clique-inseparable.

Proof. See 6.
COROLLARY. The connected components of T(G) are the images under Tof those

clique-blocks of G which are not edges.
LEMMA 3.2. Suppose G contains no 4-cliques and (c) denotes the set of triangles

in a clique-partition c of G. If Y is a maximum independent set of vertices of T(G),
then there exists a minimal clique-partition q of G such that (qg). Conversely, if
qg is a minimal clique-partition of G, then (qg) is a maximum independent set of
vertices of T(G).

Proof. See 6.
In the notation of [2], e (H) denotes the number of edges of H and c (H) denotes

the size of a maximum independent set of vertices of H.
COROLLARY 1. If G is 4-clique-free, then

cp (G)= e(G)-2o(T(G)).

COROLLARY 2. IfPi, P} and C are defined as in Fig. 1, then (a) cp (Pi) cp (P)
] + (1/2)(1 +(-1)j) and (b) cp (C) =/’ + (1/2)(1- (-1)J).

Proof. (a) The graph T(Pi) is a simple path of length/’- 1,

j +()(1- (-1)T(P;) T(Pi), e(P)= e(Pi)= 2j + 1, a(T(Pi)

(b) The graph T(C.) is a simple cycle of length/’,

i ()(1 -(-1))
e (Ci) 2/’ a (T(Ci))

2

The graphs of Fig. 1 and the graphs G of Fig. 2 are all clique-inseparable by
Lemma 3.1 as their triangle graphs are simple paths (in the case of P, P;), simple
cycles (in the case of C.) and other connected graphs T.. The following theorem
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Ck+ (k3)

FIG.

T1 T 2

G6 G7 G8 G9 Go

T 6 T? T 8 T, TIO
FIG. 2

establishes that apart from K2, K5 and K, (the edgeless graph on n vertices), they are
the only clique-inseparable graphs of maximum degree at most 4.

THEOREM 1. If G is clique-inseparable and A(G)_-< 4, then G is I(,, K2, Ks, one
of the ten graphs Gi, one of the graphs Pi, P or Ci.

Proof. See 6.
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COROLLARY 1. /f A(G)_--<4, then the only connected triangle graphs T(G) are
simple paths of all lengths >-_ O, simple cycles of lengths >-3, except 5 and 6,
the graphs T(Gi) for 1 <-_j <- 9, and T(Ks).

Table 1 lists all the clique-inseparable, nonempty graphs whose triangle graphs
have eight or fewer vertices. It also lists the anatomical features by which our algorithms
can identify them, and it lists their clique-covering and -partition numbers. These
numbers were obtained by Lemma 3.2 and its second corollary. Following [2] we let
,(L) denote the number of vertices in L and 6 (L) denote the minimum of the degrees
of its vertices.

TABLE

G P1 P2 P3 GlO P4 C4 G1 G6 P5 G2 G7 P6

u(T(G)) 2 3 3 4 4 4 4 5 5 5 6
e(T(G)) 0 1 2 3 3 4 3 6 4 5 8 5
,(T(G)) 0 2 2 3 2
A(T(G)) 0 2 2 2 2 3 3 2 3 4 2

cc (G) 1 2 3 3 4 4 3 5 4 2 6
cp (G) 3 3 5 5 4 3 5 4 3 7

e(G) 3 5 7 7 9 8 9 6 11 10 8 13

G P G3 G4 G8 P7 P C7 G9 P8 P C8 G5

u(T(G)) 6 6 6 6 7 7 7 7 8 8 8 8
e(T(G)) 5 6 7 10 6 6 7 15 7 7 7 12
6(T(G)) 2 2 2 4 2 3
A(T(G)) 2 3 3 4 2 2 2 6 2 2 2 3

cc (G) 6 4 5 3 7 7 7 2 8 8 8 4
cp(G) 7 4 5 5 7 7 8 4 9 9 8 4

e(G) 13 12 11 10 15 15 14 9 17 17 16 12

Algorithm 3 computes cp (G) by locating, identifying and removing a sequence
of deletable subgraphs, while adding their clique-partition numbers. The location and
identification procedure is based on the following lemma.

LEMMA 3.3. Suppose A(G)<-_4, is a triangle in G, N(t) is the family of triangles
in G sharing edges with t, and H(t) is the subgraph of G generated by N(t). Let d(t)
be the degree of as a vertex of T(G).

(a) If d(t) <- 1 then is deletable.
(b) ff d(t)= 2 and d(t’)= 3 for some t’ in N(t), then is deletable.
(c) If d(t)= 2 and d(t’) 2 for all t’ in N(t), then the clique-block of G containing

N(t) is G10, GE, Pi, P or C for some j.
(d) If d(t) 3, then H(t) is deletable. Suppose N(t) {t, tl, t2, t3}. If tl shares an

edge of t2, then cp (H(t))= 1. Otherwise cp (H(t))= 3.
(e) If d(t) 4, then H(t) is deletable and cp (H(t)) 3.
(f) ff d(t)=6, let t’N(t)-t. If d(t’)=6 then H(t)LJH(t’) is deletable and its

clique-partition number is 1. Otherwise H(t) is deletable and cp (H(t))=4.
Proof. See 6.
COROLLARY. /f A(G)<--4 and G contains no 4-cliques, then every triangle in G,

of minimal degree in the triangle graph of G, is deletable.
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4. The algorithms. Suppose, as is customary, that the graph G on n vertices is
presented to us as a vertex-incidence table F. That is, F has n rows and its th row
is headed by the symbol for the th vertex of G, followed by symbols for the vertices
adjacent to it.

We have found it more convenient to use instead, an edge-incidence table of G,
that is, a table F’ having five columns. Its ith row consists of: the symbol for the ith
edge of G (in the third column), preceded by the symbols for its ends in columns 1
and 2, the symbols for the edges adjacent at one of its ends in the fourth column,
and the symbols for the edges adjacent at the other end in the fifth column. If G was
given by a vertex-incidence table F initially, then F’ can be obtained from F in O(n)
operations if A(G)_-<4. We describe such a procedure in 5 for the reader’s con-
venience.

4.1. Algorithm 1. Initially, a subtotal for cp (G) and cc (G) is begun as e(G),
the number of edges in G. The triangle graph’s vertex-incidence table is computed
(a procedure for doing this in O(n) operations is described in 5) and we set Y T(G).
In each pass of the algorithm:

(a) a connected component X of Y is computed,
(b) the block B for which T(B)=X is identified (by means of Table 1 and the

second corollary to Lemma 3.2) sufficiently to establish cc (B), cp (B) and e (B),
(c) cc (B), cp (B) are added to the subtotals and e (B) is subtracted from them

both;
(d) Y is replaced by Y-X, the graph obtained by deleting all vertices and edges

of X from Y.
This sequence of steps is repeated until Y has no vertices left. Thus a total of to

passes is performed, where to is the number of connected components of T(G), (to 0
if T(G) ). At the ith pass, a clique-block Bi is determined which contains a triangle
of G. At the toth pass the subtotal for cc(G) is e(G)+i= (cc(B)-e(B)) but
e (G)-Y.= e(B) is the number of clique-blocks which are 2-cliques of G, and hence
contribute 1 each to cc (G). Therefore the subtotal on cc (G) showing at the last pass
is cc (G). Similarly for cp (G). There is an algorithm (see Aho, Hopcroft and Ullman
[1, pp. 176-179]) which computes one by one, all the connected components of a
graph on k vertices and m edges in O(max (m, k)) operations. Since the number of
vertices of T(G) is at most n, and .T(G) has at most 3n edges (because A(T(G))_-< 6)
it follows that the connected components of T(G) can be computed in linear time.
At every pass, we interrupt the Aho, Hopcroft and Ullman algorithm by a constant
number of operations after it computes one connected component of a certain graph.
It then resumes work on a smaller graph. It follows that Algorithm 1 works in linear
time.

ALGORITHM 1 (computes cc (G) and cp (G) if A(G) _-< 4).
Step 1. Let CC CP e(G) and T T(G).
Step 2. If T- Q, then cp (G)- CP, cc (G)=CC, stop. Otherwise, let Y be a

connected component of T.
Step 3. Let u be the number of vertices of Y.

If 1 =< u-<_ 8 use Table 2.
If v 10 and e 30, subtract 29 from each of CC and CP. For all

other v,
if e(Y) is odd, subtract (v + 1) from CC and v +(1/2)(1-(-1)") from
CP,

if e (Y) is even, subtract v from CC and v- (1/2)(1- (-1)") from CP.
Step 4. Replace T by T- Y (deleting the edges and vertices of Y). Go to Step 2.
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TABLE 2

3
3 2
3 3

Condition on Y

A

4 3 2 5
4 3 3 6
4 4 4
4 6 5

5 <8 6
5 8 6

6 5 7
6 6 8
6 7 6
6 10 7

7 6 8
7 7 7
7 15 7

8 9
8 >1 8

Action to be taken

subtract from CC subtract from CP

2

[see lines below]

4.2. Algorithms 2, 2’ and 3. Algorithms 2, 2’ and 3 do not require the calculation
of T(G) or the use of a special algorithm to compute the connected components of
T(G) (clique-blocks of G) as algorithm 1 does.

Algorithms 2 and 2’ have built-in routines which determine, identify and delete
all the clique-blocks of G.

Algorithm 2 works this way. After choosing an edge e, it finds the clique-block
B containing e, determines cc (B) on the basis of e(B) and ,(T(B)), and deletes the
edge-set of B from G before beginning the cycle again.

ALGORITHM 2 (computes cc (G) when A(G)-_< 4).
Step 1. Let C 0 and W 0.
Step 2. If G has no edges, then cc (G)- C. Stop.
Step 3. Let e be any edge of G.

Let $(e) be the set of triangles sharing the edge e.
Let ’(e) IS (e)[.
Let F be the set of edges, other than e, belonging to members of S (e).
Add ’(e) to W.
Label e with ’(e).

Step 4. If F , go to Step 5.
(i) For each edge f of F, add z(f) to W, label f with z(f).

(ii) Replace F by the set of unlabelled edges belonging to [.J {S(f): f F}.
(iii) Go to Step 4.
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Step 5. Let L be the set of labelled edges. [These now are the edges of B, the
clique-block containing e.]
Let e -[L[ and u W/3. [u is the number of vertices in T(B)].
If e 1 or 6, then add 1 to C.
If e 7, then add 3 to C.
If e -8 and u 5, then add 2 to C.
If e 8 and u 5, then add 4 to C.
If e 9 and u 4; if z(f) 2 for all f in some member of S (e), then add

3 to C, otherwise add 4 to C.
If e 9 and u -7, then add 2 to C.
If e 10 and u 5, then add 4 to C.
If e 10 and u 6, then add 3 to C.
If e 10 and u > 6, then add 1 to C.
If e 11, then add 5 to C.
If e 12, then add 4 to C.
Otherwise, add u to C.

Step 6. Remove L from the edge-set of G and go to Step 2.

Tables 3a, b derived from Table 1 and Corollary 2 to Lemma 3.2, explain the
instructions in Step 5 of Algorithms 2 and 2’.

e(B)
v(T(B))
cc (B)
:p (B)

TABLE 3a

K2 K3 P2 G6 P3 (710 C4 (77 P4 (71 G9

3 5 6 7 7 8 8 9 9 9
0 2 4 3 3 4 5 4 4 7

2 3 3 4 2 4 3 2
3 3 5 4 3 5 3 4

G2 (78 Ks P5 G4

10 10 10 11
5 6 10 5 6
4 3 5 5
4 5 5 5

G3 Gs

12 12
6 8
4 4
4 4

TABLE 3b

e(B)
v(T(B))
cc (B)
cp (B)

odd v_->7

2v+l

even u ->_ 6

2v+l

v+l

odd v _>- 7

2v
v

v+l

even v -> 8

2v
V

P

V

Algorithm 2’ is a modification of Algorithm 2 that computes cp (G).

ALGORITHM 2’ (finds cp (G) when A(G)_--< 4).
Steps 1, 2, 3, 4, 6 are the same as in Algorithm 2, except "cc (G)" is replaced
by "cp (G)".
Step 5. Let L be the set of labelled edges, e ILl and v W/3.

If e 1, 3 or 6, then add 1 to C.
If e -5, then add 3 to C.
If e 7 and r(f) 3 for some f in L, then add 5 to C.
If e 7 and r(f) 3 for all f in L, then add 3 to C.
If e 8 and v 5, then add 3 to C.
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If e 8 and u # 5, then add 4 to C.
If e 9 and u 4, if r(f)= 2 for all f in some member of S(e), then add

3 to C, otherwise add 5 to C.
If e 9 and v 4, then add 4 to C.
If e 10 and v 5, then add 4 to C.
If e 10 and u 6, then add 5 to C.
If e 10 and u > 6, then add 1 to C.
If e 11, then add 5 to C.
If e > 12, add u + 1 to C if e + u is odd, add v to C if e + u is even.

We now present Algorithm 3. In each pass of this algorithm, we detect and
remove a deletable object from G (a vertex or nonempty set of edges), while adding
its clique-partition number to a running subtotal. When the edge-set of G is exhausted,
the subtotal is cp (G).

We cite the lemmas, which justify the deletion of the object and the statement
of its clique-partition number, in brackets following the corresponding step or substep
in the algorithm.

ALORIa’I-IM 3 (computes cp (G) when A(G)_<-4).
Step 1. Let C 0.
Step 2. If G has no edges, C cp (G). Stop.
Step 3. Let e be any edge of G.

Let S(e) be the set of triangles in G sharing the edge e. If S is empty,
replace G by G- e, add 1 to C and go to Step 2 [Lemma 2.8(b)].

Step 4. Choose any triangle in S. Say its edges are e, f, g.
Let N(t) be the family of triangles sharing edges of t, that is, N(t)=
S(e LJ S (f) l,3 S (g).
Let d (t) IN(t)l- 1, the number of triangles, other than t, sharing edges
with t. [So d(t) is the degree of as a vertex of T(G).]
If d(t) -< 1, add i to C, replace G by (G) and go to Step 2 [Lemma 3.3(a)].
If d (t) 2, then N(t) {t, tl, t2}.

If d(t)= 1 or 3 for 1 or 2, add I to C, replace G by (G) if d(t) 1,
by (G) otherwise and go to Step 2 [Lemma 3.3(a) or (b)].

If d(tl)=4, add 3 to C, replace G by N(tl)(G) and go to Step 2
[Lemma 3.3(e)].

If d (tl)= d(t2)= 2, go to Step 5.
If d (t)= 3, then N(t)= {t, tl, t2, t3}.

If d(ti)> 3 for some i, add 3 to C, replace G by N(ti)(G) and go to
Step 2 [Lemma 3.3(e)].

If d(ti)= 3 for all i, add 1 to C if tzN(tl); add 3 to C otherwise.
Replace G by N(t)(G) and go to Step 2 [Lemma 3.3(d)].

If d(t)< 3 for some i, add 1 to C, replace G by (G) and go to Step
2 [Lemma 3.3(a) or (b)].

If d(t)=4, add 3 to C, replace G by N(t)(G) and go to Step 2 [Lemma
3.3(e)].

If d(t)= 6, then N(t)= {t, tl,..., t6}.
If d(tl) < 6, add 4 to C, replace G by N(t)(G) and go to Step 2.
If d(tl)_->6, add 1 to C, replace G by N(t)UN(tl)(G) and go to Step

2 [Lemma 3.3(f)].
Step 5. N(t) {t, t, t2}. [By Lemma 3.3(c), is a subgraph of" G2, G10, Pj (or P)

or Cj; now we distinguish between these cases.] Let U and u2 ta.
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For all i=>2, if IN(ui)l>2 and uit2, let Ui+l be an element of N(ui)-
{u, u;-1}. If ]N(u+x)l 4, then let F N(u 1) [-J N(u3), replace G by
add 4 to C and go to Step 2. [In this case we detected that was a
subgraph of G2 which is the subgraph of G generated by F.]
Otherwise, let k and F LI/=1 u.
If IN(u)l- 2, go to Step 6. Otherwise It is a subgraph of G10 or Ck],

replace G by if(G). Add 5 to C if k =3, add k +(1/2)(1-(-1)k) to
C if k 3, go to Step 2 [Corollary 2 to Lemma 3.2].

Step 6. Let S t2 and So t. [Now we know that belongs to Pj or P and that
uk is one end of the path T(Pj) (or T(P)). We seek the other end.]
For all => 1, if IN(s)l > 2, let Si+l be an element of N(s)-{s, Si-l.
Otherwise, let i. Add k + + 1 to C, let H F LI LI =0 s, replace G
by H(G) and go to Step 2. [Corollary 2 to Lemma 3.2].

At every pass, Algorithms 2, 2’ and 3 delete y edges at the cost of - operations.
A step-by-step examination shows that -<=c/ for some constant c independent of
the number n of vertices of G. Therefore they complete their tasks in at most 2cn
operations, as G has at most (n/2)A(G) edges. Here are three points to keep in mind
while carrying out the examination.

1. The calculation of S(e) takes at most 9 comparisons, so the calculation of N(t)
takes at most 27 comparisons.

2. In Steps 5 and 6, Algorithm 1 calculates N(t) for/x values of and deletes
at least 2/z edges. The total cost per execution of those steps is at most 27tz plus at
most some constant multiple of tz other operations.

3. Deleting an edge requires fewer than 50 operations as it needs the deletion
of one .symbol from at most 6 rows of F’, followed by the deletion of at most 6 symbols
from one row. This requires a total of at most 12 deletions and 36 comparisons.

4.3. Modifications and extensions---Algorithm 1’. It should be pointed out that
Algorithms 1 and 2’ can be easily modified to produce minimal clique-partitions, as
can Algorithms 1 and 2 to produce minimal clique-coverings of G when A(G)<=4.

On the other hand we do not know how to extend the algorithms to deal with
the computation of clique-coverings, partitions, cc (G) or cp (G) when A(G) > 4. This
is due in part, to our inability to find an analogue of Theorem 1 for such graphs.2

Another difficulty is, that while cliques of maximum order in G are always part
of some minimal clique-covering (and some minimal clique-partition) when A(G)_-< 4,
the same is not true when A(G)>4. For example, the six triangles with vertices at
A, B, C, D, E, F in the graph M of Fig. 3 form a minimal clique-covering (and
-partition), but the 4-clique UVWX belongs to no minimal clique-covering (or
-partition) even though it is a clique of maximum order in M.

Even if G is known to have no cliques of order exceeding three, our methods
appear to us to have no obvious extension which copes with graphs of maximum
degree exceeding four. For example, when A(G)_--<4 and G is 4-clique-free then the
corollary to Lemma 3.3 suggests the following simple procedure (which works in linear
time)"

(a) find a vertex of minimal degree in T(G),
(b) tally t,

Note added in proof. D. N. Hoover has shown that when A(G) -> 5, the problem of computing ep (G)
in NP-complete. (Private communication.)
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"A B C

E
FIG. 3

(C) replace G by i(G)
and repeat (a), (b), (c) until the graph is triangle-free, then cp (G) is the sum
of the tallies and the number of edges left in the final graph.

We can write a version of this procedure in a more formal manner.

ALGORITHM 1’ (computes cp (G) when A(G)-<4 and G has no 4-cliques).
Step 1. Let T T(G) and C e(G).
Step 2. If T , then cp (G)= C. Stop.
Step 3. Let be a vertex of T of minimal degree. It is deletable, by the Corollary

to Lemma 3.3.]
Subtract 2 from C. It contributes 1 to cp (G) and 3 to e (G).]
Replace T by T-N(t). [The graph T-N(t), obtained by deleting the
vertices of the neighborhood in T of (along with every edge incident
with them) from T, is T((G)).] Go to Step 2.

Unfortunately, the conclusion of the corollary to Lemma 3.3 may be false if we relax
the hypothesis "A(G)<-4". For example, the graph D of Fig. 4 (supplied by D. de
Caen) has maximum degree 5 and no 4-cliques. The triangle marked "t" is not
deletable (even though its degree in T(D) is minimal) because it is not part of a
maximum independent set of vertices in T(D) as required by Lemma 3.2.

D T(D)

FIG. 4

5. Appendix 1. Algorithms for the edge incidence table of G and the vertex
incidence table of T(G).

5.1. Construction oi the edge-incidence table. We assume that G is given by a
vertex-incidence table F. The following procedure produces an edge-incidence table
F’ from F and works in O(n) operations when G has n vertices and A(G)-<4.

Suppose the symbols for the vertices of G are the integers from 1 to n, and the
th row of F, F begins with i, followed by the vertices j adjacent to i, if any.

Step 1. Let C 0 and i- 1. Let A be a table, initially empty, which will be 3
symbols wide and e (G) rows long. Let b be a table, n rows long, whose
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ith row $i, will be at most 1 + A(G) symbols wide. Initially $i for
l<i<n=

Step 2. Suppose F, =[i, v, v2, v] and d =0 if F, =[i].
Step 3. If d 0, replace by + 1 and go to Step 2.

Otherwise for/’=l 2 d" if v>i replace C by C+I, let Ac
C] and replace $i by bi, C.[i, vi,

Step 4. If < n, replace by + 1 and go to Step 2.
Step 5. [Now we have numbered the edges of G from 1 to e and A has become

a table whose Cth row lists v, w, C where v, w are the ends of the Cth
edge. In that sense, A is an edge-encoding table. Also, 4 [i, C C1 2" ]
where {C, C, } is the set of all deg (i) edges incident with the vertex
i.] We form F’ as follows.
For C= 1, 2, , e:

if Ac Iv, w, C] then &v Iv, C, C, , Ceg (v)

andbw =[w, C, C2, Cdeg (w) ].
Let F’c

Example. The graph G given in Fig. 5 has tables F, A, b and F’ given in Tables
4a, b, c, d.

3

11

FIG. 5

TABLE 4a

Vertex incidence table F

vertex adjacent vertices

2 3 5
1 3 4

2 4
2 3 5

2 4
3 4 7
6
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TABLE 4b

Edge-encoding table A

end 1 end 2 edges

1
2
3
4
5
6
7
8
9
10
11

TABLE 4C

Vertex-edge-incidence table

vertex incident edges

2 3
4 5

2 4 7
5 7 9
3 6 9
8 10 11

11

6
8
10

TABLE 4d

Edge-incidence table F’

end end 2 edge

2
3
4
5
6
7
8
9
10
11

edges at
end

2 3
3
2
5
4
4

2 4
2 4
5 7
5 7
8 10

6
6
5
8
7
10
9

edges at
end 2

4 5 6
4 7 8
6 9
2 7 8
7 9 10
3 9
5 9 10

10 11
3 6
8 11

5.2. Construction ot the vertex-inddence table L" tor the triangle graph T(G).
Step 1. Let 0, C 0, and let L for 1 -<] _<-e (G).
Step 2. Replace by + 1. If > e, go to Step 6.
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Step 3. For the ith edge e, use F’ to determine the - triangles containing e. List
them as
N(e,) [e,flg 1, e,f2g2, e,fg] with N(e) if - 0.
Let/" =0.

Step 4. If/" r, go to step 2. Otherwise replace j by j + 1.
Step 5. If f > e and g >e let C C + 1 andL efJg, go to step 4. Otherwise,

go to Step 4.
Step 6. For 1 <= k <= C" replace Lf by L, k for every/" in L.
Step 7. If L =[e f g], let L’I,=[L-e,L}-e, LZg-e].
The following traces the construction of L" for the graph G of Fig. 3. It uses the

table F’ found in 5.1.

Step 3. N(1)=[1 2 411 3 6] as ends(2)fqends(4)=3, ends(2)fqends(/’)=
(/" 5, 6), ends(3) f3 ends(6) 5, and ends(3) f3 ends(/’) (/" 4, 5),
from Table F’.

Step 5. L*=[1 2 4]
L’=[1 3 6]

Step 3. N(2)=[2 1 4]
Step 3. N(3)=[3 1 6]
Step 3. N(4)=[4 1 214 5 7]
Step 5. L’ =[4 5 7]
Step 3. N(5) [5 6 915 4 7]
Step 5. L4* =[5 6 9]
Step 3. N(6) [6 1 316 5 9]
Step 3. N(7)=[7 4 5[7 8 10]
Step 5. L’=[7 8 10]

TABLE 5a
L lists edges in ith triangle

L*(Steps 1-5)

1 2 4
3 6

4 5 7
5 6 9
7 8 10

Step 6. (k 1) L [1], Lz2 [11, L] [1]
(k 2) L [1 2], L [2], L] [2]
( 3) L] [a 3], z; [31, [3]
(k 4) L [3 4], L [2 4], L9z [4]

5) [3 5], [5], o [5]

TABLE 5b
L lists triangles on ith edge

L2(Step 6)

2

2
3

3 4
2 4
3 5
5
4
5

Step 7. Lx*=[1 2 4]
L’I=[L-I,L-I,L]-I]=[2 3]
L’ =[1 3 6]
L.=[LZ-2, L-2, L-2]=[1 4]
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L=[4 5 7]
L=[L-3,L-3,L7-3]=[1 4 5]
L: =[5 6 9]
L [L -4, L6z -4, L,-4] [3 2]
L:=[7 8 10]
L [L7z- 5, L- 5, L0- 5] [3]

TABLE 5C

Vertex-incidence table for T(G)

t

2 3
4
4

3 2
3

ti. Appendix 2. Proofs.
ProofofLemma 2.5. There is at most one vertex and one edge externally adjacent

to K, per vertex of K, because K is a A(G)-clique. Therefore u’(K)_<-k and e’(K)<= k.
For each vertex v externally adjacent to K, let C(v) be the clique whose vertices
consist of v and those vertices of K adjacent to v. If v’ is another vertex externally
adjacent to K, then C(v’) has no vertices in common with C(v), as there is at most
one edge externally adjacent to K per vertex of K. Therefore C(v’) and C(v) are in
different cliques of any covering of N(K). Moreover, K and C(v) are in different
members of because N(K) is not a (k + 1)-clique. Therefore I] => 1 + u’(K), but K
and the family of all C(v) with v externally adjacent to K form a clique-covering of
N(K) having 1 + u’(K) members. Therefore cc (N(K))= 1 + u’(K).

It was shown in [8, Lemma 3.3], that cp (N(K))= 1 +e’(K) when e’(K)=k.
Suppose e’(K)<k, then K and its e’(K) externally adjacent edges form a clique-
partition of N(K). Therefore cp (N(K))_<-1 +e’(K). By adjoining k-e’(K) edges,
one to each of the k -e’(K) vertices of K of degree k 1, and augmenting a minimal
clique-partition of N(K) by these edges, we can form a clique-partition ’ of a
new neighborhood N’(K) of K, with k edges externally adjacent to K. Therefore,
I’1- I1 / k ’(g). If Il < 1 + e ’(K), then we would have I’1 < a / k contradicting
[8, Lemma 3.3].

Proof ofLemma 2.7. Let B and H be clique-blocks in G. Suppose the edge-sets
E(B) and E(H) of B and H are not disjoint. Let be any triangle in G. If contains
an edge of B YlH then t_B and

_
H, because B and H separate the cliques of G.

Therefore
_
B f’l H if (and only if) contains an edge of B fq H. If does not contain

an edge of B f3 H, then all three edges of are in B and none are in H, or all are in
H and none are in B, or none are in B LIH (as B and H separate cliques). In
any case,

___
B f’)H. Thus any triangle in G is either wholly in B fqH or wholly in

B fqH. Therefore, by Lemma 2.1(c), B fqH separates the cliques of G, and hence
B=H.

Proof ofLemma 3.1. Suppose that the triangle graph T of G has more than one
connected component and TI is one of them. There is some subgraph H of G for
which T(H)-- T1. Every triangle of G lies in H or H, because every vertex of T lies
in T or some other connected component of T. Therefore, by Lemma 2.1(c), H
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separates the cliques of G. The subgraphH must be proper, because T1 T. Therefore
G is clique-separable. Conversely, if G is clique-separable, then it has more than one
clique-block. Let H1 be one of them and H2 another. If an edge of T(G) had one
end in T(H) and the other in T(H2), then a triangle in H1 would share an edge with
a triangle in H2. This contradicts Lemma 2.7 which implies that the edge-sets of H
and H2 are disjoint. Therefore the triangle graph of G is disconnected.

Proof ofLemma 3.2. Let 0 be a fixed minimal clique-partition of G and be
an arbitrary clique-partition. We have [(o)1--> ]()l with equality if and only if
is minimal because G is 4-clique-free. Moreover, -() is independent because
partitions the edges of G. If fro is a maximum independent set of vertices of T(G),
then in particular, lifo[--> [(Co)l. Augment o by those edges of G which are in none
of the triangles in -o, to form a clique-partition 1 of G with T(I)= o. Thus
1’((1)[-" [ff((fff0)l and hence c is minimal and, as 1-()[ [o[, ff(l) is a maximum
independent set. If is a minimal clique-partition of G, then [ff()[ I-(o)[, and
hence ff() is maximum.

Proof of Theorem 1. If G is triangle-free, then G has 0 or 1 edges by Lemma
2.6(a). Therefore G is empty (i.e., edgeless) or G -K2.

Therefore, we may suppose that T(G) . According to Lemma 3.1, T(G) is
connected.

Suppose first that G contains a 4-clique, H. By Lemma 2.4, N(H) separates the
cliques of the clique-inseparable graph G. Therefore G N(H). According to Lemma
2.5, H has e’ externally adjacent edges (at most one per vertex of H). Inseparability
implies that e’ 1. Therefore the number of edges of G, e(G)= 6, 8, 9 or 10. If
e(G)=6, 8 or 9, then G=G6, G7 or G9 respectively. If e(G)= 10 then G=G8 or
K5 accordingly as G has 6 or 5 vertices respectively.

We may now assume that G is 4-clique-free. Suppose that T(G) contains a
triangle. Call its vertices x, y, and z. These are triangles in G. Consider the intersection
of their edge-sets in G. If it were empty, then as each of their pairwise edge intersections
is nonempty, their union would form a 4-clique. Therefore the triangles x, y, z share
an edge and hence G contains G0. Since G is 4-clique-free and clique-inseparable
it follows that G Glo.

Now we may assume that T(G) is triangle-free, as well as 4-clique-free. Therefore
A(T(G)) _<-3, because if some triangle in G shared its edges with four other triangles,
then one of its edges would be shared by two of the other triangles; G would contain
Glo and hence T(G) would contain r(G10)= K3.

We distinguish four cases corresponding to the possible values of A(T(G)).
Case 1. A(T(G))= 0. In this case, T(G) K. Therefore G contains exactly one

triangle. By Lemma 2.6(b), it separates the cliques of G. The clique-inseparable graph
G must then be that triangle. Therefore G P1.

Case 2. A(T(G))= 1. In this case T(G)= K2, as T(G) is connected. Therefore
G contains exactly two triangles and these share one edge. Therefore G contains P.,
but G is clique-inseparable and contains no triangles other than the two comprising
P2. Consequently G P2.

Case 3. A(T(G))= 2. Either T(G) is a simple path or simple cycle in this case,
because T(G) is connected. It can be shown, by a careful examination of cases when
-<5 and by induction for/" > 5 that if T(G) is a simple path of length -1, then
G Pi if 1 -</" -< 5 and G Pj or P if/" > 5. Similarly, by a careful examination of
cases when/" _-< 6 and by induction when/" > 6, it can be shown that if T(G) is a simple
cycle of length/’, then G Go if/" 3 and G C. for/" =4 and/’ >6. There is no G
for which T(G) is a 5-cycle or a 6-cycle.
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Case 4. A(T(G)) 3. In this case, T(G) contains the subgraph T1 and G contains
the subgraph G1 of Fig. 2. We distinguish four subcases corresponding to the number
of edges determined by the vertices A, B, C of degree 2 of G.

Subcase 4.0. None of AB, BC, CA are edges of G. In this case, suppose a triangle
XYZ of G had an edge XY in G. One of X, Y has degree 4 in G, therefore Z is
in G (because A(G)-<4). Therefore the arbitrary triangle XYZ of G is in G1 and
hence G G by the clique-inseparability of G. We also have T(G) T.

Subcase 4.1. Exactly one pair of the vertices {A, B, C} of degree 2 of G are
adjacent in G. Suppose we label this pair AB. In this case G2 is a subgraph of G. If
G2 separates G’s cliques then G=G and T(G)= T. Otherwise some triangle XYZ
in G has an edge XY in G and an edge XZ not in G. Both X and Y must be in
{A, B, C} as A(G)-<4. Therefore XY AB and hence G3 is a subgraph of G. This
subgraph separates the cliques of G. To show that, let UVW be any triangle in G
with edge UV in G3. At least one of the vertices U, V has degree 4 in G3. Therefore
each edge of UVW is in G3 and hence G3 separates the cliques of G. By inseparability,
G3 G so T(G) T3.

Subcase 4.2. Exactly two pairs of the vertices {A, B, C} of G are adjacent in
G. Suppose these are AB and BC. In this case G4 is a subgraph of G. If UVW is
any triangle in G with an edge UV in G4 then at least one end of UV has degree 4
in G4 and hence UVW

___
G4. Therefore 64 separates the cliques of G, but G is

clique-inseparable so G G4 and T(G)= T4.
Subcase 4.3. The vertices of degree 2 in G1 are in a triangle in G. In this case,

G5 is a 4-regular subgraph and hence separates the cliques of the clique-inseparable
graph G. Therefore G G5 and T(G)= Ts. This concludes the proof of Theorem 1.

Proof of Lemma 3.3. (a) If d(t)= 0, then is a clique-block by Lemma 2.6(b).
If d(t)= 1, let L denote the clique-block of G containing t. By Figs. 1 and 2, L Pi
or P for some/" > 1, or L Gi for some 1 -< -< 3. In each case, is part of a maximal
independent set of vertices of T(L). Therefore, by Lemmas 2.8(f) and 3.2, is deletable
from G.

(b) According to Fig. 2 H(t)= Gi for 2, 3 or 4. In each case, is part of a
maximal independent subset of T(H(t)). Therefore, by Lemmas 3.2 and 2.8(f), is
deletable.

(c) The connected component of in T(G) is T2 or a path or cycle by Figs. 1
and 2.

(d) According to Fig. 2, H(t) G for some 1 -< -< 7. If H(t) G, then {t, t2, t3}
is independent in T(G) if 1 -<i -< 5, and N(t) is a 4-clique in T(G) if 6 or 7. If tl
is adjacent to t2 in T(G), then H(t) G6 and cp (G6) 1. Otherwise {tl, t2, t3} is part
of a clique-partition of G (i -< 5) by Lemma 3.2, therefore t LI t2 LI t3 H(t) is deletable
from Gi and hence from G by Lemma 2.8(f). Moreover H(t)= G1, so cp (H(t))= 3
by Table 1.

(e) According to Fig. 2 H(t)= G7 because neither T8 nor T9 contain vertices of
degree 4 adjacent to all other vertices of degree 4. According to Table 1, cp (GT)= 3.

(f) First note that every triangle in K5 shares an edge with six other triangles.
Therefore the triangle graph of K5 is 6-regular. Theorem 1 and the definitions of Pi,
P and Ci imply that K5 is the only clique-inseparable graph whose triangle graph is
6-regular. By Figs. 1 and 2, G9 is the only clique-inseparable graph whose triangle-
graph has exactly one vertex of degree 6. Both graphs are deletable by Lemma 2.8.
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FORMAL SYSTEMS FOR TUPLE AND EQUALITY
GENERATING DEPENDENCIES*

C. BEERIt AND M. Y. VARDI’

Abstract. We develop several formal systems for tuple and equality generating dependencies. There
are three kinds of systems, based upon substitution, tuple elimination and transitivity. We specialize our
systems to several subclasses" total dependencies, template dependencies and binary dependencies. We
also show that finding a formal system for embedded multivalued dependencies is equivalent to solving
the implication problem for that class.

Key words, database, dependency, implication, formal system

1. Introduction. One of the important issues in the design of relational database
schemes is the specification of the constraints that the data must satisfy to model
correctly the part of the world under consideration.

Of particular interest are the constraints called data dependencies. The first
dependencies to be studied were the functional dependencies [Codd], which were
followed by the multivalued dependencies [Dell, [Fagl], [Zan]. Later, several types
of dependencies were investigated in the literature. Recently, several researchers have
independently proposed a new type of dependencies, tuple and equality generating
dependencies, which generalizes all previously studied types [BV2], [Fag2], [yp].l
Intuitively, the meaning of such a dependency is that if some tuples, satisfying certain
equalities, exist in the database, then some other tuples must also exist in the database,
or some values in the given tuples must be equal. We assume that the database is
many-sorted, i.e., different attributes have different underlying domains.

The implication problem for dependencies is to decide whether a given dependency
is logically implied by a given set of dependencies. This problem is recursively
unsolvable in general [BV2], [CLM], and is solvable but computationally intractable
if all tuple generating dependencies are total [BV2], [BV4], [CLM]. A proof procedure
for implication of dependencies, called "chase", was studied in [BV3] generalizing
[ABU], [MMS] (similar procedures were studied in [Pa], [SU1], [YP]).

The chase enables us to semi-decide implication. In contrast, a formal system for
dependencies enables us to derive new dependencies from the given ones. The interest
in formal systems has many aspects. First, a formal system provides us with tools to
operate on dependencies, e.g., for equivalence preserving transformations [Ma].
Secondly, a formal system may lead us to discover efficient decision procedures to
the implication problem. For example, the formal system for functional dependencies
of [Arm] has led to a linear time decision procedure for this class [BB], and the formal
system for deriving multivalued dependencies from functional and join dependencies
has led to a quadratic time decision procedure for this case [Va2]. Finally, a formal
system helps us to gain insight into the dependencies. This insight can lead to useful
application, e.g., synthesis of database schemes from functional dependencies [Be].
Formal systems for dependencies have attracted a lot of attention in the last few years,
see for example [Arm], [BFH], [BV1], [PJ], [Sc], [SU1], [SU2], [Val], [YP].

* Received by the editors May 7, 1981, and in revised form November 5, 1982.
t Department of Computer Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
$ The research of this author was partially supported by grant 1849/79 of the U.S.A.-Israel Binational

Science Foundation. Current address: IBM Research Laboratory, San Jose, California 95193.
We use here the terminology of [BV2], which is different from those of [Fag2], [YP].
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It has been demonstrated that dependencies are actually equivalent to sentences
in first-order logic [Nic], and in fact the chase is a variant of a well-known theorem-
proving procedure" refutation by resolution and paramodulation [BV3]. Thus, it might
be argued, there is no need to develop formal systems for dependencies, since any
formal system for first-order logic will do. However, dependencies are just a fragment
of first-order logic, a fragment that seems to be suitable to expressing integrity
constraints of databases, and we would like to have a formal system which would
enable us to infer only dependencies and not general first-order sentences, unlike a
formal system for first-order logic. Finding formal system for fragments of first-order
logic is an active research area in mathematical logic, e.g., a formal system for equations
[Bir] and a formal system for equational implications [Sell.

The basic operations in our formalism are replacing a relation by its image under
some mapping and replacing the image by the source relation. The first operation is
called instantiation in traditional theorem-proving terminology [CL]. While these
operations allow succinct description of complex derivations, they can be replaced by
the much simpler operations of duplicating a tuple (the equivalent of an atomic
formula) and renaming variables. We do not pursue this point of view in this paper,
but the interested reader can easily translate all our formal systems into that equivalent
formalism.

In a formal proof we have ]:acts and rules. The facts represents specific knowledge
relevant to a particular case. The rules express general knowledge about a particular
subject area and are used as production rules to generate new fact from old ones.
The task of the system is to prove a goal fact from the given ones. Basically, there
are two kinds of systems. In forward systems, the rules operates on the given fact
until a termination condition involving the goal fact is achieved. This is also called a
bottom-up search. In backward systems, the rules operate on the gogl fact until a
termination condition involving the given facts is achieved. This is also called top-down
search. As an example consider refutation of Horn sets [HW]. Positive unit refutation
is an example of a forward system, and input refutation is an example of a backward
system. In this paper we have three systems. One of them is a forward system, and
the other two are backward systems. We consider one of the backward systems to be
highly unnatural for reasons to be discussed later.

Though our main interest is in the full class of tuple and equality generating
dependencies, several subclasses are also of interest, e.g., total tuple generating
dependencies, template dependencies and embedded multivalued dependencies. We
address the problem of specializing our formal systems to such subclasses. That is,
when the given dependencies and the goal dependency are all of some subclass, we
want all dependencies in the derivation to be of that subclass. Not all subclasses of
interest are known to have such a specialized formal system.

It is known that equality can be eliminated from first-order logic by adding the
equality axioms: reflexivity, symmetry, transitivity, and substitutivity. This can also
be applied to one-sorted dependencies [BV2]. Since the identity relation is not
many-sorted, e.g., it is reflexive, we can not eliminate equality from our dependencies
which are many-sorted. Nevertheless, in [BV3] it is shown that the role of equality
can be "minimized" in deciding implication. Hence, our approach is to develop first
formal system for tuple generating dependencies, and then, using a theorem of [BV3],
to extend these systems to equality generating dependencies.

The outline of the paper is as follows. In 2 we define the relational model,
tableaux and dependencies, and we describe the chase procedure to test implication
of dependencies. In 3 we develop formal systems for total tuple and equality
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generating dependencies, viewing a total tuple generating dependency as a tableau
operator. In 4 we generalize these systems to tuple generating dependencies. In 5
we address the problem of specializing our systems to several subclasses, and we show
that finding a formal system for embedded multivalued dependencies is equivalent to
solving the implication problem for this subclass. We also show how to "decompose"
a total tuple generating dependency to a set of "weaker" dependencies. We conclude
with several remarks in 6.

2. Basic definitions.
2.1. Attributes, tuples and relations. Attributes are symbols taken from a given

finite set U called the universe. All sets of attributes are subset of the universe. We
use the letters At, B, C,... to denote attributes and X, Y,... to denote sets of
attributes. We do not distinguish between the attribute At and the set {,4}. The union
of X and Y is denoted by XY, and the complement of X in the universe is denoted
byX.

With each attribute At is associated an infinite set called its domain, denoted
DOM (At). The domains of distinct attributes are assumed to be disjoint. The domain
of a set of attributes X is DOM (X)= UA DOM (A). An X-value is a mapping
w"X DOM (X), such that w (A) s DOM (A) for all A s X. An X-relation is a non-
empty set (not necessarily finite) of X-values. If X U then we may omit it for
simplicity. A tuple is a U-value. We use a, b, c, to denote elements of the domains,
s, t, u,. to denote tuples, and I, J, to denote relations.

For a tuple w and a set Y___ U we denote the restriction of w to Y by w[Y].
We do not distinguish between w[A], which is an A-value, and w(A), which is an
element of DOM (,4). Let ! be an X-relation, and let Y

_
X. Then the projection of

I on Y, denoted I[Y], is a Y-relation I[Y] {w[Y]: w I}. The set of all attribute
values in an X-relation I is VAL (I) UAxI[A]. For an X-value w, VAL (w) stands
for VAL ({w}).

2.2. Tableaux. A valuation is a partial mapping h:DOM (U)-> DOM (U) such
that if h(a) is defined then h(a)6 DOM (A) for all A U and a s DOM (A). The
valuation h can be extended to tuples and relations as follows. Let w be a tuple; then
h (w) is h w (i.e., h composed with w). Let I be a relation; then h (I)= {h (w): w s I}.
We say that c is a valuation on a tuple w (a relation I) if c is defined exactly on
VAL (w) (VAL (I)). Let c be a valuation on a relation I, and let J be a relation. An
extension of h to J is a valuation on [ UJ that agrees with h on VAL ([).

A tableau [ASU] is a pair T (w, I), where w is a tuple and I is a finite relation,
such that VAL (w)_ VAL (I). T defines an operation on relation as follows:

T(J) {h (w)" h is a valuation s.t. h (I) J};

i.e., T(J) is the set of images of w under all valuations that map every tuple of I to
some tuple of J. Observe that J

_
T(J).

Example 1. Let U-{A,B}, DOM(A)={aO, al,...}, and DOM(B)=
{b0, b 1, .}. Let I be the relation {w 1, w2, w3}:

A B
wl" a0 bl
w2" al bl
w3" al b0
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Let w be the tuple

A B
a0 b0

Now T (w, I) is a tableau. Let J be the relation:

A B
aO bO
al bO
al b 1
a2 bl
a2 b3

T(J) is the relation:

A B
a0 b0
al b0
al bl
a2 bl
a2 b3
a0 bl
al b3
a2 b0

Clearly, the values in a tableau serve as formal variables, and therefore can be
consistently renamed.

LEMMA 2.1 [ASU]. Let (w, I) be a tableau, and let h be a one-to-one valuation
on L Then, for every relation J, we have (w, I)(J) (h (w), h (I))(J).

Let w be any tuple, and consider the tableau (w, {w}). Clearly (w, {w})(I)= ! for
any relation I; i.e. (w, { w}) defines the identity operation. We will denote this tableau
as 1.

We now show that the set of tableau operations is actually a monoid by demon-
strating that it is closed under composition.2 Let ! be a relation and let u and v be
tuples; then I(u/v) is the result of substituting v for u in/. Formally, we define a
one-to-one valuation h on It_J{u} as follows: h(u[A])=v[A] for all A U, and h is
the identity on all other values. Now we define I(u/v) as h(I). If (u,I) is a tableau
and VAL(v)fqVAL(I)= , then by Lemma 2.1 for any relation K, (u,I)(K)=
(v, I(u/v))(K). Let I be a finite nonempty relation, I {wl, , w,,}. ! can be viewed
as a mapping from tableaux to relations as follows. Let (u, J) be a tableau. We first
form rn distinct copies of (u, J): (u x, Jx),’’’, (u,,, J,,), by renaming of values so that
no value from {ui}UJi occurs either in I or in {u.}UJ., if i/’. Now I(u,J) is
-J m= Ji(Ui/Wi).

LEMMA 2.2. For any relation K:
(1) If h is a valuation such that h(I(u,J))_K, then h(I)_ (u,J)(K).
(2) If h is a valuation on I such that h(I)_ (U,J)(K), then there is an extension

h’ of h to I(u, J) such that h’(I(u, J))_K.
Proof.
(1) Assume that h (I(u, Y))

_
K. Then h (Ji(ui/wi))

_
K, for 1 <= =< m. Thus, h (wi)

(w,, Ji(u,/w,))(K) (u, J)(K). I.e., h (I)
_

(u, J)(K).

This result was independently shown in [FMUY] by a different technique.
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(2) Assume that h is a valuation on I such that h (I)c__ (u, J)(K). Thus, there are
valuations ha,’" ,h,, such that hi(wi)=h(wi) and hi(Ji(ui/wi))c__K. But (ui, Ji) and
(ui, J/) share no value if /’, so there is a valuation h’ on I(u,J) which agrees with

hi onJi(u/wi). It follows that h’ is an extension of h and h’(I(u,J))c_K. U
LEMMA 2.3. Let (w,I) and (u, J) be tableaux. Then, for every relation K,

(w, I) ((u, J)(K)) (w, I(u, J))(K).
Proof. Let e(w,l(u,Y))(K). That is, there is a valuation h on I(u,Y) such that

h(I(u,J))_K and h(w)=t. By Lemma 2.2, h(I)_(u,Y)(K), so e(w,I)((u,J)(K)).
Let (w, 1)((u,Y)(K)). That is, there is a valuation h on I such that h(I)_

(u, J)(K) and h(w)= t. By Lemma 2.2 there is an extension h’ of h to I(u, J) such
that h’(I(u,J))_K, so t6(w,J(u,J))(K).

We denote (w,I(u,J)) by (w, I)o(u, J).
Example 1 (continued). To construct T T T we first form three distinct copies

A B A B A B
ua: a2 b2 U2: a4 b4 u3: a6 b6

of T:

a2 b3 a4 b5 a6 b7
Ya: a3 b3 Yz: a5 b5 Y3: a7 b7

a3 b2 a5 b4 a7 b6

Now we form Ji(ui/wi):

JI(Ul/W1) J2(U2/W2) J3(U3/W3)
A B A B A B
aO b3 al b5 al b7
a3 b3 a5 b5 a7 b7
a3 bl a5 bl a7 bO

Now we get that T2= (w, J), where J is:

A B
a0 b3
a3 b3
a3 bl
al b5
a5 b5
a5 bl
al b7
a7 b7
a7 b0

Let T1, Tz be tableaux. We say that Ta is covered by T2, denoted T1 <-T_, if
T(I)

_
Tz(I), for every relation L

LF.MMA 2.4. [ASU] Let (u, I) and (v, J) be tableaux. The following conditions
are equivalent"

() (u,)<-(v,]).
(2) u e (v, J)(I).
(3) Them is a valuation h on J such that h(J)l and h(v) u.

Proof.
(1)=>(2). Assume that (u, I) <- (v, J). Then (u,I)(I)_(v,Y)(I). But clearly u

(u, I)(I), so u (v, J)(I).
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(2) ::> (3). Assume that u (v,J)(I). By definition there is a valuation h on J
such that h (J)

_
I and h (v) u.

(3)=>(1). Assume that h(J)_! and h(v)=u. Let t(u,I)(K). I.e., there is a
valuation g on I such that g(I)K and g(u)=t. But then goh is a valuation on J
such that goh(J)_K and goh(v)=g(u)=t, so t(v,J)(K). [3

Put otherwise, (u, I)<=(v, J) iff there are a valuation h on J and a relation I’,
such that u h (v) and I h (J) LI I’. Thus, covering of tableaux can be easily axiomat-
ized, answering a question posed by [ASU]. Searching for the appropriate valuation
h can be quite difficult, since testing covering of tableaux is NP-complete [ASU], [BV4].

Example 1 (continued). To show that T<=T2, we compute T2(I) T(T(I))
and get:

A B

aO bl
al bl
al bO
aO bO

Now w 6 T2(I), so T <-T2. However T(J) is:

A B
a0 b3
a3 b3
a3 bl
al b5
a5 b5
a5 bl
al b7
a7 b7
a7 b0
a0 bl
al bl
al b0

Now we have that w e T(J), so T-< T2. We leave it to the reader to check that the
powers of T form a strictly increasing (with respect to containment) sequence of
tableaux.

2.3. Dependencies. For any given application only a subset of all possible rela-
tions is of interest. This subset is defined by constraints which are to be satisfied in
the relations of interest. A class of constraints that was extensively studied is the class
of dependencies.

A tuple generating dependency (tgd) says that if some tuples, satisfying certain
equalities exist in the relation, then some other tuples (possibly with some unknown
values), must also exist in the relation. Formally, a tgd is a pair of finite relations
(I’, I). It is satisfied by a relation J if for every valuation h on I such that h (I)r
there is an extension h’ of h to I’ so that h’(l’)___ J.

Multivalued dependencies (mvd) [Fagl], [Zan] are tgd’s of a special form. An
mvd is a tgd ({w},I), where 1I]=<2 and VAL(w)___VAL(I). It is usually written
X -->--> Y, where X {A: II[A ]l 1} and Y {A: w[A u[A]} for some tuple u L
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An mvd is an example of a total tuple generating dependency (ttgd). A tgd (I’, I) is
total if VAL (I’)_ VAL (I). In this case we can assume a simpler form for the tgd.

LEMMA 2.5. [BV3] Let (I’, I) be a ttgd, I’= {w 1, , w,,}, and let J be a relation
then J satisfies (I’, I) if and only if it satisfies ({wi}, I) for all 1 <- <- m.

Thus, we can assume without loss of generality that every ttgd is of the form
({w}, I), and, since J satisfies the ttgd ({w}, I) iff (w, I)(J)= J, we will not distinguish
between ({w}, I) and (w, I), and treat it both as a tableau operation and a ttgd. The
exact meaning will be clear from the context.

A class of dependencies that lies between the class of ttgd’s and the class of mvd’s
is the class of join dependencies. We will not deal with join dependencies in this paper.
Formal systems for join dependencies are studied in [BV1], [Sc], [Val].

An equality generating dependency (egd) says that, if some tuples satisfying certain
equalities exist in the relation, then some values in these tuples must be equal. Formally,
an egd is a pair ((a a, a2), I), where a and a2 are A-values for some attribute A, and
I is a finite relation such that a, a2 I[A]. We also call such an egd an A-egd. A
relation J satisfies ((ax, a2), I) if for every valuation h such that h(I)_J we have
h (a 1) h (a2). Note that if a a2 then ((a x, a2), I) is satisfied by every relation.

Functional dependencies (fd) [Codd] are egd’s of a special form. An fd is an egd
((a l, a2),I), where II1= 2 and {a l, a2}=I[A]. It is usually written X-A, where
X {B: [I[B ]1 1}.

Example 2. Let U={A,B,C,D}, DOM(A)-{aO, al,...}, DOM(B)=
{b0, b 1, .} etc. Let I and J be the relations

A B C D A B C D
I: a0 b0 cl dO J: a0 b0 b0 dO

a0 bl cO dl al b0 cO dl

Let u and v be the tuples:

A B C D
u: a0 b0 cO dO
v: al b0 cO dO

Let dl be the ttgd (u, I). dl is equivalent to the mvd A-- ABD. Let d2 be the egd
((a0, a 1), J). dE is equivalent to the fd BC --> A. ({u, v}, I) is a tgd.

A dependency is trivial if it is satisfied by every relation.
LEMMA 2.6. [BV3]
(1) The egd ((al, a2), I) is trivial if and only/fal= a2.
(2) The ttgd (w, I) is trivial if and only if w L
(3) The tgd (I’,I) is trivial if and only if there is a valuation h on I I’ which is

the identity on I such that h (I’)_ I.

2.4. Implication of dependencies. For a set of dependencies D we denote by
SAT (D) the set of relations that satisfy all dependencies in D. D implies a dependency
d, denoted D d, if SAT (D) SAT (d). That is, if d is satisfied for every relation
which satisfies all dependencies in D. The implication problem is to decide for a given
set of dependencies D and a dependency d whether D d. In general the implication
problem is recursively unsolvable [BV2], [CLM]. If, however, D consists of egd’s and
ttgd’s then the problem is solvable. A proof procedure3 for the implication problem

We distinguish between a decision procedure which always halts, and a proof procedure which may
run forever if the answer to the decision problem is negative.
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the chase--was developed in [BV3] generalizing [ABU], [MMS]. (Similar procedures
were studied by [Pa], [SU1], [YP].) In the case that D consists of egd’s and ttgd’s this
procedure is a decision procedure.

In the sequel we use D to denote finite sets of dependencies, and we use d and
e to denote single dependencies.

Intuitively, to test whether D implies (I’, I) (or ((a 1, a2), I)), we "chase" I by D
into SAT (D) and then check if I’ is in I (or if a and a2 are identical in I). Consider
first the case that all dependencies are ttgd’s. A chase of I by D is a sequence of
relations I0, I1, such that I I0 and/+1 is obtained from Ij by an application of
a chase rule. To each ttgd in D there corresponds a TT-rule:

TT-rule (for a ttgd (w,J) in D): Ii+l is (w,J)(Ii).

Example 2 (continued). Consider the ttgd (u, I). The effect of the TT-rule for
this ttgd on a relation J is as follows: if tl and t2 are tuples in J such that tl[A] t2[A],
then add to J the tuple defined by t[ABD] tl[ABD] and tiC] t2[C].

We assume that for all/’->0, /+1 Ii. Thus, the chase is a strictly increasing
sequence, and we have:

LEMMA 2.7. [BV3] All chases ofI by D are finite and have the same last relation,
which is in SAT (D ).

This unique last relation is denoted chaseo (I). It can be used to decide implication.
THEOREM 2.1. [BV3] Let D be a set of ttgd’s, and let (w,I) be a ttgd. Then

D(w,I) if and only if w chaseo(I).
Example 1 (continued). Let D be {(w, J)}, and let d be (w,I). To show that

Dd, we compute chaseo(I). I0 is just L 11 is (w,J)(Io)"

A B
aO bl
al bl
al bO
aO bO

The reader can verify that (w,J)(I1)=Ii, sochaseo(I)=I1 and, since w II, D d. [3
Let us now admit also nontotal tgd’s. Trying to generalize our TT-rule to tgd’s

we encounter difficulties, because the new tuples, whose existence in the relation is
implied by the existence of some other tuples, are only partly known. The solution
is to replace each unknown value by a new distinct value. Let (I’, I) be a tgd and h
a valuation on L A distinct extension h’ of h to I’ is an extension h’ of h to I’, where,
for all a VAL (I’)-VAL (I), h’(a) is a new distinct value. (Since there is an infinite
supply of values, we can always choose this new value so as to avoid all possible name
clashes.) Our generalized chase rule is now:

T-rule (for some (J’, J) in D): let h be a valuation on J such that h (J)_c/.
but for no extensions g of h to J’ we have that g(J’)c_ I., and let f be a
distinct extension of h to J’./i/1 is/. U f(J’).

Unlike the TT-rules, the T-rules are nondeterministic, since they depend on the
choice of h. Since this rule introduces new values, the chase may be infinite.

Example 2 (continued). Consider the tgd ({v}, I). The effect of the T-rule for
this tgd on a relation J is as follows: for some tuples t and t in J such that tl[A] t2[A]
but there is no tuple in J with t[BD] tl and tiC] t, add such a tuple to J, with
t[A] being some new value.
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THEOREM 2.2 [BV3]. Let D be a set of tgd’s, and let (I’, I) be a tgd. Then
D (I’, I) if and only if there are a chase of I by D’Io, I1,"’, an element In of this
chase, and a valuation h that is the identity on I such that h (I’)

Let us now admit also egd’s. It seems that we need another chase rule for egd’s,
and indeed in [BV3] such a rule is used. However, it is also shown there how the use
of this rule can be avoided.

Let e be an A-egd ((al, a2), I). Let wl be a tuple such that wl[A]=al, and for
all Bfi, we have wl[B]eI[B]. Let w2 be a tuple such that w2[A]=a2 and
wz[fi,] w [A]. We associate with e two ttgd’s, e is (w 1, ! CI {w2}), ande2 is (w2, ILI {w 1}).
Intuitively, e states that, given/, wherever a2 appears a also appears. More precisely,
if a relation contains h (I), then for each tuple in it which contains h(a2) there exists
a tuple identical to it except that h(a2) is replaced by h(al). Similarly, e2 states that
wherever a appears, a2 also appears. Let D* be the result of replacing each egd e in
D by el and e2. The idea is that instead of saying that two values are equal, we say
that they "look the same from within the relation".

Example 2 (continued). Let e be ((aO, al),J), e stands for the fd BCA. Wl,

and w2 are the tuples’

A B C D
Wl" a0 bl cl d2
w2" al bl cl d2

el is (Wl, JJ{w.}), and ez is (Wz, JLl{wl}).
THEOREM 2.3 [BV3].
(1) e el ande e2.
(2) Let d be a tgd, D d if and only ifD* d.
(3) Let e be an A-egd ((al, a2),I). Then De i]’ and only if there is a chase of I

by D*: Io, I1,"’, an element In of this chase, an A-egd ((a3, a4),J) in D, and a
valuation h on J such that h (J) c__ In, h (a3) a 1, and h (a4) a2.

(4) Let e be a nontrivial egd. Then De if and only if D*el, and them is a
nontrivial A-egd in D.

We will rely upon Theorems 2.1, 2.2, and 2.3 in developing formal systems for
dependencies.

3. Formal systems for ttgd’s and egd’s. Aformal system for a family of dependen-
cies consists of axioms and inference rules. The axioms are schemas of trivial dependen-
cies, e.g., the reflexivity axiom for fd’s [Arm] and mvd’s [BFH]. The inference rules
specify whether a dependency is inferable from some premises, e.g., the transitivity
rule for fd’s [Arm] and mvd’s [BFH]. If the number of premises in the rule is bounded
then the rule is said to be bounded. Let q be a class of dependencies, and let F be
a formal system. A derivation of a dependency d from a set of dependencies D by F
in q is a sequence of dependencies from q: do, d1,’ ", dn, with dn d, each of which
is either an instance of an axiom of F, a member of D, or is inferrable from earlier
di’s by one of the inference rules of F. We say that d is derivable from D by F in
denoted D -F.,I,d, if there is a derivation of d from D by F in q. If F and q are
understood from the context, then we simply write D -d. F is sound for if for
every D

_, d s we have that D -F.,d implies D d, and is complete for if for
every D

__
q, d s q we have that Dd implies D -F.,d. To show that F is sound

suffice it to show that for every di in a derivation of d from D in F, D di. That is,
if di is an instance of an axiom then it is trivial, i.e., the axioms are sound, and if di
is inferable from djl, , dj then {djl,..., d}di, i.e., the inference rules are sound.
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There are two ways of looking at inference rules. An inference rule can be defined
as a recursive predicate saying whether a dependency is inferable from the premises,
or it can be defined as a recursive function giving the inferred dependency in answer
to the given premises. In the remaining parts of this section we exhibit several formal
systems for the family of ttgd’s and egd’s, usually viewing inference rules as predicates.
In 4 we exhibit formal systems for the family of tgd’s and egd’s, usually viewing
inference rules as functions.

3.1. Tableau composition. Our first formal system consists of one axiom and two
inference rules. Its completeness is based upon the following lemma.

LEMMA 3. l. Let D be a set of ttgd’s, and let T be a ttgd. Then D T if and only
if there is a sequence T,. T, n >-O, of tableaux from D such that T T >- T.
(For n 0 the composition is defined as 1.)

Proof. D(w,I) iff (by Theorem 2.1) w chaseo(I) iff there is a sequence
T1, ’, T,, n _-> 0, of tableaux from D such that w chaseo(I) T, (. (T(I)). .)
T, T(I) iff (by Lemma 2.4) T, T _>- (w, I).

We present now the system TTI:
TTD0 (triviality): -(w, {w}).
TTD1 (covering): (u, I) (v, J) if (v, J) <- (u, I).
TTD2 (composition): (u, I), (v, J) (u, I)o(v, J).
TTD0 is analogous to the J-axiom of [BV1], [Val], TTD1 is analogous to their

covering rule, and TTD2 is analogous to their projection-substitution rule.
THEOREM 3.1. The system TT1 is sound and complete for ttgd’s.
Proof.
Soundness. (w, {w}) is a trivial ttgd by Lemma 2.6.
Suppose that (v, J) <- (u, I) and K SAT ((u, I)). Then K

(u, I)(K) K. So K SAT ((v, J)), and TTD1 is sound.
Suppose now that K SAT ((u, I), (v, J)). Then

K ((u, I)o(v, J))(K) (u, I)((v, J)(K)) (u, I)(K) K.

So K SAT ((u, I)o(v, J)), and TTD2 is sound.
Completeness. Suppose that D(w,I). By Lemma 3.1, there is a sequence

T1, , Tn, n 0, of tableaux from D such that Tn T1 => (w, I). By n 1 applica-
tions of TTD2 (or one application of TTD0) we get D T, T1, and applying
TTD1 we get D - (w, I).

3.2. Tableau simplification. Rule TTD2 enables us to derive a "big" ttgd from
"smaller" ones. In this section we introduce a rule which enables us to derive from
given ttgd’s a ttgd of reduced size.

We now present the system TT2, which has one axiom and one inference rule"
TTD0’ (triviality): -(w, {w} I).
TTD3 (simplification): (u, I), (v, (u, I)(J)) (v, J).
Rule TTD0’ is a stronger version of TTD0. By Lemma 2.6, it characterizes all

trivial ttgd’s. Rule TTD3 has no analogue in the formal systems for join dependencies
in [BV1], [Sc], [Val].

THEOREM 3.2. The system TT2 is sound and complete for ttgd’s.
Proof.
Soundness. (w, {w} LI I) is a trivial ttgd by Lemma 2.6. To prove that rule TTD3

is sound we have to show that D (v, J), if D {(u, I), (v, (u, I)(J))}. We compute a

chase of J by D. J0 is J, J1 is (u,I)(Jo)=(u,I)(J), and J2 is (v, (u,I)(J))(Ja)=
(v, (u, I)(J))((u, I)(J)). Thus, v fiJ2 chaseD(I), and D (v, J}.
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Completeness. Suppose that D(w,I). By Theorem 2.1, there is a sequence
T1, , Tn, n >-0, of tableaux from D such that w e Tn(... (TI(I)" .). By TTD0’,
D(w, T,(... (TI(I)...)), and n applications of TTD3 give D(w,I). [3

3.3. Tableau transitivity. Our third system 773 consists of rule TTD0’ from the
previous section and rule TTD4, which is reminiscent of the transitivity rule for fd’s
and mvd’s but unlike them is not a bounded rule. Rule TTD4 is analogous to rule
JD5 for join dependencies of [BV1], [Val].

TTD4 (transitivity). (w, I), (u 1, J)," , (u,,, J) (u, J), if there is a valuation h
such that

h(I)_{ul,. ,u,,} and h(w)=u.
The condition in the rule can be reformulated as u e (w, I)({u 1,""", u,,}).

To prove completeness we use the following observation.
LEMMA 3.2. LetD be a set of ttgd’s, and let I be a finite relation. Then chaseo (I)=

{w:D(w,I)}.
Proofi By Theorem 2.1, w chaseo(I) iff D (w, I).
TI-IFORM 3.3. The system TT is sound and complete [or ttgd’s.
Proofi
Soundness. To prove that TTD4 is sound we have to show that D (u, J), if

D {(w, I), (ul, J), ", (u,,, J)}, and there is a valuation h such that h (I)_
{ul," ", u,,} and h(w)= u. We compute a chase of J by D. J0 is J, Ji is (ui, J)(Ji-1),
for l<=i<=m, and J,+l is (w, I)(J,, ). Clearly, {ul,...,u,}_J,,, so
chaseo (J), and D (u, J).

Completeness. By Lemma 3.2, suffice it to show that for every u chaseo(J),
D -(u, J). Let J0,""", J, be a chase of J by D. We show by induction on that for
every u Ji, we have D (u, J). J0 is J, so if u s J, then D (u, J) by rule TTD0’.
Suppose now that the assumption holds for J {u 1,’’ ’, u,,}. Let u s Ji+1. That is,
there is a ttgd (w, I)sD, and a valuation h such that h(I)c_Ji and h (w)= u. By the
induction hypothesis, D - (u, J), for 1 <= k -<- m, so D (u, J) by rule TTD4.

3.4. ttgd’s and egd’s. Using Theorem 2.3 we can easily extend the formal system
for ttgd’s of the preceding sections to deal with egd’s as well.

We first present rules that deal only with egd’s.
ED0 (triviality). ((a, a), I), if a s VAL (I).
With an eye to Lemma 2.4 we define covering for egd’s. An egd ((a l, a2), I)

covers an egd ((a3, a4),J), denoted ((a3, a4),J)<=((al, a2), I), if there is a valuation h
such that h (I)

_
J, h (a 1) a3, and h (a2) a4.

ED1 (covering): ((al, aE),I)-((a3, a4), J), if ((a3, aa),J)<=((al, a2), I).
LEMMA 3.3. Rules ED0 and ED1 are sound.
Proof. The soundness of ED0 follows from Lemma 2.6, and that of EDI from

Theorem 2.3. [3
The next rule enables us to infer ttgd’s from egd’s. Recall that with each egd e

we associate two ttgd’s el and e2.
ETTD0 (translation): e e 1, e e2.
LEMMA 3.4. Let F be any sound and complete formal system for ttgd’s, and let

F’ be F t.J {ETTD0}. If D is a set of ttgd’s and egd’s, then D F’(W, I) if and only if
D(w,I).

Proof.
Only ifi We have to show that rule ETTD0 is sound, but this follows immediately

from Theorem 2.3.
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If. Suppose that D(w,I). By Theorem 2.3, D*(w,I), so by assumption,
D*k-(w,I). But D k-D* by rule ETTD0. The claim follows. V1

All the formal systems in the sequel include ED0 and ETTD0. Thus, in view of
Lemmas 2.6 and 3.4, in order to prove completeness it suffices to consider implication
of non-trivial egd’s, and we can also use the fact that D ETTDoD* without mentioning
it explicitly.

We present now three inference rules analogous to TTD2, TTD3, and TTD4
respectively.

ETTD1 (composition). ((al, a2),l), (u,J)((al, a2),I(u,J)).
ETTD2 (simplification). (u, I), ((al, a2), (u, I)(J))b((al, a2), J).
ETTD3 (transitivity). ((a3, a4), I), (Ul, Y),’’’, (u,,, J) ((a , a2), J), if there is a

valuation h such that h (I) {u l,..., u,,}, h (a3)--at, and h (a4)---a2.
Let ETT be the system TT.LI {ED0, ED1, ETTD0, ETTD1}, let ETT2 be the

system TT2 LI {ED0, ED1, ETTD0, ETTD2}, and let ETT3 be the system TT3 LI
 ED0, ETTD0, ETTD3}.

TIEORZM 3.4. The system ETT is sound and complete for ttgd’s and egd’s.
Proof.
Soundness. We have to show that rule ETTD1 is sound. Let K

SAT(((al, a2), I), (v, J)), and suppose that h(I(v,J))_K. By Lemma 2.2, h(I)_
(v,J)(K) =K. It follows that h(a)= h(a2) and K SAT ((al, a2),I(v,J)).

Completeness. Suppose that D ((a 1, a2), I). By Theorem 2.3, there is a sequence
T,. ., T,, n 0, of tableaux from D*, an egd ((a3, a4), J) from D, and a valuation
h onJ such that h(J)_ T,,(... (T(I))...), h(a3)=al, and h(a4)=a2. Let T, o...oT1
be (u, K). By rule TTD2 or TTD0, D b(u, K), so by ETTD2, D -((a3, a4), J’(u, g)).
But, by Lemma 2.2, there is an extension h’ of h to J(u,K) such that h’(J(u,K))_L
It follows that

((al, a2), I) ((a3, a4), J(u, K)),

and by rule ED1, D((a,a2),I).
The proofs of Theorems 3.5 and 3.6 are analogous to the proof of Theorem 3.4,

and are left to the reader.
TrEOREM 3.5. The system ETT2 is sound and complete for ttgd’s and egd’s.
THEOREM 3.6. The system ETT3 is sound and complete for ttgd’s and egd’s.
Up to now we have referred only to clauses (1), (2) and (3) in Theorem 2.3. By

referring to clause (4) in that theorem we get rule ETTD4, which is more flexible
than ETTD1, ETTD2, and ETTD3 in the sense that it can be combined with any
sound and complete system for ttgd’s to give a sound and complete system for ttgd’s
and egd’s.

ETTD4: d, el e, if d and e are A-egd’s, and d is nontrivial.
THEOREM 3.7. Let F be a sound and complete system for ttgd’s, and let F’

be F I.J{ED0, ETTD0, ETTD4}. Then F’ is a sound and complete system for ttgd’s
and egd’s.

Proof.
Soundness. We have to show that rule ETTD5 is sound, but this is immediate

from Theorem 2.3.
Completeness. Suppose that D e, where e is a nontrivial A-egd. By Theorem

2.3, D*el, and there is a nontrivial A-egd d in D. By assumption D*e, so by
rules ETTD0 and ETTD4, D
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3.5. Discussion. We refer now to the forward/backward classification of our
formal systems. In deriving (w, I) from D, w is the goal fact, and the tuples of I are
the given facts. The dependencies in D are the production rules. The system TT3 is
clearly a forward system. Starting with the tuples of/, one generates additional tuples
(facts) until the goal tuple is generated. Actually, this is a direct simulation of the
chase. In contrast, the system TT1 is a backward system where the rules operate on
a collection of goal tuples K. Initially, K is just {w}. The operation of a ttgd (u, J)
from D on the set of goal tuples is to replace a tuple v K by J(u/v). The process
terminates when there is a valuation h which is the identity on w such that h (K)_ I.

The system TT2 is another type of backward system. It starts with guessing an
initial collection of facts that includes also the goal fact. This collection is just chaseo (I).
The operation of a ttgd (u, J) from D on this collection of guessed facts is to eliminate
facts that are implied by other facts, i.e., replacing (u, J)(K) by K. The termination
condition is that all the remaining facts are given ones, viz., members of I. It is the
initial guess of all facts that makes this system highly unnatural. While in the other
systems one starts from the problem (w or I) and then has to guide the production,
there seems no natural way of guessing chaseo(I) "straight from the blue".

These observations extend to the systems ETT1, ETT2, and ETT3.
Let us refer now to the length and size of the derivations in our formal systems.

(By the size of a derivation we mean the number of symbols in the derivation.) If
D(w,I), then for all chases of I by D: Io, I1,’" ,In chaseo(I) we have w In. In
[BV3] we show that both n and the size of the//’s can be exponential in the size of
I. Thus, it is clear that the derivations that were constructed in the various complete-
ness proofs can be of length and size exponential in the size of D and/, since they
all simulate the chase, directly or indirectly. Can we construct smaller or shorter
derivations?

The answer is probably negative. In [Va3] it is shown that, given a derivation in
.any of the above systems, one can translate it into a derivation in any of the other
systems with at most a polynomial increase in the length and size of the derivation.
Furthermore, given a derivation in the system TT3 whose length is polynomial in the
size of D and/, one can construct another derivation whose size is polynomial in the
size of D and I. Now, for a sequence do,"’, dn, one can check in space that is
polynomial in the size of the input, whether it is a derivation of d from D by any of
the aforementioned formal systems. If we could bound the length of the derivations
by a polynomial in the size of D and/, it would follow that the set {(D, d): D d} is
in PSPACE. This is quite unlikely, since it is shown in [CLM] that this set is logspace
complete in EXPTIME.

4. Formal systems for tgd’s and egd’s. The completeness proof for the systems
in the previous section used the fact that chaseD(I) Tn (" (TI(I) .). Allowing tgd’s
in D, that is no longer true. Nevertheless, we will be able to generalize our systems
to deal with tgd’s, using the essential ideas underlying them.

Let (I’, I) be a tgd. It can be viewed as an implicational constraint where ! serves
as the antecedent and I’ serves as the consequent, saying roughly, that if I can be
"embedded" in a relation J then so can be I’.4 We partition the set of values in I LJ I’
into two sets. The set of existential values in (I’, I) is EX (I’, I)= VAL (I’)- VAL (I),
and the set of universal values is the set VAL (I). (The source for this terminology
is the way dependencies are written as first-order sentences. See [Fag2], [Va3].) It is

4 Indeed, tgd’s and egd’s are called embedded implicational dependencies in [Fag2].
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clear that existential and universal values play completely different roles in the "mean-
ing" of (I’, I). If h is a valuation on I then to extend it to I’ we have to define it on
EX (I’, I).

4.1. Substitution. Studying rule TTD2, we observe that the basic operation there
is that of replacing, when given (w,I) and (u, J),a tuple v in I by J(u/v), because the
existence of J(u/v) entails the existence of v. We generalize that to tgd’s.

We present now the system TI"
TD0 (triviality). (I’, I), if there is a valuation h which is the identity on ! such

that h (I’)
___
L

TD1 (collapsing). (I’, I)(h (I’), h (I)), if h is a valuation such that h I.x (r.x)is a
one-to-one mapping into EX (h (I’), h (I)).

TD2 (augmentation). (I’, I) (I’, I t.J J), if EX (I’, I) f’l VAL (J) .
TD3 (projection). (I’ U J, I) - (I’, I).
TD4 (substitution). (I’, I LI J’), (J’, J) (I’, I LI J), if VAL (I) f’l VAL (J’)

_
VAL (J) and EX (I’, I kJ J’)f’l VAL (J)= .

Rule TD3 has no analogous rule for ttgd’s. Rule TD0 generalizes rule TTD0,
rules TD 1 and TD2 generalize rule TTD1, and rule TD4 generalizes rule TTD2.

THEOREM 4.1. The system T1 is sound and complete for tgd’s.
Proof.
Soundness. TD0 is sound by Lemma 2.6.
Let J SAT ((I’,I)), let h be a valuation such that h[Exx,.g is a one-to-one

mapping into EX (h(I’), h(I)), and let g be a valuation on h(I) such that g(h(I))c_J.
Since J satisfies (I’, I), there is an extension f of g oh to I’ such that f(I’)_J. We
define an extension g’ of g to h(I’) as follows. Let a EX (h(I’), h(I)). Then there is
a unique value a’ EX (I’, I) such that a h (a’). We let g’(a) f(a’). Now g’(h (I’))
f(I’)

_
J, so TD1 is sound.

Let K SAT ((I’, I)), and suppose that EX (I’, I) f3 VAL (J) . If h is a valu-
ation on I UJ such that h (I kJJ) K, then there is an extension h’ of h Ix to I’ such
that h’(I’) K. Clearly, h’ is also an extension of h to I’, so TD2 is sound.

Let K SAT ((I’ t_J J, I)), and let h be a valuation on I such that h (I) K. There
is an extension g of h to I’(.J J such that h (I’ (.J J)_ K. Clearly, g is also an extension
of h to I’ such that g(I’)_K, so TD3 is sound.

Let K SAT ((I’, I I,.J J’), (J’, J)), where VAL (I) f3 VAL (J’)
_
VAL (J) and

EX (I’, I U J’) f’l VAL (J) . Let h be a valuation on I U J such that h (I LI J)
___
K.

Now EX (J’, J) f’l VAL (I) , and by TD2, K SAT (J’, J LI I), so there is an
extension g of h to J’ such that g(J’)_ K, and therefore g(I t.l J’)c_ K. g is undefined
on EX (I’, I LI J’), because EX (I’, I t.J J’) f3 VAL (I UJ LI J’) . Since K satisfies
(I’, I U J), there is an extension f of g to I’ such that f(I’)_ K. f is also an extension
of h, so TD4 is sound.

Completeness. Suppose that D(I’,I}. Then there are a chase of I by
D’Io, I1,"’, an element In of this chase, and a valuation h which is the identity on
I such that h(I’)_In. We can assume without loss of generality that EX (I’, I)f’l
VAL (In)= . We construct, by backward induction on k from n to 0, a relation Jk
such that D - (I’, Jk ), Jk -- Ik, and EX (I’, Jk VAL (Ik) ,.

Basis (k=n). Let Jn=h(I’). By TD0, D-(I’,h(I’)), h(I’)_In, and
EX (I’, h (I’)) f’) VAL (In) .

Induction. Suppose that D - (I’, Jg/l), Jk/l -- Ik/l, and EX (I’, Jk/i) 0
VAL (Ik/l) . There are some (K’,K) in D and a valuation g on K UK’ such that
glEXK’.K) is a one-to-one mapping into EX (g(K), g(K’)), Ik/l =Ik (.J g(K’), g(K)_Ik,
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and EX (g(K’), g(K))f’)VAL(Ik)=3. Jk/l can be viewed as J’UJ", where J’_Ik
and J"

_
g(K’). By TD1 and TD3, (K’, K)-(J", g(K)). Now
VAL (J’) f) VAL (J")

___
VAL (Ik) f3 VAL (g(K’)) VAL (g(K)),

and
EX (I’, Jk+l)f’)VAL (g(K))_ EX (I’, Jk+l)f3 VAL (Ik/l) ,

so by TD4, D (I’, J), where J J’ U g(K). Clearly, J
___
I. Also

EX (I’, J)__c EX (I’, J+l) U EX (g(K’), g(K)),

and since EX (g(K’), g(K)) f3 VAL (Ik) , we have EX (I’, Jk) f’) VAL (Ik) .
In particular, we have D (I’, J0), J0 --- L and EX (I’, J0) f3 VAL (I) , so by

TD2, D(I’,I).

4.:. Tuple elimination. Studying rule TTD3, we observe that the basic operation
is that of eliminating, when given (w, I) and (u, J), a tuple v from I, if the tuples of
J(u/v) are in I, because the existence of the tuples of J(u/v) implies the existence
of v. We generalize this to tgd’s.

We now present the system
TD0 (triviality)
TD1 (collapsing)
TD2 (augmentation)
TD5 (tuple elimination). (I’, I U J), (J, I)-(I’, I).
Rule TD5 is implied by rule TD4. For the simplicity of the system we pay with

less natural derivations.
THZOrZM 4.2. The system T2 is sound and complete for tgd’s.
Proof.
Soundness. The rules are implied by the rules of the system T1, so they are sound.
Completeness. Suppose that D(I’,I}. Then there are a chase of [ by

D:Io, I,..., an element I, of this chase, and a valuation h which is the identity on
I such that h(I’)_I,. We can assume without loss of generality that EX (I’, I)
VAL (I,)= . We leave it to the reader to show, by backward induction on k from
n to O, that D -(I’, Ik ). In particular, it follows that D

4.3. Transitivity. Studying rule TTD4 we see that it is basically a transitivity
rule. The essential idea is that if the existence of a set of tuples J implies the existence
of a set of tuples J’, and the existence of J’ implies the existence of a tuple w, then
the existence of J implies the existence of w. We generalize this to tgd’s. It turns out
that in contrast to TTD4 the generalized transitivity rule is a bounded rule.

We present now the system T3:
TD0’ (triviality). -(L I).
TD 1 (collapsing)
TD2 (augmentation)
TD3 (projection)
TD6 (weakening). (h (I’), I) (I’, I), if h is the identity on/.
TD7 (transitivity). (J, I’), (I’, I) (I’ U J, I), if EX (J, I’) f3 VAL (I) .
TI-IEOREM 4.3. The system T3 is sound and complete for tgd’s.
Proof.
Soundness. Left to the reader.
Completeness. Suppose that D(I’,I). Then there are a chase of I by

D:Io, I1,"., an element I, of this chase, and a valuation that is the identity on I
such that h (I’)

_
I,. We leave it to the reader to show, by induction on k, thatD - (Ik, I).
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In particular, it follows that D (I,, I). Since h (I’)_ In and h is the identity on L
D -(I’, I) by TD3 and TD6.

4.4. tgd’s and egd’s. The extension of the systems T, T2, and T3 to egd’s is very
similar to the extension of TT, TT, and TT3 in 3.4.

The rules for egd’s need essentially no change. We change however the covering
rule for the sake of uniformity.

ED0 (triviality). -((a, a), I), if a VAL (I).
ED2 (collapsing). (al, a2),I)((h(al), h(a2)), h(I)), for any valuation h.
ED3 (augmentation). ((a 1, a 1), I) ((a 1, a2), I LI J).
LEMMA 4.1. Rules ED2 and ED3 are sound.
Proof. Both rules follow from rule ED1.
The translation rule needs no change.
ETD0. (translation). e e 1, e e2.
LEMMA 4.2. Let F be any sound and complete formal system for tgd’s, and let F’

be F LI {ETD0}. IfD is a set of tgd’s and egd’s then D F’(I’, I) ifand only ifD (I’, I).
Proof. Identical to the proof of Lemma 3.4.
The mixed (tgd-egd) analogues of rules TD4, TD5 and TD6 turn out to be minor

variants of the transitivity rule.
ETD1 (transitivity). ((at, a2), I), (/, J)-((al, a2), J), if al, a2 VAL (J).
THEOREM 4.4. Let F be any sound and complete formal system for tgd’s, and let

F’ be F {ED0, ED2, ED3, ETD0, ETD1}. Then F’ is a sound and complete system
for tgd’s and egd’s.

Proof.
Soundness. We have to show that rule ETD1 is sound. Let K

SAT (((a l, a2), I), (/, J)), and let h be a valuation on J such that h(J)_K. There is
an extension g of h to I such that g(I)_K, so g(al) g(a2). But a l, aVAL (J),
so h (a 1) g(a 1) g(a2) h (a2).

Completeness. Suppose that D((al, a2), I), al a2. By Theorem 2.3 there are
a chase of I by D*, an element In of this chase, an egd ((a3, a4),J) from D, and a
valuation h such that h(J)_In, h(aa)=al, and h(a4)=a2. Now D*(In, I), so by
assumption D*-(In, I). By ED2 and ED3, ((a3, a4), J) ((a l, aE),ln), SO by ETD0
and ETD1, D k-((a, a2),I).

By using clause (4) in Theorem 2.3 we can generalize Theorem 3.7 to tgd’s.
ETD2: d, e -e, if d and e are A-egd’s, and d is nontrivial.
THEOREM 4.5. Let F be a sound and complete formal system for tgd’s, and let F’

be F LI{ED0, ETD0, ETD2}. Then F’ is a sound and complete system for tgd’s and
egds.

Proof. Identical to the proof of Theorem 3.7.

4.5. Discussion. While the systems TT1, TT2, and TT3 all look completely
different each from the other, the systems T1, T2, and T3 are very similar. Indeed,
since T2 is the simplest system of the three, one may ask why we have bothered to
study also T1 and T3. The reason is that derivations by T2 are highly unnatural
backward derivations as discussed in 3.5. In contrast, T/T3 are forward/backward
systems which yield natural derivations that correspond to known theorem-proving
procedures as is shown in [Va3].

Since the implication problem for tgd’s is unsolvable [BV2], [CLM], there can
be no recursive bound on the size of derivations of tgd’s. Furthermore, it can be
shown that a recursive bound on the length of the derivations would lead to a recursive
bound on the size of the derivations. Thus, there can be no such bound. Nevertheless,
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the size of derivations is a reasonable measure to compare between formal systems.
We now show that our formal systems can each simulate the other with only a linear
increase in the size of derivations. That is, there is a constant c, such that if there is
a derivation of size s of d from D by T, for some 1 <= =< 3, then for every 1 <_- ] -<_ 3,
there is a derivation of d from D whose size is at most cs. Thus, we can consider all
our formal systems as equally "powerful".

T simulates T2. We have to simulate rule TDS, but TD5 is just a special case
of TD4.

T2 simulates T3. We have to simulate rules TD0, TD3, TD6 and TDT.
TD0’ is just a special case of TD0. Suppose now that (I’UJ, I)bTD3(I’,I).

We have

"-TD0 (I’, I .J I’ U J), and

(z’, U z’ U :), q’ :, I) -i, (’,

Suppose that (h (I’), I)-D6(I’, I). I.e., h is the identity on L We have

’-’TD0 (I’, h (I’) U I), and

(I t, h (l’) U l), (h (g’), I) -TD5 (I’,

Suppose now that (J, I’), (I’, I) ’-TD7 It [-J J I). I.e., EX (J, I’) VAL (I) . We have

TDO (1’ J, I’ I

(J, I’) --D (J, I’O I) (because EX (J, I’) VAL (I) ),

(I’ U J, I’ I U J), (L I’ U I)-o(I’ U J, I’ I), and

T3 simulates T. We have to simulate rules TD0 and TD4.
Suppose now that -woo (I’, I). That is, there is a valuation h which is the identity

on I such that h (I’) I. We have-TD0’ (L I),

(I, I) TDa (h (I’), I), and

(h (I’), I) --TD6 It, I).

Suppose that (I’, I UY’), (J’, ) -TD4 (I’, I U J), i.e., VAL (I) VAL (J’)
_

VAL (J) and EX (I’, I U Y’) 71VAL (J) . We have

k-’TD0’ ([ (.3 J I 0

(J’, J)bin2 (J’, I (A J) (because EX (J’, J) VAL (I) ),

(IUJ, IUJ), (J’,II,.JJ)TD7(IUJUJ’,II,.JJ),

(I’, I (.J J’) F--D2 (I’, I J J’) (because EX (I’, I U J’) VAL (J) ),

(IUJUJ’,IUJ), (I’,IUJUJ’)I--TD7(IUJUI’UJ’,IUJ), and

(I U J U I’ UJ’, I U J)---TD3 (I’, I

The reader can verify that there is such a constant c as claimed above. Moreover,
our systems can each simulate the other with only a linear increase in the length of
derivations.
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5. Formal systems or subclasses. An embedded multivalued dependency (emvd)
[Fagl] is a tgd ({w}, {wl, w2}) such that, for all A U, if wl[A] w2[A] then w[A]=
w[A]. It is usually written X-->--> YlZ, where X {A’ wl[A] w2[A]}, Y
{A" w[A] w[A]}, and Z {A" w[A] w[A]}. If VAL (w)_ VAL ({w, w_}) then it
is an mvd (defined in 2.3).

Emvd’s have attracted a great deal of interest. It is not known whether the
implication problem for this subclass is solvable or not. While many inference rules
for emvd’s are known ([BV1], [Sc], [TKY1], [TKY2]), no sound and complete formal
system for them is known.5 Thus, attention has shifted to finding minimal classes of
dependencies that include the class of emvd’s as a proper subclass and for which a
sound and complete system can be found. Two such classes are the classes of template
and binary dependencies which are studied in the following section.

5.1. Template and binary dependencies. A template dependency (td) [SU1] is a
tgd of the form ({w},I). The class of td’s contain the class of emvd’s and it also
contains the class of embedded join dependencies of [MMS] and the class of pro[ected
join dependencies of [YP]. The implication problem for td’s is known to be unsolvable
[GL], [Va4]. (In fact, it is shown in these papers that even for projected join dependen-
cies the problem is unsolvable). We show now that both systems T and T2 are sound
and complete for td’s.

THEOREM 5.1. The systems TI and T2 are sound and complete ]’or td’s.
Proof. The systems are obviously sound for td’s. To show completeness suppose

that D (I’, I), where I’ {w }. Studying the derivation by T1 constructed in the proof
of Theorem 4.1, we see that every dependency in the derivation is either of the form
(I’,Jk) or (K’,K) from D. In any case it is a td. Studying the derivation by T2
constructed in the proof of Theorem 4.2, we see that every dependency in the derivation
is either of the form (I’, Ik) or (K’, K) from D. In any case it is a td. [-1

Sadri and Ullman [SU1] have independently developed a formal system for td’s’
which turns out to be the system T2 restricted to td’s.

A binary dependency (bd) is a tgd (I’, I), where II[ <--2. The class of bd’s contains
the class of emvd’s, and it also contains the class of subset dependencies of [SW]. It
is not known whether the implication problem for this class is solvable or not. None
of our systems is complete for bd’s, but we can combine rules TD2 and TD7 and get
a sound and complete system for bd’s.

Let T4 be the system {TD0’, TD1, TD3, TD6, TD7’}, where TD7’ is:
TD7’ (transitivity). (J’, J), (I’Ll J,

VAL (I LI I’) .
THEOREM 5.2. The system T4 is sound and complete for tgd’s and for bd’s.
Proof. Left to the reader.

5.2. Embedded multivalued dependencies. The class of emvd’s lies in the inter-
section of the class of td’s and the class of bd’s.6 There is however a very important
distinction between td’s and bd’s on one hand and emvd’s on the other. For any fixed
universe U there are infinitely many nonequivalent bd’s or td’s, but only a finite
number of nonisornorphic emvd’s. ((I’, l) is isomorphic to (J’, J) if there is a one-to-one
valuation h such that h (I’)= J’ and h (l)= J.) Thus, for a fixed universe U there is a
finite number of instances of the implication problem and a finite number of possible

In contrast, for mvd’s the implication problem is solvable ([Beer]), and a sound and complete formal
system does exist ([BFH]).

6 This intersection is exa.etly the class of subset dependencies of [SW].
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derivations, so the implication problem is solvable and there is a sound and complete
formal system. (That does not mean that we can effectively find the implication testing
algorithm and the formal system for any given U). What we would like to have are
uniform algorithm and system, i.e., an algorithm and a system which are "good" for
any U. If one considers only bounded inference rules in the style of [Arm], [BFH]
then it is known that there is no uniform sound and complete system for emvd’s [PP],
[SW]. Nevertheless, it is still possible that we can find a sound and complete system
using unbounded rules like rule TTD4 or rule JD5 of [BV1], [Val]. The following
theorem says that finding a uniform implication testing algorithm is equivalent to
finding a uniform sound and complete formal system.

THEOREM 5.3. The implication problem for emvd’s is solvable if and only if there
is a sound and complete formal system for emvd’s.

Proof.
Only if. Suppose that the implication problem for emvd’s is solvable, and consider

the formal system consisting of one inference rule"

Clearly, this formal system is sound and complete for emvd’s.
If. Suppose that F is a sound and complete formal system for emvd’s. Let D and

d over a universe U be given. To decide whether D d we list every possible sequence
of emvd’s dl, , d,, and check whether it is a derivation of d from D by F. Inasmuch
as there is a finite number of nonisomorphic emvd’s over U, this process must terminate.
Hence, the implication problem for emvd’s is solvable. !-]

Remark. The same argument holds for the subsets dependencies of [SW], for
the embedded join dependencies of [MMS], and for projected join dependencies of
[YP]. Since the implication problem for projected join dependencies is unsolvable
[GL], [Va4], this class can not have a sound and complete formal system. There is,
however, a subtle point here. The syntax used here is such that there is no need to
specify the universe U explicitly, because it is evident from the syntax. Projected join
dependencies, embedded join dependencies, subset dependencies, and embedded
multivalued dependencies were all introduced originally in a different syntax, in which
the universe is not evident (see for example the syntax described in the beginning of

5). When we study formal systems for such a syntax, it is crucial to know how the
formal system handles that lack of explicitness, because that may affect whether a
class of dependencies has or does not have a sound and complete formal system. We
refer the reader to [Va4] for a more thorough discussion of this point.

5.3. Deeomposition of ttgd’s. An embedded loin dependency (ejd) [MMS] is a
td ({w}, I) such that for every A s U and two distinct tuples u and v in I, if u[A] viA]
then w[A] u[A]. If Irl = 2 then it is an emvd, if VAL (w)

_
VAL (I), then it is a loin

dependency (jd) [ABU], [Riss], and if VAL (w)_ VAL (I) and III 2 then it is an
mvd. In [BV1], [MM], [Val] it is shown that every jd is equivalent to a set consisting
of one ejd and several mvd’s. That is, a jd can be "decomposed" into weaker
dependencies. In this section we provide a decomposition theorem for ttgd’s, which
implies the above result as a special case.

Let (w, I) be a ttgd. The decomposition is based upon a distinction between two
kinds of values in I: the values which are repeated in I and those that are nonrepeated
in L Let u s I and A U. u[A] is repeated in I if there is another tuple v s I such
that u [A viAl.
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Let REP (I) be the set

{A" for some u L u[A] is repeated in I}.

For any tuple u and a set X
_

U, let Ux be a tuple such that ux[X] u[X] and u[A]
is a new distinct value for all A X. Suppose that ! ={Wl, , w,,}. With each tuple
wi we associate two sets Yi ={A" w[A]= wi[A]} and Xi Y-REP (I), and a ttgd
(ui, I’), where I’ I t.J {WlEP (t)}, ui[Xi] wi[Xi ], and ui[Xi] WREP (l)[Xi]. XI, ", Xm
is a partition of REP (I).

Example 3. Let U =ABCDEF, and let (w,I) be the ttgd (w, {wl, w2, w3}):

A B C D E F
w: aO bO cO dO eO fO
w: aO bl cl dO el fl
wz: al bO cl dl eO f2
w3: al bl c0 d2 e2 f0

Now we have REP (I) ABC, Y AD, X1 D, Y2 BE, X2 E, Y3 CF, and
X3 F. WREP(t)is the tuple

A B C D E F
a0 b0 cO d3 e3 f3

b/l, U2, and u3 are tile tuples

A B C D E F
ua" aO bO cO dO e3 f3
U2" aO bO cO d3 eO f3
u3" aO bO cO d3 e3 fO

TIEOREM 5.4. Let (w,I) be a ttgd, [={Wl,’’’,Wm}, and let D=
{({WrE,(t)}, I), (Ux, I’),""’, (u,,, I’)}. Then (w,I)D and D(w,I).

Proof. We show that (w, I) D and D (w, I).
(w,I)-D" (w,I)l-({wREp(t)}, I) by TD6. Define a valuation h on I such

that h(wi)=w and h(wi)=wrzp(t) for f:i. Now h(w)=ui, so by TD1,
(w,I)t-(u, {w, wgz,()}), and by TD4, (w,I)l-(u,I’).

D -(w, I): We define a sequence of tuples Vo,’’’, v,, as follows. Vo is wr. (t),

vi+[Xi+x] wi+[Xg+l], and vi+[Xi+] vi[Xi+]. Observe that v,, w. We show by
induction on that D (I t_J {v}, I).

Basis (i=0). Since Vo=Wgz(), and by TD0, -(I,I), we have that
({wgE, (t}, I) k- (I LI {Vo}, I) by TDT.

Induction. Suppose that D t-(IlO{v},i). Let h be a valuation such that
h(WREP(t)[ ii=l Xi]) w[Ioii=x Xi] and h is the identity elsewhere. Then h (WR,(t))
and h(U+l)=Vg+l. By TD1, (ug+a,I’)(V+l, IlO{vi}), and by TD7 and TD3,
(t tO {v,}, z), (v,+, t tO {v}) - (z tA {v,+,},

It follows that DI---(II,.J{w},I), and by TD3, DI--(w,I).
Note that the dependencies in D are "weaker" than (w,I) because they are

implied by (w, I), but do not, in general, imply (w, I).
We show now how Theorem 5.5 implies the above mentioned decomposition of

jd’s. An ejd ({w},{wa,...,w,,}) is also written as *[R1,...,R,,], where Ri
{A" w[a]=wi[A]}. Thus, if (w,I) is the jd *[Ya, ., Y,,], then ({WREP(I)}, I) is the
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ejd *[ Y1 (3 REP (I), .., Y, 0 REP (I)]. That the ttgd (ui, I’) is equivalent to an mvd
is less trivial.

LEMMA 5.1. (Ui, I’) Yi 0 REP (I) "- Y and Y 71REP (I) Y (ui, I’).
Proof. Consider the ttgd (ui, {wi, WREP t)}). We have {A: wi[A] WREP tt)[A]}

Y f’) REP (I) and {A: ui[A wi[A ]} Yi, so this ttgd is the mvd Y REP (I) -- Y.
We show now that (u,I’)t--(u, {w, WaEpr)}) and (u, {w, WaEp)})t--(U,I’).

(U, {W, WREPX)})I--(U,I’) by TD2. To show the opposite direction, let h be a
valuation such that h(wi)-" wi and h(wi)= WrEpx), for/" # i. (Such h can be defined
because (w,I) is a jd.) Now h(ui)=u and h(I’)={Wi, WREPt)}, SO by TD1,
(ui, I’) t--- (ui, {wi, we,)}).

6. Concluding remarks. Our model is rather restricted since it assumes that the
database consists of one relation,7 and that different attributes have disjoint underlying
domains, the so-called "many-sorted" case. While these assumptions offer theoretical
advantages [BBG], [Fag2], they are dubious from a practical point of view. It happens
that our formal systems of 4 can be very easily extended to the general case of many
relations and nondisjoint domains by simply adjoining a relation name to each tuple.
In view of this we think that claims to the naturalness of the universal many-sorted
case that are based on its having a sound and complete formal system are not very
convincing.

Another dubious assumption is that a relation can have an infinite set of tuples.
Since a database is inherently finite, there is a strong justification to define a relation
as a finite set of tuples. We say that a set of dependencies D finitely implies a
dependency d, denoted D d, if d is satisfied by every finite relation which satisfies
all dependencies in D. Unfortunately, it is easy to see that the set {(D, d):Dd} is
recursively enumerable. It follows that if the set ((D, d): Dd} is not recursive, then
it is not even recursively enumerable. Since the finite implication problem for tgd’s
is unsolvable [BV2], [CLM], there can be no sound and complete formal system for
finite implication. In contrast, if all tgd’s in D are total then Dd iff Dd [BV2],
[CLM]. Thus, our formal systems for ttgd’s and egd’s in 3 are systems for finite
implications as well as for implication.

In 5.3 we have observed that if the implication problem for a class of dependen-
cies is solvable then this class has a sound and complete formal system. Even in this
case there is still an interest in finding an "elegant" formal system, one which has a
small number of simple axioms and (preferably bounded) inference rules. A typical
example is the propositional calculus, which is a formal system for the resursive set
of tautologies of propositional logic. Likewise, the implication problem for jd’s is
solvable, but we would like to have an elegant formal system for that class or for a
minimal class of ttgd’s containing it. Another case of interest is that of implication of
mvd’s by ttgd’s and egd’s, which is probably the most general case for which an
efficient implication testing algorithm does exist [BV3]. These cases will be dealt with
in future papers.

Finally, since our dependencies are equivalent to first-order sentences, it is
interesting to know what is the relationship between our formal systems and the
known formal systems for first-order logic. It turns out that there is indeed a very
strong connection between our systems and the system of resolution and paramodula-
tion [CL]. This connection will be described in a future paper.

This assumption is usually called "the universal relation assumption".
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THE TRAVELING SALESMAN PROBLEM WITH
MANY VISITS TO FEW CITIES*
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Abstract. We study the version of the traveling salesman problem in which a relatively small number
of cities--say, sixmmust be visited a huge number of times--e.g., several hundred times each. (It costs to
go from one city to itself.) We develop an algorithm for this problem whose running time is exponential
in the number of cities, but logarithmic in the number of visits. Our algorithm is a practical approach to
the problem for instances of size in the range indicated above. The implementation and analysis of our
algorithm give rise to a number of interesting graph-theoretic and counting problems.

Key words, traveling salesman problem, dynamic programming, assignment problem, transportation
problem, minimal Eulerian digraph, feasible sequence, Stirling’s formula, Stirling numbers of the second
kind, min-cost max-flow problem, Edmonds-Karp scaling method

1. Introduction. In this paper we study the following version of the traveling
salesman problem (TSP): We are given n cities, an n n distance matrix di (not
necessarily symmetric or with zero diagonal elements), and n integers k 1, ", kn > 0.
We are asked to find the shortest walk that visits the first city kl times, the second
city k2 times, and so on. (We are allowed to visit city twice in a row, but this costs
us di.)

This problem, which we call the many-visits TSP,, is obviously a generalization
of the TSP (the TSP is our problem in the special case in which all ki’s are equal to
1). It can also be considered as a special case of the TSP (more precisely, a nonstandard
representation of the TSP), in which clusters of k cities with identical rows and columns
are treated as a single city to be visited k times. The many-visits TSP arises in
connection to the applications of the TSP in scheduling. In such applications, the cities
are in fact tasks to be executed, and dj reflects the overhead associated with the task
] immediately following task i. Now, in certain applications, each task belongs to one
of a few types, and tasks of the same type have identical characteristics. For example,
in the scheduling of airplane landings, there could only be four types of tasks--e.g.,
regular, jumbo, private, and military airplanes--but several dozens of each may be
pending at each time for landing. There is a certain delay between the landing of an
aircraft and the landing of the next aircraft, depending on the types of the two airplanes.
We wish to minimize the total delay. In the many-visits formulation of such a problem
n would be 4, while the ki’s would be the number of airplanes of each type.

The many-visits TSP can be solved by extending the dynamic programming
approach of [HK]; see [Psi and 2.3 of this paper. This algorithm, however, requires
time proportional to n 2 I-I (k + 1). For n 5, for example, this is already prohibitive
when the k’s are as small as 10. In this paper we present a drastically different
approach to the many-visits TSP, which results in an algorithm with running time
O(e(n) log ( k)), where e(n) is a moderately growing exponential function of n. For
reasonably small values of n--say, up to 10--our algorithm brings into the realm of
realistic solution instances with virtually unlimited k’s. As evidenced by the running
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time of our algorithm, which is sublinear in the ki’s, the output is not the optimal
walk itself, but a list of the numbers of times that each edge (i, ) participates in the
optimal walk. Naturally, since for ki 1 our problem becomes the ordinary TSP, this
exponential dependence on n is expected (and most probably inherent).

We shall now outline our approach. It has been one of the basic and oldest
observations in the area, that the TSP can be decomposed into two problems: the
assignmentproblem [Ku], [La], [PS], whose solution guarantees that each city is visited
and departed from exactly once, and a connectivity problem, which forbids "subtours"
in the solution. The first problem is easy, so the hard part of the TSP is enforcing
connectivity. Many branch-and-bound algorithms [Ch], algorithms for special cases
[GG3], and heuristics [Ka] are based on this decomposition. Our algorithm is based
on the following very simple idea: In the many-visits version of the TSP the first
problem becomes only a little harder (namely, the transportation problem [EK], [PSI),
whereas the connectivity aspect becomes much easier, in the sense that it is a problem
of size n, and therefore can be solved exhaustively if n is small--and this is our
working hypothesis.

More specifically, we can restate the many-visits TSP as follows: Given an n x n
distance matrix dj and n integers k 1, , k,, find the shortest Eulerian directed graph
with n nodes and with indegrees k 1,"’, k, in the corresponding nodes. Now an
Eulerian digraph must be strongly connected and it must also be balanced, that is, it
must satisfy at each node indegree (i)= outdegree (i). An Eulerian digraph that has
no other Eulerian digraph as a proper subgraph is called minimal. So, a solution of
the many-visits TSP can be decomposed into a minimal Eulerian digraph (this is the
connectivity part) and a balanced (but possibly disconnected) digraph to bring the
degrees up to the required levels of the k’s (this is the transportation problem). The
fortunate fact is that there is a fixed number of minimal Eulerian graphs on n nodes,
independent of the k’s. Our basic algorithm is now apparent:

1. Repeat the following step for each minimal Eulerian graph G on n nodes:
2. Let d;1,’’ ’, ;, be the sequence of indegrees of G. Solve the transportation

problem with distance matrix dj and both capacities and requirements equal to
k1- 81, , k,- 8,. Superpose the solution to G.

3. Among the Eulerian graphs thus generated, pick the cheapest.
Step 1, generating all minimal Eulerian graphs, can be done in a computationally

feasible way only by employing some interesting graph theory, and using dynamic
programming. We discuss this in 2. In 3 we make some calculations that are
necessary for the analysis of the algorithm, solving some counting problems that are
interesting in their own right. Finally, in 3 we also outline a modification of the
algorithm, which replaces the repeated solutions of the transportation problem in step
2 above by the precomputation of the solution to a "master" problem, plus the solution
of (much smaller) incremental problems. This modification reduces the computational
complexity from e (n) + e’(n log ( ki) to e (n) + n 3 log (Y. ki) + e’(n log n, where e (n)
and e’(n) are exponential function of n, specified in 3.

2. Generating minimal Eulerian graphs.
2.1. A reduction. It is not at all clear how to implement the first step of our

algorithm, i.e., enumerating all minimal Eulerian graphs on n nodes. In fact, the
outlook is very bleak, because of the following rather surprising result, proven recently
in [PY]"

THEOREM 1. Testing whether a digraph is minimal Eulerian is coNP-complete.
Fortunately, with a little thought we can circumvent this difficulty. Suppose that
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two minimal Eulerian digraphs G and G’ generated in step 1 have the same indegree
sequence (61, , ,,). Then the same transportation problem is solved for both in step
2. Therefore, we need only consider the cheaper (under dij) digraph among G, G’.
Hence, for each sequence of integers which is the indegree sequence of a minimal
Eulerian digraph (hereafter called a feasible sequence) we may compute the cheapest
Eulerian digraph with this indegree sequence. If the resulting digraph is minimal, we
proceed to step 2. If it is not, it can be discarded" The final solution corresponding
to it will certainly be considered when we consider the indegree sequence of the
minimal Eulerian digraph, which is necessarily a subgraph of the present nonminimal
one. Of course, by Theorem 1, we cannot test efficiently each resulting Eulerian
digraph for minimality. To improve the efficiency of our algorithm in practice, we
could use a reasonably fast heuristic that detects some obvious nonminimal digraphs.

Thus we have reduced step 1 to the following two substeps:
1.1. Generate all feasible indegree sequences of length n.
1.2. For each such sequence, find the cheapest Eulerian graph G that has as an

indegree sequence the given one.
We examine each of these substeps separately.

2.2. Feasible degree sequences. Surprisingly, although minimal Eulerian graphs
are hard to recognize (Theorem 1), their degree sequences have a nice characterization:

THEOREM 2. (,"" ’, 8n) is a feasible degree sequence iff it has at least max i
l’s in it.

We prove the two directions separately.
LEMMA 1. Let G=(V,E) be a minimal Eulerian digraph, and suppose

indegree (o) k for some ’o V. Then there are at least k vertices with degree 1 in G.
Proof. The lemma is obvious for k 1. To prove it in general, consider a set C

of cycles whose union is G (by cycle we always mean simple directed cycle, i.e. directed
cycle that does not repeat any vertex; any Eulerian digraph can be thought of, although
not necessarily in a unique way, as the disjoint union of several cycles). Now construct
the following finite sequence (G) of partial sub-digraphs of G (partial because the
vertex set of each of them, with the exception of the last one, is a proper subset of
V): each G is going to be the union of certain cycles in C. Go is the union of the k
cycles in C that contain the vertex ’o (for every , s V, indegree (,) is equal to the
number of cycles in C that contain v). Once Gi has been constructed, =>0, then Gi+l
is constructed as follows" If there are elements of C that have not yet been used, at
least one of them must contain some vertex in Gi (else G would not be connected);
pick such an element of C and add it to Gi to get Gi/l. Let Go, , G,, be a sequence
that can be constructed in this way (G, G). Let R (Gi), O, , m be the property
that G contains at least k cycles in C each of which satisfies the following:

(i) It contains a vertex with degree 1 in Gi.
(ii) The remaining cycles in C that make up G form a connected partial sub-

digraph of Gi. (Gi may also contain cycles in C that do not "satisfy either (i) or (ii);
R (G) says that at least k of the cycles in C that Gg contains satisfy both (i) and (ii).)

We shall show by induction that R(G) is true for all i, 0,..., m. First, we
show that R (Go) is true: Go contains exactly k cycles in C, and each of these satisfies
(ii) (since the remaining cycles have a common vertex, namely io). But also each of
these cycles satisfies (i), because if one of them, say Cj, does not, then each vertex in
Ci also belongs to some other cycle among the cycles that make up Go; thus, by
removing Ci from Go (i.e. by removing the arcs in Ci) we are left with a connected
sub-digraph of Go. Consequently, by removing Ci from G we obtain an Eulerian
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proper sub-digraph of G, which contradicts our hypothesis that G is minimal Eulerian.
Suppose now that R (Gi), i->_0, is true, i.e. at least k of the cycles in C that Gi

contains satisfy both (i) and (ii); call these cycles C1, ", Ct, <= k. We shall show that
R (Gi/l) is true. Call Ct/l the cycle in C that was added to G to obtain G/I; observe
that Ct/l contains a vertex with degree 1 in G/I, or else we could remove Ct/l from
G/I (and G) and obtain a proper Eulerian sub-digraph of Gi/l (and a proper Eulerian
sub-digraph of G). Now distinguish three cases:

1. Ct/l does not have any vertices in common with any of C1,"’, Ct. Then
R (G+I) is true, since C1,’", Ct satisfy both (i) and (ii) in Gi+l.

2. Ct+l has common vertices with only one of C,..., Ct, say with Ci. Then Ct+l
and any of C1,"’, Ct except possibly Ci satisfy both (i) and (ii) in G+I, so again
R (G+I) is true.

3. Ct+l has common vertices with Ci, .., Ci,, 1 --</’1, ,/’h ----< l, h > 1. Then for
p /’, r 1,. , h, C, 1 -< p _-< l, satisfies both (i) and (ii) in G+I. Consider now Ci,, 1 _-<
r<-_h; it clearly satisfies (ii) in G+I, since it satisfies it in G and Ct+l has at least
one common vertex with Ch, s r. But then Ci, also satisfies (i) in Gi+l, since otherwise
we could remove it and obtain a proper Eulerian sub-digraph of G. Therefore, R (Gi+I)
is true. Since cases 1-3 exhaust all possibilities, the inductive proof is complete.

It follows that R(G,,), i.e. R(G), is true; but this means that G has at least k
vertices with degree 1, and we are done. .

LEMMA 2. Let (1, n) be a sequence of integers such that there are at least
max , l’s in it. Then it is a feasible degree sequence.

Proof. Given such a sequence (81, , 8,), we shall construct a minimal Eulerian
graph G with degree sequence (81,""", 8,). First, suppose that the number of l’s is
exactly equal to the largest 8, say k. Without loss of generality k 81 --> 8 -->" -> 8,- >
8,-/1 8,- 1. G is constructed as the union of k cycles. Each of the k cycles
contains some of the vertices 1, 2,. ., n -k, and a different one among the vertices
n-k +1,..., n. The 8,_ first cycles are of the form (1, 2,..., n-k,/’, 1), where
> n-k. The ,--1-,- next (possibly 0) are of the form (1, 2,..., n-k- 1,/’, 1).
The 8,--.-8,--1 next are of the form (1, 2, , n -k -2,/’, 1); and so on. Finally,
the 81-8. last are of the form (1,, 1), for a total of (81-8z)+(8-83)+’" "+
(8,--1 8,-) + 8,-g 81 k cycles, exhausting all k indegree-1 nodes.

The construction is illustrated in Fig. 1 for the sequence (5, 3, 2, 2, 1, 1, 1, 1,
1). It is immediate that (a) each node has the appropriate indegree, and (b) the resulting
digraph is minimal Eulerian, since any cycle in it contains an indegree-1 node.

FIG.
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For the case of more than k l’s among the 8i’s, just insert the superfluous
indegree-1 nodes in one of the cycles.

Theorem 2 follows immediately from the two lemmas.
As a consequence of this characterization, feasible degree sequences of length n

can be easily enumerated as follows’
1. For k 2, , n repeat step 2.
2. For each sequence (d;1,’’’, 8n-k) with k-> 81 =>"" => 8n-k > 1 repeat step 3.
3. Generate all distinct permutations of (81,’’’, 8,-k, 1," ", 1).

All enumerations implicit in steps 2 and 3 are easy to do.

2.3. Optimal Eulerian graphs. Given a degree sequence 8 (81, , 8.), and an
n n distance matrix di, we can use dynamic programming [HK], [Psi in order to
find the shortest Eulerian graph with this degree sequence. For each degree sequence
a _-<8 (componentwise comparison), and each i, 1<_-i =<n, let C(a;i) be the cost of
the shortest possible way of starting from city 1, visiting city/" a times,/" 1, , n,
and ending up in city i. We then have the recurrence

C(al, a,, ;i)= rain [C(al, ai-1, ai- 1, ai/l, a,, ;/’)+ dji]

with the initial conditions C(1, 0,. ., 0, 1, 0,. ., 0; i)= dli (l’s in the first and ith
position).

Finally, the cost of the optimal Eulerian graph with degree sequence 8 is given by

Copt m!n [C(8, i) + dill.

The straightforward implementation of these recurrences takes time O(n 2 lI (8i +
1)). As usual, we can equally easily recover the optimal Eulerian graph in the same
amount of time.

3. Analysis of efficiency.
3.1. Preliminaries. Let F(n) be the set of all feasible degree sequences of n

nodes. Also, let us define the quantity

DP(n) Y 1-I (ti -I- 1).
(,51,...,,Sn)eF(n)

We can analyze the complexity of our algorithm as follows" The algorithm
essentially boils down to solving an optimal Eulerian digraph problem, and an n n
transportation problem with capacities approximately ki for each degree sequence in
F(n). The total effort expended in the dynamic programming algorithm is a small
constant times n2DP(n). If we use the Edmonds-Karp scaling method for the trans-
portation problem (see [EK] and 3.3), each such problem takes time O(n 3 log (Y ki))
for a total of O(]F(n)ln 3 log (Y. ki)). We must therefore derive asymptotic estimates
for F(n) and DP(n). This is the subject of the next subsection.

3.2. Counting problems.
PROPOSITION 1. (a) IF(n)l Y=2 C(n, k)(k 1)"-k.
(b) DP(n) =Yk=2 C(n,k)2k[(k-1)(k +4)/2]"-k.

(Here by C(n, k) we denote the number of ways for choosing k objects among n.)
Proof. (a) Suppose 8i 1 exactly for i,,, where m 1, , k; each of the other

n-k elements can take any value between 2 and k, so there are (k- 1)n-k such
sequences. For any given k, there are C(n, k) ways to pick il, , ik; also, k can take
any value between 2 and n.
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(b) Suppose 6 1 exactly for i,,, where m 1,. , k;

1-I ((i -" 1) l-I (6, + 1) 1-I (6, + 1).
=im =im # im

l__--<m_<--k for all
l_m<=k

The first factor is equal to 2k, and in the second factor (i + 1) can take any value
between 3 and k + 1, so

8eM(n)
8 iff =im

l<-m<__k

fi (8i + 1) 2k[3 +... + (k + 1)]"-k 2kE(k + 1)(k + 2)/2- 3]"-k
i=1

2k[(k 1)(k + 4)/2]"-k,
since (k + 1)(k +2)-6-k2+3k-4=(k-1)(k +4). Again, given k there are C(n,k)
ways to pick l, ik, and k can take any value between 2 and n. I3

Since the counts for IF(n)l and DP(n) are not in closed form, we shall now derive
lower and upper bounds for IF(n)l and DP(n), to obtain some more information about
their respective rates of growth.

For n -> 3, 2_-< In/2] <n, and one can get lower bounds for IF(n)l and DP(n) in
a trivial way, by taking the term corresponding to k- In/2] in the respective sum.
Specifically,

IF(n)l>C(n, [n/2l)(Fn/2] 1) t"/,
and

DP(n) >C(n, [n/21)2F"/2[([n/2] l)([n/2] +4)/2]t"/2J

>- C(n, rnl21)2r"/-t"/(rnl21-1)t"/
>-C(n, [n/2])(Fn/2] 1)"-a.

Since In/2] _-> n/2 and [n/2J > n/2-1, we thus have

IF(n)l>C(n, [n/Z])(n/2- 1)"/2-a, DP(n)>C(n, [n/Z])(n/2- 1)"-.
Moreover, by Stirling’s formula (n! n" e-"(2zrn)/2) we have

C(2r, r)= (2r)!/r!r! (2r):re-2"(2zr2r)a/2/(re-)Z2zrr 22(7rr)-/2,
and

C(2r + 1, r + 1)= (2r + 1)!/(r + 1)!.r! [(2r)!/r!r!][(2r + 1)/(r + 1)]= 22+(zrr)-/2,
so C(n, In/2] 2" (zr [n/2J )-1/2 2" (rn/2)-x/ (a, b, means lim,_.oo a,/b, 1); this
gives an idea about the rate of growth of these lower bounds.

We can also obtain trivial upper bounds by replacing (k 1)"-k in the summation
expression for IF(n)l by (n-l)", and by replacing 2[(k-1)(k +4)/2]"-k in the
summation expression for DP(n) by 2"[(n- 1)(n +4)/2]" =[(n- 1)(n +4)]". We thus
obtain, using the well-known fact that the sum of the binomial coefficients C(n, k)
for k 0, , n is equal to 2",

IF(n)l<[Z(n-1)]" and DP(n)<[Z(n-1)(n +4)]".

Observe that it immediately follows from these straightforward bounds that
log IF(n)l O(n log n), and log DP(n) O(n log n).
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We shall now derive some more elaborate bounds. First, we derive an upper
bound for IF(n)l by estimating the maximum of (k 1)"-k when k ranges from 2 to n.

THEOREM 3. IF(n)l<2"(n/k)"/kl"/k, where k log n -log log n (log denotes
the natural logarithm).

Proof. Consider the function y" (1, c) R defined by y (x) (x 1)"-x, where
n > 2; y’(x) (x 1)"-Xg(x), where g(x) (n -x)/(x 1)- log (x 1)
-l+(n-1)/(x-1)-log(x-1). Now g’(x)=-(n-1)/(x-1)2-1/(x-1)<O (x > 1),
and g(2)=n-2>0, g(n)=-log(n-1)<O, so g(x) has a unique root Xo in (2, n).
Also g(x)>0 for 1 <x <Xo, g(x)<0 for x >Xo, so y has an absolute maximum Ymax
at Xo. Since g(xo) O, (n -Xo)/(Xo- 1) log (Xo- 1), and Ymax y(X0) (X0-- 1)n-x0
(Xo- 1)-1) lg x-l). Since Xo- 1 > 1, we have that ifxo- 1< then Ymax < log. But
nowif k is such that n > k e k- + 1, then 1 + log [(n 1)/k] > k, so for x >= 1 + (n 1)/k
we have 1 +log (x 1)=> 1 + log [(n 1)/k])k >-_(n 1)/(x 1), which gives g(x)< 0, so
xo<l+(n-1)/k. Thus, if n>kek-+l, xo-l<(n-1)/k and Ymax<[(n
1)/k]t"-a)/kalgt"-)/k. Taking k log n -log log n, we have that n > k e k- + 1 iff
(after some calculations) nil-1/e +(log logn)/(e log n)]> 1, which is true since for
n >2 we have n >e and loglogn >0, and thus n[1-1/e+(loglogn)/(e logn)]>
n(1-1/e)>2(1-1/e)>2(1-1/2)= 1. But now for each k in [2, n], (k-l)"-k Ymax
by the definition of y, 2so_ [F(n)l=Ek=2 C(n,k)(k-1)"-k YmaxEk=2 C(n,k)=
Ymax(2"--n--1)<2"ymax< (n/k) "/k lg ("/k), where k =logn-loglogn. [3

To improve the lower bound on IF(n)[, we first find alternative summation
expressions for IF(n)[ by calculating the exponential generating function of the
sequence ]F(n )l.

PROPOSITION 2.

(a) IF(n)l (-1)"- + n !/k!(l!)kk2!(2!)k2
2kl+3k2+

where n >-_ 2 and the k’s are nonnegative integers.

In/2]

(b) IF(n)l (-1)"- + , n !/(n -r!)S(n -r, r),
r=l

where n >= 2 and S(n, k) is the Stirling number of the second kind which is equal to the
number ofpartitions of an n-element set into exactly k classes.

Proof. We first calculate the exponential generating function of the sequence
IF(n)l:

f(x) ,,Y=2 IF(n)lx"/n ,,Y= k =2
C(n, k)(k 1)"- x"/n

n!/k!(n-k)!(k-1)"-kx"/n!
n=2 k=2

, , [(k-1)x]"-k/(n-k)!x/k!
k=2

Y. xk/ktek-)X=e-X. , (xex)k/kt=e-*(e -xe* -1)=ex(e*-l) -x-e-*.
k =2 k =2

(a) We find an alternative expression for the coefficients in the expansion of f(x)"

)n-1x-x-e =-1 + Y’. (-1 " I=-1+ (-1) -ax"/n!,
=0 =2
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and

(e,’-- 1) E [x(e-l)]"ln!

., l/n! E xi+l/i!
n=0 i=1

Y, l/n! ,, n!/kl!k2!"" 1-I X(i+l)k’/(i!) k’
n=0 kl+k2+ i=1

x2kl+3kz+"’/kl!(l!)klke!(2!)kz"
kO,k2O,...

n=0 2kx+3ke+
n !/kl!(l!)kk2! (2!)ke. .] x"/n!

=1+ E n!/kl!(l!)klk2!(2!)ke... x"/n!
=2 2k+3k2+

Thus, since f(x) (-x -e-X)+e x(ex-1), we obtain

IF(n)l (-1)"-+ E n!/kl!(1.!)klk2!(2!)ke’’’.
2kl+3k2+

(b) We rewrite the summation expression obtained in (a) as follows"

in/2]

IF(n)l (-1t"-1 + E Y
r=l k+2kz+

kl+k2+

n !/(n -r)! (n -r)!/kl!(l!)k’k2! (2!)ke. ..
But now observe that (n-r)!/Kl!(l!)k’k2!(2!)k-.., is equal to the number of

partitions of an (n -r)-element set in which there are exactly k classes with elements,
so the inner sum is equal to n !/(n -r)!S(n -r, r). Therefore,

[n/21

IF(n)l=(-1)"-l+ Y. n!/(n-r)!S(n-r,r).
r=l

Using (b) of Proposition 2, we can improve our lower bound as follows: We first
obtain a simple estimate for S(n, k):

LEMMA 3. S(n,k)>-k"-/k!
Proof. The number of ways of putting n distinct objects into k distinct boxes is

equal to k!S(n, k); the number of ways of putting n distinct objects into k distinct
boxes such that object is in box is equal to k"-k’, clearly, k !S (n, k) > k"-k. 71

By considering the term corresponding to r- [pn] in the summation expression
for IF(n)l given in Proposition 2(b), and using Lemma 3 and Stirling’s approximation,
we have

THEOREM 4. For all 0 <p < 1/2, IF(n )l is bounded from below for large enough n by

(con 1-2), (2zrp (1 p)n 3)-1/2(e 1-1/ e

where co =pl-3p(1-p)p-l, and e >0.
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The first few values of IF(n)[ are given in Table 1.

TABLE

n IF(n)l DP(n)

3 4 44
4 15 456
5 66 5,992
6 335 101,212
7 1.898 1,889,428

3.3. Solving the transportation problem. In this subsection we briefly outline the
Edmonds-Karp scaling method for the min-cost network flow problem, of which the
transportation problem is a special case. Recall that we wish to find the cheapest
"pseudo-Eulerian" (i.e., with balanced indegrees-outdegrees but perhaps not con-
nected) digraph with the given indegrees ci k-. This is equivalent to the min-cost
max-flow problem on the following network N ([FF], [La], [EK], [PSI): The nodes
of N are {s,t}{si, ti: i-- 1,... ,n} and the arcs are {(s, si), (ti, t): i= 1,... ,n}U
{(si, t): i,/" 1,. ., n}. Arcs (s, si), (ti, t) have cost 0 and capacity ci, whereas arc (si, ti)
has cost di and capacity .

A flow f from s to in N is called extreme if it is of minimum cost among the
flows of equal value. It is called pseudo-extreme if there exist real numbers u, u,
1, , n such that (a) ui + di >= 0 for all i,/" and (b) whenever u , +d > 0 we
have 0 flow in f from s to t. If we start with a pseudo-extreme initial flow we can
perform flow augmentations that preserve the pseudo-extreme property. The
maximum flow we end up with is therefore pseudo-extreme, and it turns out that the
maximum pseudo-extreme flow is also extreme, and thus the desired solution (see
[EK] for a proof).

Define now the pth approximation to our problem to be a min-cost max-flow
problem on the same nodes, arcs and costs, only with capacities {[ci/2PJ }. The original
problem is thus the 0th approximation. If f is a pseudo-extreme flow in the pth
approximation, then obviously 2f is a pseudo-extreme flow in the (p- 1)th. The
Edmonds-Karp scaling method computes in this way successively maximum pseudo-
extreme flows for approximations l, l-l,..., 0, where [log2 (maxici)]. Each
approximation can be solved in O(n 3) time, and the total complexity is O(n log ( ci)).

For our problem we must solve IF(n)l such min-cost max-flow problems, all with
the same nodes, arcs and costs, and with capacities varying slightly (namely, ci ki- 8i)
for a total complexity O(IF(n)ln 3 log2 (Y. ki)). Instead, however, we could solve a single
"master" problem with capacities {[(ki-n)/2PJ}, where p is to be determined. Then
we solve each of the IF(n)l problems by starting with the (p- 1)th approximation,
and with initial flow 2f, where f is the optimum flow in the master problem. By taking
p [log n] we can solve each of the ]F(n)l problems in O(n 3 log n) time (notice that
always ki 8 => k, n). The total computation for the transportation problems is there-
fore reduced from O(IF(n )In 3 log ( ki)) to O(n 3 log (’. ki) -t-IF(n)ln 3 log n).

4. Discussion. A good part of our investigations has been of rather theoretical
interest---e.g., the asymptotic improvement sketched in 3.3. Nevertheless, we think
that our algorithm is of practical value, since it can be used to solve instances of size
far beyond those previously thought possible. One of the most attractive features of
our algorithm in practice is that, if n and the distance matrix are known and fixed in
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advance, then the best part of the computation (i.e., the generation ot F(n) and the
computation of the optimal Eulerian graph for each sequence in it) can be done once
and for all, and the results stored in a large table. Besides, our algorithm can be
adapted to find the optimal solution of a dynamically evolving instance (e.g., by
performing a few more augmentations in the transportation problem whenever the
k’s are increased), whereas the dynamic programming approach is not very flexible
in this direction. Naturally, there is a drawback" Our approach is best suited for
minimizing the length of the walk (the makespan, or finishing time of the last job, in
scheduling terminology), while dynamic programming can be adapted to optimize
other objectives as well [Ps]. We also mention in passing that our approach to the
many-visits TSP is reminiscent in spirit of the classical "precomputation" approach
to the cutting-stock problem [GG1].

A practical implementation of our algorithm would most probably incorporate a
less sophisticated code for the transportation problem that the Edmonds-Karp scaling
method, and could use a heuristic test for minimality for the digraph G produced in
step 1. Of course, the ultimate heuristic would be to first solve the transportation
problem with requirements and capacities ki, and then check whether, by a stroke of
luck, the resulting digraph is connected. One might expect that this should happen
much more often in this problem than in the ordinary TSP.
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THE EFFECT OF NUMBER OF HAMILTONIAN PATHS
ON THE COMPLEXITY OF A VERTEX-COLORING PROBLEM*

UDI MANBER’ AND MARTIN TOMPA"

Abstract. A generalization of Dobkin and Lipton’s element uniqueness problem is introduced. For
any fixed undirected graph G on vertex set {vl, v2,’", v,}, the problem is to determine, given n real
numbers Xl, x2, , xn, whether xi xj for every edge {v, vj} in G. This problem is shown to have upper
and lower bounds of (R)(n log n) linear comparisons if G is any dense graph. The proof of the lower bound
involves showing that any dense graph must contain a subgraph with many Hamiltonian paths, and
demonstrating the relevance of these Hamiltonian paths to a geometric argument. In addition, we exhibit
relatively sparse graphs for which the same lower bound holds, and relatively dense graphs for which a
linear upper bound holds.

Key words, lower bound, decision tree, element uniqueness, Hamiltonian path, vertex-coloring,
orientation

1. A problem related to vertex-coloring. Dobkin and Lipton [1] investigated the
complexity of the element uniqueness problem which is to decide, given n real numbers,
whether they are pairwise distinct. They employed a geometric argument to demon-
strate that II(n log n) linear comparisons of the inputs are required in the worst case
to determine element uniqueness.

What if we are not interested in verifying distinctness for all pairs of inputs, but
only for some subset of pairs? For any (fixed) undirected graph G on the vertex set
{Vl, v2, , v,}, define element uniqueness with respect to G as the problem of deciding,
given n real numbers x 1, x2, , xn, whether xi x for every edge {vi, v} in G. Viewed
another way, the problem is to determine whether coloring vertex vi with color xi, for
1 _-< <= n, results in a valid coloring of the graph G. Notice that this problem differs
from the familiar vertex-coloring problem in two respects"

1. The graph G is fixed, and the input is instead a candidate vertex-coloring that
is to be verified. Hence, unlike the standard vertex-coloring problem which is well
known to be NP-complete [3], this problem has an obvious algorithm that uses only
O(n 2) comparisons.

2. We restrict our attention to inputs that are real numbers and algorithms based
solely on comparisons of linear combinations of the inputs. Although this eliminates
some obvious algorithms for verifying vertex-colorings, it is in keeping with the spirit
of Dobkin and Lipton [1] and allows us to explore some interesting geometric and
graph-theoretic techniques for deriving lower bounds.

Section 2 demonstrates that l)(n log n) linear comparisons of the inputs are
required to determine element uniqueness with respect to an arbitrary graph G that
has ’(n 2) edges. Section 3 complements this result by demonstrating that O(n log n)
time is sufficient for arbitrary graphs. Section 4 shows that there are reasonably dense
graphs with respect to which element uniqueness can be determined in O(n) time,
and there are reasonably sparse graphs with respect to which element uniqueness
requires f(n log n) linear comparisons.

* Received by the editors March 12, 1982. This material is based upon work supported by the Office
of Naval Research under contract N00014-80-C-0221, and the National Science Foundation under grants
MCS-7702474, MCS-8003337, and MCS-8110089.

" Department of Computer Science, FR-35, University of Washington, Seattle, Washington 98195.
t Present address: Department of Computer Science, University of Wisconsin, Madison, Wisconsin
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2. A lower bound on element uniqueness with respect to dense graphs. This
section is devoted to proving an f(n log n) lower bound on the number of linear
comparisons required to determine element uniqueness with respect to any graph G
that has lq(n 2) edges. The proof consists of 2 parts. In 2.1 it is shown that if G has
h Hamiltonian paths, then the number of linear comparisons required to determine
element uniqueness with respect to G exceeds log2 h. This is, of course, insufficient
to demonstrate the promised lower bound, since there are certainly graphs with lq(n 2)
edges but no Hamiltonian paths. Section 2.2, however, demonstrates that any graph
with "(rt 2) edges has an induced subgraph with n a(") Hamiltonian paths; this is
sufficient to prove the lower bound, since it implies the existence of a fixed subset of
the inputs to which the result of 2.1 applies. (Note that there are graphs with O(n 2)
edges and no triangles, so that we cannot simply apply Dobkin and Lipton’s lower
bound on element uniqueness to some complete subgraph of G.)

2.1. A geometric interpretation of the problem. Dobkin and Lipton’s lower
bound on the element uniqueness problem is based on the following result"

TI-IEOREM 1 [1] Let R be a set of nonempty, open, pairwise disfoint subsets of the
Euclidean space E". Then given real numbers x l, x2,’", x,, the number of linear
(affine) comparisons required to determine if (x 1, x2," ", x,) t3rR r is at least log2 IR I.

The proof of Theorem 1 is based on the observation that, in any linear comparison
tree that determines membership in t_JrR r, the inputs that terminate at any leaf in
the tree form a convex subset of E". Hence the number of leaves is at least IRI and
the height of the tree at least log2 IRI. In order to apply Theorem 1 to a particular
problem such as element uniqueness, one needs to determine a lower bound on the
number of regions corresponding to the problem.

The regions corresponding to the element uniqueness problem are those into
which E" is divided by removing the hyperplanes

I4={(x,x,..., x,)lx =x;}
for all pairs i,/’. Thus, determining element uniqueness is equivalent to determining
membership in R, where

R {r=lr is a permutation on {1, 2,..., n}},

r, {(xl, x2,’’’, x,,)lx,(1)< x,(2)<’"
Hence the number of linear comparisons required to determine element uniqueness
is at least log2 IRI- log2 (n I) n log2 n -O(n).

Let G be an undirected graph on the vertex set V {v l, v2,’’’, v,}, and let Ro
be the set of nonempty, open, pairwise disjoint regions into which E" is divided by
removing the hyperplanes

H, {(x, x,..., x,)lx, x;}
for all pairs i,/such that the edge {vi, vi} is in G. Determining element uniqueness
with respect to G is equivalent to determining membership in 13R r, so we proceed
by characterizing the regions of Re in order to apply Theorem 1.

An orientation of G (V, E) is a directed graph D (V, A) that has exactly one
of the (directed) edges (u, v) or (v, u) for each (undirected) edge {u, v} in G. For any
directed graph D (V, A), define the open region

/’D (’] {(Xl, X2,"’ ’, Xn)lXi <Xi}.
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THEOREM 2 (Greene [4]). Re {rolD is an acyclic orientation of G}; furthermore,
ifD and D’ are distinct acyclic orientations, then ro # ro,.

Proof. Let rR, and choose any (al, a2,"" ,a,)r. Construct an orientation
D (V, A) of G as follows: For each edge {vi, vi} in G, orient this edge as (vi, vi) if
a < a. and as (vj, v) if aj < ai. (It is impossible that ai ai, since all such points lie on
the deleted hyperplane H0). The transitivity of < assures the fact that the orientation
D is acyclic. Furthermore r ro, since

(Xl X2 Xn)l"

for each hyperplane Hgi, (Xl, X2," Xn) and (al, a2, a.) lie on the same
side of Hii
for each edge (vi, vj) A, xi < xi

:::(Xl, X2,""" ,Xn).l’D.

Conversely, suppose D is an acyclic orientation of G. There is some
(al, a2,’’ ’, an) satisfying a <ai for each edge (vg, v.) in D, since D is acyclic. As
(a , a2," ", a,) H for any edge {vi, vi}, (a 1, a2," ", an) r for some r Re. As in the
previous paragraph, r ro.

Finally, if D and D’ are acyclic orientations that differ on their orientation of
the edge {v, vi}, then ro and ro, are nonempty and are separated by Hi, so ro

In the next section we will consider only those acyclic orientations that correspond
to Hamiltonian paths, since it is easier to count Hamiltonian paths than general
orientations. We proceed to show that every Hamiltonian path induces an acyclic
orientation, so that a lower bound on the number of Hamiltonian paths yields a lower
bound for the problem.

COROLLARY 3. If G has h Hamiltonian paths, then the number of linear com-
parisons required to determine element uniqueness with respect to G exceeds log2 h.

Proof. Every directed Hamiltonian path p induces a natural acyclic orientation
of G, namely edge {u, v } is oriented in the same direction as the subpath of p between
u and v. Furthermore, no two distinct Hamiltonian paths p and q induce the same
acyclic orientation, for if p and q differ in their orderings of vertices u and v, then u
and v would lie on a directed cycle in the common orientation. Hence, by Theorem
2, IRI--> 2h. The result then follows from Theorem 1.

2.2. Dense graphs have subgraphs rich in Hamiltonian paths. Given a graph G
with f(n 2) edges, our goal is to find an induced subgraph of G with n") Hamiltonian
paths. The proof consists of two parts. First we show that G contains an induced
subgraph G’ with minimum degree fl(n). G’ is then shown to contain an induced
subgraph G" with the desired number of Hamiltonian paths.

LEMMA 4. Let G be a graph with n vertices and cn 2 edges. Then there exists an
induced subgraph G’ of G with minimum degree greater than cn.

Proof. G’ is constructed using the following algorithm"
1. Set G’:=G.
2. Find a node v with minimum degree in G’.
3. If the degree of v in G’ exceeds cn then halt.
4. Otherwise, delete v and its incident edges from G’, and go to step 2.
If the algorithm terminates in step 3 then G’ has minimum degree exceeding cn.

We prove that the algorithm will always terminate after fewer than n- 2cn vertices
are deleted. Assume the contrary. For each vertex deleted in step 4, the number of
edges deleted is at most cn. Hence after n- [2cnJ deletions G’= (V’, E’) satisfies
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[V’[ [2cn and [E’[-> cn 2 (n [2cn )cn > 2c2n2- cn. This is a contradiction, since
the complete graph with [2cnJ vertices has at most 2c2n2-cn edges.

LEMMA 5. Let G be a graph with n’ vertices and minimum degree d. Then G has
an induced subgraph G’ with d + 1 vertices and at least d!/(al) Hamiltonian paths.

Proof. We first show that there are at least d! simple paths in G of length d. Let
(Vo, vl,..., va) denote such a path. v0 can be chosen arbitrarily. For each choice of
Vo there are at least d choices for Vl, for each v at least d-1 choices for v2, and in
general for each v at least d-] choices for /2/.+1, since v is adjacent to at least d
vertices, at most / of which have already been chosen. Hence there are at least d!
such paths.

Each simple path (Vo, Vl,’’’, va) is a Hamiltonian path in the induced subgraph
G’ generated by {Vo, Vl,"’, va}. Since the number of subgraphs of G with d + 1
vertices is (a-’l), some induced subgraph of G must have at least d!/(a"+’) Hamiltonian
paths. [3

Combining the two lemmas we get the following theorem:
THEOREM 6. Let G be a graph with n vertices and cn 2 edges. Then G has an

induced subgraph G’ with at least [cn] l/2" Hamiltonian paths.
Proof. Follows from Lemmas 4 and 5. ]
We can now combine Corollary 3 and Theorem 6 to get our main result:
TIEOREM 7. ff G has n vertices and cn 2 edges, then .the number o] linear

comparisons required to determine element uniqueness with respect to G is at least
cn log2 n O(n).

Proofi By Corollary 3 and Theorem 6, there is a fixed subset of the inputs that
alone requires this many comparisons.

THEOREM 8. If G has n vertices and to (hE/log n) edges, then the number of linear
comparisons required to determine element uniqueness with respect to G is to (n ).

Proof. The proof of Theorem 7 can be modified in a straightforward manner to
prove the stronger statement that if G has n vertices and m edges, then the number
of linear comparisons required to determine element uniqueness with respect to G is
at least (m/n) log2 (m/n)- O(n).

3. An upper bound on element uniqueness with respect to arbitrary graphs. In
this section we establish an upper bound of O(n log n) for element uniqueness with
respect to any fixed graph G. This upper bound is immediate if only comparisons are
counted, as was done in 2, since sorting the input reveals (implicitly) all the informa-
tion necessary to determine element uniqueness with respect to a fixed graph. The
algorithm given in this section shows that this information can be collected explicitly
on a random access machine using O(n log n) steps in total.

The algorithm presented is not meant to be practical, though, since it requires
an exponential amount of preprocessing of G, and an exponential size data structure
remains even after preprocessing. It serves only to show that the lower bounds
presented in 2 are tight.

The preprocessing of G proceeds as follows. For each induced subgraph G’=
(V’, E’) of G we check whether E’= . We store the answers in a "binomial tree"
[2, 8], which facilitates fast look-up. A binomial tree is a tree of height n with 2
nodes. Each node is labelled with an element from {0, 1,..., n} as follows" the root
is labelled 0, and each node labelled has n children with labels + 1, + 2, , n,
respectively. Thus each subset V’ of k vertices from V corresponds in a natural way
to a node uv, in the binomial tree of distance k from the root. Each node uv, also
has a flag that is set if and only if E’ for the induced subgraph G’= (V’, E’).
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Now, given a coloring of the vertices of G, to find whether there are two adjacent
vertices with the same color do the following:

1. Sort the vertices according to their colors, thus obtaining a list of subsets
V1, V2," ., Vk such that each subset V. contains vertices with the same color. Sort
the vertices within each subset according to their vertex numbers. This step takes time
O(n log n).

2. For each subset V., consult the binomial tree to find whether the corresponding
Ej . There are two adjacent vertices with the same color in G if and only if E
for some j. For each subset V., the look-up takes time O(I V.[ log n), so this step takes
time O(n log n).

4. The number of acyclic orientations of undirected graphs. This section supple-
ments the results of 2 and 3 by demonstrating that (1) there, are reasonably dense
graphs with respect to which element uniqueness can be determined in O(n) time,
and (2) there are reasonably sparse graphs with respect to which element uniqueness
requires f(n log n) linear comparisons.

THEOREM 9. There are graphs with (R)(n2/log2 n) edges for which there is a linear
time algorithm (with no preprocessing) for the element uniqueness problem.

Proof. Let G G’IJ G" where G’ is the complete graph with n/log2 n vertices,
and G" has n -n/log. n vertices and no edges. The element uniqueness problem with
respect to G is reduced to the ordinary element uniqueness problem for n/log2 n
elements, which can be solved in time O(n) by sorting.

Theorem 2 motivates studying the number of acyclic orientations of undirected
graphs, in order to determine whether the lower bound technique of 2 applies.
Theorem 10 below tightly bounds the maximum number of acyclic orientations that
a graph with n vertices and m edges can have. One corollary is that there are relatively
sparse graphs with many acyclic orientations.

Let S be the set of undirected graphs with n vertices and m _-> n edges, and let
H(m, n) denote the maximum number of directed Hamiltonian paths that a graph

in S can have,
A (m, n) denote the maximum number of acyclic orientations that a graph in

can have, and
F(m, n) denote the maximum number of rooted spanning forests that a graph in

S can have.
THEOREM 10. (2mien-I)" <-H(m,n)<-A(m,n)<-F(m,n)<-(2m/n + 1)".
Proof. 1. H(m,n)>=(2m/en-1). Let G be a graph chosen at random from $,

with each graph considered equiprobably. Let N (). Then the expected number of
Hamiltonian paths in G is the total number of possible Hamiltonian paths (n !) times
the probability that any fixed possible Hamiltonian path is indeed a Hamiltonian path
in G, that is,

>--n!((m -n)/N)"-1

>-_ (n/e)" (2(m n )//,/2),,
=(2(m -n)/en)"

>-_(2mien-I)".

(A constructive proof of a slightly weaker bound was given in a preliminary version
of this paper [5].)
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2. H(m, n)<=A (m, n). The proof of Corollary 3 yields the stronger result that
any graph has at least as many acyclic orientations as Hamiltonian paths.

3. A (m, n) <=F(m, n). Let G be an undirected graph with n vertices, and number
the vertices 1, 2,. , n in an arbitrary way. Each acyclic orientation D of G induces
a rooted spanning forest F, namely the one that arises from a depth-first search [7]
of the directed graph D (breaking ties according to the vertex numbering). Further-
more, F uniquely determines the orientation D" any edge in G connecting an ancestor
and descendent in F must be oriented toward the descendent in D, since D is acyclic,
and any other edge must be oriented toward the vertex visited earlier in the depth-first
search. (The order in which the vertices of F were visited can be determined from
the vertex numbering.) Hence any graph has at least as many rooted spanning forests
.as acyclic orientations.

4. F(m,n)<=(2m/n+l)". A rooted spanning forest is uniquely specified by
stating for each vertex whether it is a root, or if not. which vertex is its parent. Hence.
there are at most I-I v (1 + degree (v)) rooted spanning forests of any graph G V, E)
with [Vl-n and IEl=m. But Yovdegree(v)=2m, so this product is at most
(2m/n + 1)".

COROIIARV 11. For any 0<e < 1, there are undirected graphs with n vertices
and n / edges with respect to which determining element uniqueness requires lq(n log n)
linear comparisons. (In fact, a randomly chosen graph with these parameters exhibits
this behavior.)

Proof. This follows directly from Theorem 10 and Corollary 3.

5. Conclusions. This paper presented a geometric interpretation of a graph-
theoretic problem (determining whether a vertex-coloring of a fixed graph is valid)
which led to a seemingly unrelated graph-theoretic problem (counting the number of
acyclic orientations of undirected graphs) that, in turn, helped to establish a lower
bound for the original problem. We believe that this technique, a generalization of
Dobkin and Lipton’s [1], can be helpful in establishing lower bounds for similar
problems. The connection between the two graph-theoretic problems mentioned above
is interesting in itself; one can also invert the argument in order to get an upper bound
on the number of acyclic orientations from an efficient algorithm for verifying vertex
colorings.

It should be mentioned that all the lower bounds on time presented in this paper
hold even if the decision tree is allowed nondeterministic guessing [6].

This paper raises some open problems"
(1) Is there an algorithm for the vertex-coloring problem that runs in o(m) time

and needs only polynomial time for preprocessing? There is an obvious algorithm
that runs in O(m) time with no preprocessing and 3 presented an algorithm that
runs in O(n log n) time but needs exponential time for preprocessing. Is it possible
to prove a tradeott of preprocessing vs. processing time for this problem?

(2) Theorem 10 demonstrates that there exist graphs with n vertices and m edges
with respect to which element uniqueness requires n log2 (m/n)-O(n) linear com-
parisons, and that this is the best lower bound that can be proved by counting acyclic
orientations. We know that element uniqueness with respect to any graph with n
vertices and m edges can be determined in time O(n log (m/n)), if m O(n) or
rn _->n +(1). Does this upper bound hold for all n and m ? For instance, if m
(R)(n log n) the lower bound is fl(n log log n), but the best known upper bound is
O(n log n).

(3) Theorems 7 and 8 demonstrate that element uniqueness with respect to any
graph with n vertices and m edges requires (re (m/n)-O(n) linear corn-
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parisons. We know that there exist graphs with n vertices and m edges with respect
to which element uniqueness can be determined in O((m/n)log (m/n)+n) time, if
m O(rtE/log2 rt) or m O(rt2). Does this upper bound hold for all n and m? For
instance, are there graphs with O(nE/log n) edges with respect to which element
uniqueness can be determined in O(n) time?

Acknowledgment. We thank B61a Bollobfis, Victor Klee, and Larry Ruzzo for
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OPTIMIZING CHAIN QUERIES IN A DISTRIBUTED
DATABASE SYSTEM*

DAH-MING CHIU’I’:I:, PHILIP A. BERNSTEIN’ AND YU-CHI HO’

Abstract. This paper studies the problem of query optimization in a distributed database. Assuming
a linear additive cost function (in volume of data moved), we present a fast algorithm for finding the optimal
program that answers a class of common queries, called chain queries. The key to the problem formulation
and to the derivation of an efficient algorithm is an elegant parameterization of the database state against
which the query is to be answered. This parameterization then enables us to characterize the set of potentially
optimal programs, which in turn leads to a fast dynamic programming algorithm. Since in practice the
needed parameters may not be available to the database system, we also discuss how to deal with partial
parameterizations of the database state.

Key words, distributed database, database systems, relational databases, query optimization, semijoins

1. Introduction. A principal capability of relational database systems is their
ability to process queries expressed in languages based on predicate calculus. If the
system were to process such queries in the most obvious manner with no optimization,
the system would be unbearably slow and therefore unusable. Thus, optimization is
essential.

In a distributed database system, sites are connected by a communications
network. When this network has narrow bandwidth, as in ARPANET and similar
geographically distributed point-to-point media, the principal potential performance
bottleneck for query processing is communication cost. So, to optimize query process-
ing in such an environment, one should try to minimize communication.

A relational query can be modelled by an expression consisting of projection,
selection and join operations [7]. If each relation is stored at one site, then projection
and selection operations incur negligible communication cost. Communications only
arise when two relations residing at different sites need to be joined. In this situation,
one relation must be moved to the other relation’s site, so the join can be performed.
This move operation requires communication and should therefore be optimized.

The main tactic for reducing the cost of such moves is the semijoin operation.
The semijoin of relation R by relation S is the set of tuples in R each of which joins
with some tuple of S. To join R and S in a distributed database system, we might
decide to move R to S’s site. To reduce the cost of this move, we can first perform
the semijoin of R by $. This semijoin eliminates from R all tuples that do not join
with S. The cost of the semijoin is the movement of S’s joining column from $’s site
to R’s site. If this cost is small and the amount by which R is reduced is large, then
the semijoin is cost beneficial and should be executed before R is moved.

Not all semijoins are cost beneficial. Whether a particular semijoin is cost
beneficial depends on the database state and the move operations that follow it.
Hence, the selection of cost beneficial semijoins is an optimization problem: For a
given query, what sequence of semijoins leads to a lowest cost execution of that query?

* Received by the editors February 3, 1981, and in revised form June 30, 1982. This work was
supported by the Joint Service Electronics Program under contract N00014-75-C-0648, by the National
Science Foundation under grants ENG78-15231 and MCS79-07762, and by the Computer Corporation
of America.

5" Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138., Current address: Digital Equipment Corporation, Hudson, Massachusetts 01749.
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General but heuristic solutions appear in [3], [9]. An optimal solution for queries that
are set intersections appears in [8].

Many queries can be entirely solved by semijoins [1], [2], [10]. In particular,
semijoins can completely solve queries of the form R ,Rz<" ,R,, where Ri # Rj
for #/, < is the join operation on arbitrary attributes, and each relation only joins
with its neighbor(s) in the query. These queries, called chain queries, correspond
exactly to the nested mappings of SEQUEL [4] and are a commonly observed subclass
of relational queries. The optimization of chain queries by semijoins is the main
subject of this paper.

The chain query optimization problem is" Given a chain query and an initial
database state, find a semijoin program (i.e., a sequence of semijoins) that solves the
query at lowest cost. We formalize this problem in 2. In 3, we characterize the
intermediate database states that can be reached by a semijoin program that correctly
solves the query. In 4, we use this characterization of intermediate states to develop
an efficient method for calculating the cost of a semijoin program. Our main technical
result is presented in 5" a description of a minimal set of semijoin programs that
must contain the optimal one. Combined with the cost calculation method of 4, this
set leads us, in 6, to an efficient dynamic programming algorithm for finding the
optimal program.

2. Problem formulation.
2.1. Database states. A database state is a finite set of finite relations, denoted

Ri,"’, R,. The set of columns (or attributes) of relation R is denoted Ri. Each
attribute, A R, has an associated, set of values, dora (A), called its domain. The
domain of a relation dora (R), is the product of the domains of its attributes,
Xaa, dora (A). Thus, a relation is a finite subset of its domain. Elements of a relation
are called tuples.

We use D (R 1, , R,) to denote the initial state of the database against which
queries will be posed.

The procedure that solves a query produces a sequence of database states, the
last one of which is an answer state. The transition from a given initial state to a given
answer state can be accomplished by many different sequences of operations that
result in different state trajectories. Our problem is to determine the "best" trajectory
according to some well defined criterion. This is more fully explained in 3 and below.

2.2. Relational algebra. We define three relational algebraic operations: projec-
tion, join and semijoin. The projection of tuple R on a set of attributes A _R,
denoted t[A], is the tuple that results from deleting all columns of not in A. The
projection of Ri on A

___
gi, denoted R[A], is the set {t[A lit R}.

The natural loin (or, simply, the loin) of relations R and Rj, denoted Ri Ri, is
the set {t dom (R 1_1R/)It[R] R and t[R/] Ri}. That is, it "links" together tuples
tieR, with t R if ti[R, f’l R] t[R fq R/].

The semifoin of R by Ri, denoted R,Ri, equals (RiRj)[R], or equivalently
{t Rl(t Ri)(ti[Ri 71Ri]= ti[Ri f’) Ri])}. A semi/oin program (or, simply, a program)
is a sequence of semijoins (p), p =pl""p,,. The length of p, denoted Ilpll, is the
number of semijoins in p.

2.3. Cost function. We model the costs of relational algebraic operations in a
distributed database environment. We assume that the cost of moving data between
sites dominates all other costs. This assumption is appropriate when network band-
width is the system bottleneck whose use we must minimize. For example, this as-
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sumption was used in the query optimizer of the SDD-1 distributed database system,
where the network (ARPANET) was the slowest system component by two orders of
magnitude [3].

We assume that each relation is stored entirely at a single site. Hence, the
projection operation can be applied to a relation with no intersite data movement,
and so has no cost. Similarly, if a semijoin is applied to two relations at the same site,
it incurs no cost.

If a semijoin is applied to two relations at different sites, then data must pass
between the sites. Let p Ri Rj. To perform p at Ri’s site, we must send Rj[Ri Yl R]
to that site. Assuming that the cost of moving data is linearly proportional to the
amount of data moved, we have

(2.1) Cost (p,D)= CllRi[R, f’l Ri]l +cz
where [Ri[R CI Ri] is the "size" of Rj[R f’l Ri]. If we assume [R f’l Ri[ 1 and every
domain value has unit size, then [Ri[Ri f’l Ri][ is the cardinality of Rj[R f’l Ri].

Intuitively, cz is the "start-up" cost of sending a message and c is the "transfer"
cost per unit of data. We let c 1 by appropriately choosing the unit of cost.

The cost of a semijoin program is assumed to be the sum of the costs of its
component semijoins.

Most of the results of this paper (everything before 5.4.2) are independent of
the cost model of this section. In fact, all results in 5 apply as long as Cost (p, D)
is monotonic in IRi[Ri CI R.][.

2.4. Queries. We are interested in a class of queries called chain queries. The
chain query Q on D is defined by

(2.2) (RINRv.X""" NRn)[R1]

where

and

RRi if/’=i-lorj=i+l

Intuitively, a chain query joins each pair of adjacent relations, Ri and Ri+I, and then
projects onto the attributes of R 1.

In the remainder of the paper, we use "Q" to denote the chain query on
D (R1,’’ ", Rn) defined by (2.2). Since n is arbitrary, properties of Q hold for all
chain queries.

Chain queries using natural joins are isomorphic to a much larger class of queries
that use nonnatural joins (i.e., joins on arbitrary attributes). Roughly speaking, the
’latter class includes queries of the form of (2.2) where the nonnatural join operator
is substituted for N and where each attribute of each relation is a joining attribute for
at most one join in the query. A more complete discussion of the isomorphism between
natural and nonnatural join queries appears in [2].

Chain queries are an important subclass of relational queries that commonly
appear in practice. Although we will mainly be concerned with solving chain queries,
we will discuss a generalization to a larger class in 6.

2.5. Problem statement. Our goal is to find optimal semijoin programs to solve
chain queries. Specifically, we wish to develop an optimization algorithm for the



OPTIMIZING CHAIN QUERIES 119

following problem:

INPUT:

OUTPUT:
ASSUMPTION:

A chain query Q on n relations.
An initial state.
An optimal semijoin program that solves Q.
Every semijoin has cost governed by (2.1).

The assumption implies that no (relevant) semijoins can be evaluated without data
movement. Intuitively, this amounts to assuming each relation is at a distinct site.

3. Semijoin reachable states. A semijoin Ri <Rj is relevant to an order-n chain
query if 1 _-< i, ]-<n and either ]- i- 1 or/" / 1. When evaluating a chain query
using semijoins, only the relevant semijoins can affect the database state. Other
semijoins have no effect. That is, Ri tRj Ri whenever j < 1 or/" > + 1, because
Ri 0 Ri . Notationally, we abbreviate the relevant semijoins as follows:

1. xi represents R+I <Ri for 1, 2, , n 1;
2. yi represents Ri-1 ,Ri for 2, 3, , n.

A program is relevant (for Q) if it consists entirely of relevant semijoins.
The cost of a program containing irrelevant semijoins can be no smaller than

that of a relevant program. Therefore, we will deal exclusively with relevant programs
in the sequel.

Let p =PIPE "Pro be a relevant program and let p (1 _-<l _-<m) be the semijoin
Rixgi (/" / 1 or i- 1). To evaluate the cost of p, we must calculate Ig;[Ri (3 Ri][,
where R is the value of Ri after plpE""P-a have been applied to D. Thus, to
evaluate costs, we must determine the values of those states that can be reached by
sequences of relevant semijoins. Such states are called intermediate states. (We regard
the initial state, D, as an intermediate state.) The purpose of this section is to concisely
characterize those intermediate states. The application of this characterization to cost
calculations appears in 4.

To help us characterize intermediate states, we define

R(I, h) (Rt R+a IXRh-1R)[R]

where 1-<! <-i <-h _-<n. Note that the initial state, Do, can be expressed as Do
(R1(1, 1), R2(2, 2),... ,g,(n,n)).

LEMMA 1. LetD -(Rl(ll, hl), ,R,,(l,,h,)) where 1 <-li <-i <-hi <-_n. Then

xi(D) (R 1(/1, hi)," ", Ri(li, hi), Ri+l(min (li,/i+1), max (hi, hi+l)), ", R,,(I,,, h,,)),

yi(D) (R 1(/, ha)," ", Ri_a(min (1i-1, li), max (h,-l, hi))," ", R,,(I,,, h,,)).

Proof. Follows from the definition of semijoin.
From Lemma 1, any semijoin program will take a database state D into another

state expressible as (Rl(la, hl)," .,R,(l,,h,)) where l<-li+l and hi<-h/l for i=
1, , n 1, and 1 <-lg =<i --<hi _-<n. In fact, the set of states that can be expressed in
this form is exactly the set of states reachable by semijoin programs.

THEOREM 1. D’ is an intermediate state if and only if it is expressible as
(Ra(la, ha), ,R,,(l,,, h,,)) where li <--li+l and hi <-hi+a for 1,... n -1 and
<-hi <=n.

Proof. That every intermediate state is expressible as (R a(/1, hi)," ", R,(l,, h,)),
li <- li + and hi <- hi+a for 1, , n 1, follows from Lemma 1. To show the converse,
we let D’ (R 1(/1, ha),’.., R,,(l,,, h,,)) and show how to construct a relevant program
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p that produces D’ from D (we denote concatenation by ". ")"

p:=;
if In n then p (x. x.+l xn-1);
for =n-1 to 2 by-1

if (li i) and (li /i+1)
then p :=p (Xl, x,+l xi-1)

end;
if hi 1 then p =p (Yhl Yhl-1 Y2);
for =2 to n-1 by 1

if (hi i) and (hi hi-)
then p :=p (Yh, Yh,-1 Yi+l)

end;

p begins with a sequence of x-type semijoins to generate lk (k 2,..., n) for D
followed by a sequence of y-type semijoins to generate hk (k 1,..., n- 1) for D.
Thus, p(D) D’. [3

By Theorem 1, we can represent each intermediate state by the parameters li
and hi for each relation. We define a join range to be a pair [1, h ] where 1 -_< _-< h <-n
and observe that each intermediate state (R (/1, hi)," ., Rn(ln, hn)) is represented by
a vector of join ranges $ ([ll, h 1],’" ", [In, hn]).

We shall freely speak of an intermediate state I to mean the state represented
by I. For relevant program p px p,, and initial state D, we represent the sequence
of states that p reaches by

;l(t)=([ll(t), hl(t)],""", [/n(t), hn(t)]), t=0, 1," , m.

Since $(0) represents D, I(0) ([1, 1],. ., [n, n ]).

4. Calculating costs of semijoin programs. Since every intermediate state is
represented by a vector of join ranges and since we need only calculate the cost of
semijoins that are executed in intermediate states, we can use join ranges to express
these calculations.

Recall that the cost of a semijoin RiI><Rj is linearly proportional to the size of
the joining column in Rj, that is IRj[RifqR]I (cf. (2.1)). If we want to be able to
calculate the cost of every relevant semijoin in every intermediate state, then we need
to know the size of every joining column in every intermediate state. We represent
this information as a set of values a {aij(l, h)} defined as follows:

ai.l(l,h)=lRi(l,h)[Ri_lfqRi]l, l<-_l<-_i<=h<=n, i>1,

a,.2(l,h)=lR,(l,h)[R, fqR,+l]], l<=l<=i<=h<=n, i<n.

Then for an intermediate state represented by join range $, we have

(4.1) Cost (Xi, , a) ai,2(li, hi) + b,

(4.2) Cost (yi, $, a) ai, l(li, hi)+b

where b is the fixed cost per message. (4.1) and (4.2) were obtained by substituting
$, a for the state D in (2.1).

As we have mentioned in 2.3, many of the results in 5 and the general approach of this paper
are independent of this particular cost model. We only require that Cost (X, R(0)) be monotonic in

ai,2(li(t), hi(t)) starting in 5.4.2.
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By applying (4.1) and (4.2), we can express the cost of each program p p p,
in terms of a’

m-1

COST (p, a)= Y. Cost (p,, J(t), a).
t=0

We will frequently write COST (p) when a is understood from context.
Given an initial state D, the value of aq(l, h) for/" 1, 2 and 1 -< _-< _-< h _-< n is

uniquely defined (although calculating those values may be expensive). If we know
these values, then we can in principle calculate the cost of any relevant program
applied to D. Insofar as cost calculation is concerned, we can therefore think of the
ao(l, h) values as a parameterization of the initial state.

< hi implies ao(li, hi) < aij(li, hi ).LEMMA 2. (i) li <_--l --<_i -<hi
(ii) <=i <h implies ai,2(l, h)=ai+l,l(l, h).
ProoL (i) Ri(li, hi)_Ri(l,h) and (ii) Ri(1, h)[RifqRi]=Ri+l(l,h)[RiRi]. [
Lemma 2 partitions the parameters into n- 1 subsets2 and implies a "-<" partial

ordering on each subset. The ith subset consists of ai,2(li, hi) for all li <_-i <_-hi and
ai/l.l(/i/, hi/l) for all/i/l=<i + 1 =<hi/l. The partial ordering is illustrated in Fig. 1.
Note that the parameters aii(i, i), which correspond to the initial state, are not bounded.

THEOREM 2. Only n (n 1)(n + 7)/6 parameters are required to calculate the costs

of all correct semi[oin programs [or an order-n chain query.
Proof. Let K(i) be the number of distinct parameters in the th partition. By

counting, (n + 1) distinct parameters correspond to {ai,2(l, h)l 1 <- <- <- h <- n }.
Only n -i of the remaining parameters, {ai/l,l(i + 1, h)li + 1 <-h <-n}, are distinct (see
Fig. 1). Hence,

K(i) i(n -i + 1)+(n -i).

Summing over i, the total number of distinct parameters is

,,-1 n (n 1)(n + 7)E K(i)= [3
i=1 6

Let a be an n (n 1)(n + 7)/6 dimension vector of positive integers corresponding
to the parameters {aq(l, h)}. If a satisfies the two properties of Lemma 2, then a is
called a meaningful pararneterization of the initial state. From now on, we assume
that the cost function is defined on a meaningful parameterization rather than on D;
viz. Cost (p, a) Cost (p, D) where D is parameterized by a.

5. Reducing the set of potentially optimal programs.
5.1. Motivation. To further simplify our optimization problem, we will character-

ize a small subset of all relevant programs in which the optimal program must lie.
There are three types of relevant programs that we can safely eliminate without losing
the optimal program’ incorrect programs, those that do not correctly answer the query;
redundant programs, those that contain semijoins that do not affect the result produced
by the program; and dominated programs, those whose cost is greater than some
other program for all initial states. In this section we will define a subset of all relevant
programs that contains no incorrect, redundant, or dominated programs.

5.2. Correct semijoin programs ior answering chain queries. A subprogram of a
semijoin program p =pa...p,, is an ordered subsequence of p, P,lPt2""Ptk where

The initial database state has n pairs of joining columns.
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ai2(i-l,i)

/

ai2(1, i)

ai2(i, + 1)= ai+a.(i, + 1)3

ai+l.(i + 1,i + 10

(a,+l.l(i + l, -’2)_.)

FIG. 1. Relationships between parameters ao(l, h ). indicates greater than or equal to.

ti < ti+x for 1 -< <-k 1 and k -< m. The set of semijoin programs that correctly solve
Q are exactly those that have the subprogram yny,-1 y2.

THEOREM 3. A semifoin program p is correct for an order n chain query if and
only ifp has a subprogram equal to y,,y,-1 y2.

Proof. The if part follows directly from the definitions of chain query and semijoin
(a formal proof of a more general result appears as [1, Thm. 1]). To prove the only-if
part, suppose p is correct and Ilpll--m. Then by Theorem 1 and the definition of
correctness, p(D)= (RI(1, n), R2(12(m), h2(m)),’’’ R, (l, (m ), h,(m))) such that 1-<_

l(m)<=i <=hi(m)<=n, li(m)<-li+l(m), and hi(m)<-h+l(m). Since hi(m)= n, by Lemma
1 there must exist some tz <m such that p, y2 and hz(t2-1)= n. Similarly, since
hz(t2-1) n, there must exist some t3 < t2 such that p, y3 and h3(t3-1) n. Repeat-
ing the argument, y, y2 must be a subprogram of p.

5.3. Nonredundant programs. Let p =p...p,, be a semijoin program. The
operation pt of p is redundant in p if for all D either J(t) J(t- 1) or J(t- 1) =[1, n]
(i.e., the state J(t-1) answers the query). For example, if n 3 then the second x
is redundant in xy3xy2 (because J(2)= J(3)) and in xay3y2xx (because Jx(3)=[1, 3]).
A program with no redundant operations is called nonredundant. The program xy3y2
is nonredundant.

TI-IZORZM 4. A correct program p is nonredundant if and only ifp satisfies (i)-(iv)
below.

(i) x appears in p at most once.
(ii) y, appears in p at most once.
(iii) Suppose p vlprvzp,v3, where v, v2, and v3 are (possibly empty.) subprograms.
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If pt =pr=Xi for some i> 1, then x-i El.)2. Pt =Pr=Yi for some <n, then Yi+I
(iv) Y2 is the last operation ofp.
Proof. (If) Suppose p satisfies (i)-(iv) and p is redundant. We show that neither

of the two situations that cause redundancy can arise; hence a contradiction.
First, we show by induction that for pt p (arbitrary t), $(t)# $(t-1). Let pt be

Xl; since xx appears in p only once, $(t) # J(t- 1). Let p be any x (2-<_i <-n-l), and
](t) $(t-1). We show it must also be the case for pt =x+a. Suppose the contrary. If
J(t) =J(t- 1), then there exists some r such that p X+l. By (iii), there exists r <s <
such that p-x. By induction, no p-x can be redundant which means J+(r-
1) #Ji+l(S) and hence Ji+l(r- 1) #Ji+l(t- 1); consequently Ji+2(t- 1) # Ji+2(t). So
if pt x+x, pt cannot be redundant. A symmetrical argument will show that if
(i 2,. ., n) then ](t) # $(t- 1).

Second, we show that for any p p, Jx(t-1)# [1, hi. Suppose the contrary is
true. Then without loss of generality we can assume pt y2. If Ja(t- 1) =[1, n] then
by Theorem 3 there exist t, < t,-1 <" < t3 < t2 < such that pt Yk. Due to (iii), there
exist t2 < t < and pt Y3. By repeatedly invoking (iii), there must exist tn-l’ < tn-1
such that pt_ Yn-1 and so y, must appear more than once. A contradiction.

(Only if) Suppose p is nonredundant and one of (i)-(iv) is violated. We show
this leads to a contradiction.

(i) Suppose p vlptvzprv3, where 01/22 and /.)3 are subprograms and pt =p =xx
(for some r > t). Then $(t) must be such that J2(t)= [1, h2(t)]. $(r), however, cannot
be different from ](r-l) except in I2(r). Since 12(r)=12(r-1), the second x is
redundant.

(ii) Follows an argument symmetric to (i).
(iii) Suppose p VlptV2PrV3, p, Pr X for > 1 and x-i v.. Then we have

l,(t) l,(t + 1)= l(t + 2) l,(r- 1),

hence l+(r)= l+l(r-1). This implies ](r)= ](r-1). Hence Pr is redundant. For p,-
Pr Y and yi/ v2 the symmetrical argument suffices.

(iv) By Theorem 3, p is correct if and only if p has a subprogram y,y,-1 y2.
Let the y2 of this subprogram be the tth operation in p (and <m); then clearly
Jl(t) [1, hi. Hence all operations after p,, namely p,+l,""", p,,, are redundant. [3

5.4. A noninferior set of programs. Many correct, nonredundant programs can
still be eliminated from consideration. First, if two correct programs have the same
cost for all initial states, only one need be considered. For example, XlX3y4y3y2 and
x3xly4y3y2 are two such programs. And second, if one program is always more costly
than another, it too can be eliminated from consideration. For example, letp x2x ly3y2
and p’= XlX2y3y2 be two correct programs for an order-three chain query. We have

COST (p)= a22(2, 2) +a2(1, 1)+a31(2, 3)+a2(1, 3) +4b,

COST (p’) a12(1, 1)+a22(1, 2) +a3(1, 3)+a2(1, 3) +4b,

COST (p’)- COST (p)= (a31(1, 3)-a31(2, 3))+ (a22(1, 2)-a22(2, 2))_-< 0.

Since a22(2, 2) can be arbitrarily large, the inequality is strict for some meaningful
parameterization a. Thus, p’ need not be considered.

We formalize these observations by the concept of dominance (of cost). Given
two programs p and p’, p dominates p’ if p and p’ are both correct and for all initial
states D, COST (p)_-<COST (p’). If p and p’ dominate each other, then they are
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equivalent. If p dominates p’ and for some D Cost (p, D) < Cost (p’, D), then p strictly
dominates p’.

A set of programs S is called noninferior (with respect to an order-n chain
query) if

(i) all programs in S are correct and nonredundant;
(ii) no program in S is strictly dominated by a program not in S; and
(iii) no program in S dominates another program in S.

In this section, we will concisely characterize a noninferior set of programs.
To simplify this characterization, we shall regard every relevant semijoin program

as a sequence of blocks and write p BI’" Bt, where Bk denotes the kth block.
Each block is required to contain all x-type or all y-type semijoins. Moreover, Bi and
Bi+l must contain semijoins of different types, for 1,..., M-1. For example,
p=yEXiXEy3y2 can be written p=BBEB3 where B1 =y2, B2=xx2 and B3=yay2.
Notice that each program has a unique representation in terms of blocks. Every
relevant program has such a representation, so the notation does not limit the set of
programs being considered.

Define NPROG to be the set of relevant programs, p BI’" BM, that satisfy
the following three conditions.

(i) (boundary property) BM Y,Y,-I Y2.
(ii) (ordering property) For each k-1,... ,M, if Bk is x-type, then the x

operations in Bk appear in strictly ascending order of their subscripts without duplica-
tions. If Bk is y-type, then the y operations in Bk appear in strictly descending order
of their subscripts without duplication.

(iii) (covering property) For k 1,. ,M- 1 and 2, , n 1:
(a) if xi is in Bk then y+l and yi are in Bk+I; Xl can only be in BM-1; and
(b) if y is in Bk then x_ and x are in Bk+; Yn appears only in B.
The boundary property ensures that only correct programs are considered. The

ordering and covering properties eliminate redundant and dominated programs. To
visualize the effect of these latter two properties on programs, let us represent programs
in a more graphical notation.

Let p B1 Bt be a program where each Bi (i 1,..., M) is a block and p
satisfies the ordering property. Arrange p as n rows where (1) Bi is written on row i,
(2) for each B, operations are written in ascending sequence of subscripts, and (3)
for each/" {1, , n }, all operations with subscript/" are written in the same column.

For example, p’ x3y4yaxlxExax4ysy4yay2 is written as

B1 x3

B2 Y3Y4

B3 XlX2X3X4
B4 Y2Y3Y4Ys.

Every program represented in this way corresponds to a unique program satisfying
the ordering property. Notice that by representing programs in this way, the covering
property can be easily checked by ensuring (with the exception of xl) that each B
covers Bi- (i 2,. ., M).

THEOREM 5. For initial database states with meaningful parameterization a,
NPROG is a noninferior set.

We will prove Theorem 5 in three steps. First, we prove that NPROG is correct
and nonredundant ( 5.4.1). Second, we prove that every relevant program not in
NPROG is dominated by one in NPROG ( 5.4.2). And third, we prove that no
program in NPROG is strictly dominated by another program in NPROG ( 5.4.3).
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5.4.1. NPROG is correct and nonredundant. Since every program in NPROG
ends with the block y,y,- y2, by Theorem 3 every such program is correct. To
prove that every program in NPROG is nonredundant, we must show that the
conditions of Theorem 4 are satisfied by every program in NPROG.

LEMMA 3. Every program in NPROG satisfies the conditions of Theorem 4.
Proof. The boundary and covering properties imply that Xl and y, can appear at

most once (conditions (i) and (ii) of Theorem 4). Following the ordering property, no
two operations in the same block can be the same. If xi appears more than once, then
the covering property requires that x_ precedes the second x; similarly for y. That
Y2 is the last operation follows from the boundary property (conditions (iii) and (iv)
of Theorem 4).

5.4.2. NPROG dominates all other relevant programs. To show that every
relevant program p not in NPROG is dominated by a program in NPROG, we will
show how to transform p into a program p’ such that Ilpll IIp’ll, p’ dominates p and
either p’NPROG or p’ is redundant. If p’NPROG then we are done. If p’ is
redundant, then the redundant operations are removed, producing a program p", and
the transformation process is now applied to p". At each iteration the program shrinks,
so we eventually terminate with a program in NPROG that dominates p. To follow
this plan, we first introduce the appropriate program transformations and then apply
them to relevant programs not in NPROG.

We will consider transformations that switch the relative order of adjacent
operations. For a program pl let fi(p) be the program obtained by swapping p and
Pr+l. That is, if p =Pl’’’Pm, then fr(p)=p’’’Pr--lPr+lPr’’’pm. TO compare the
cost and effect of p and p’-fi(p), let us compare the intermediate states for p and
p’, J(t) and ]’(t) respectively (t 0, 1,..., m).

Clearly, ](t)=J’(t) for t=0, 1,... ,r-1. However, for t>-_r the relationship
between ](t) and ]’(t) depends on p. The useful transformations on a correct program
are given in the following lemma.

LEMMA 4. Given a correct program p, fi (p is correct and dominates p when neither
(1) nor (2) below is true:

(1) Pr xi and (Pr+ Xi+l or Pr+l Yi+I);
(2) P yi and (p,+ xi_ or p+ yi_).
Proof. For all cases other than (1) and (2), the cost of the rth operation of fi(p)

will be the same as the (r + 1)th operation of p. The cost of the (r + 1)th operation of
fi(p) (and those succeeding) will not cost more than the rth operation (and those
succeeding (r + 1)th of p. I1

Note that fi(p) strictly dominates p when p x and p/l X-l, and when p y
and p+ Yi+I.

Example. (i)pa=X2XlY4Y3Y2. f(pa)=XX2Y4Y3Y2, pNPROG but fl(p)
NPROG and following Lemma 4, f(p) dominates p.

(ii) pb=x3Y4Y3XlY2, pb=flf2f3(pb)=XX3Y4Y3Y2, pbNPROG, but p,
NPROG and dominates pb.

(iii) Pc=yaXay4yay2. P=NPROG. pc=f2f(pc)=X3y,yay3y2 is clearly
redundant. Following Lemma 4, p’ dominates p. If we remove the redundant
operation y3 from P’o then pc=XaY4Y3Y2 is in NPROG. Note p’ dominates p
too.

LEMMA 5. Every relevant program p that does not satisfy the following conditions
is dominated by some redundant strategy:

(1) if p p x for some r < t, > 1, then there exist r < u < v < w < such that
p yi+l, po yi, pw Xi-l’ and
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(2) if pr P, yi for some r < t, < n, then there exist r < u < v < w < such that
pu xi-1, Po xi, pw yi+l.

Proof. (1) If pw =xi-1 is missing, then pt is redundant by Theorem 4, so we have
pw xi-i for some r < w < t. Let pdedenotedPlxiPzxP3; we know there exists x-i P2.
However, if there does not exist yi in between Pr Xi and (any) x_l Pz, then we can
move the subprogram of P2 containing all Xk, Yk, k <-i-1, to positions preceding
pr( x) by successively applying swapping transformations described in Lemma 4.
Suppose the resultant program is p’. p’ dominates p (by Lemma 4). But due to
Theorem 4, p’ is redundant. By the same token, if pu =y/ is missing, then the
subprogram of P2 containing Xk, k _-< i- 1, and Yk, k _<-i, can be moved to positions
preceding pr(xi) without increasing the cost. Thus p is again shown to be dominated
by a redundant program.

(2) The proof follows a symmetric argument like that above. E
Now we are ready to describe a procedure that, for each relevant program

pNPROG, systematically finds a program p’, via the transformations described in
Lemma 4 and by removing redundancies in p such that p’ is in NPROG. That p’
dominates p will then follow from Lemma 4.

This procedure is described by Algorithm 1. For blocks of different type, we
write Bi covers Bj if

(1) Xk -Bi :: Yk+lYk -Bi Ik (except Xl Bi yz-Bi),

(2) Yk

ALGORITHM 1. An algorithm to transform a relevant program pNPROG into
p’ NPROG.

if p NPROG then return p
else begin

p’ := sort (p);
p’ := dered (p’);
while (p’ does not satisfy the covering property) do

k:=N(p);
while (Bk cover Bk-1) do k := k 1 end;
if k 1 then return p;
else begin

p’ := filterk (p’);
p’ := sort (p’);
p’ :- dered (p’);
end

end
end

N(p) denotes the number of blocks in p. The functions sort, dered and filterk are
compositions of transformations in Lemma 4:

(a) sort (p)" Given any p BB2." Bt, sort (p) is a program B B’ such
that for each k, B, contains the same operations as Bk but B is ordered. In other
words, if B is x-type then the x operations in Bk appear in strictly ascending order
of their subscripts (with possible duplications), and similarly for blocks of y-type with
descending order. Sort (p) is implemented by applying fi (i.e. swapping pr with p+l),
whenever Pr and p/a are not in order. From Lemma 4, each such fr transformation
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produces a correct and less (or equally) costly program. Therefore sort (p) is correct
and dominates p.

(b) dered (p): Given any program p, if p does not satisfy Lemma 5, then dered (p)
is the program derived in the proof of Lemma 5 with the redundant operations
removed. In other words, dered (p) is a program that dominates p and is nonredundant
in the sense of Lemma 5.

(c) filterk (p): Given p BIB2" BM, filterk is a sequence o swapping transfor-
mations applied to operations in blocks Bk-1 and Bk. If xi EBk-1 and yi+l :Bk, then
xi is swapped with all the operations in Bk similarly, if y E Bk-1 and x-i : Bk, then y
is swapped with Bk. This sequence of swaps starts with the last operation of Bk-1.
Following Lemma 4, all such swaps will leave the resulting program dominating p.

LEMMA 6. Algorithm 1 terminates and returns a p’ that dominates p in NPROG.
Proof. If the algorithm terminates and returns p’, then it is easy to see that

p’ NPROG. That p’ dominates p follows because each of sort, dered and filterk is a
transformation of p into a dominant program. So we only have to show that the
procedure terminates. Suppose B, does not cover B,-1. If B, is the last block, then
filter (p’) allows the redundant operations in B,_I to be identified and eliminated. If
B, is not the last block, then we claim B-I Bk+I must be empty since otherwise
it implies a violation of the condition in Lemma 5 and the redundancy should have
been removed by the previous dered (.) transformation. If B,_ f’IB:+ is empty,
then filterk will merge B:-I with B,+I and B-2 with B, and p has two fewer blocks.
So we have shown that whenever B, does not cover B,-1 there is redundancy, and
each time we branch through filterk, redundancy is removed and the program is shorter.
Since there are only finitely many redundant operations for finite IIPlI, the procedure
must terminate. [3

Lemma 6 concludes part 2 of our proof of Theorem 5.

5.4.3. No program in NPROG strictly dominates another program in
NPROG. We need to show that for any pl and p2 in NPROG, we can find a state
D with meaningful parameterization a such that COST (pl, I1) COST (p2, 11). The
simpler case is when p2 is a subprogram of p l.

LEMMA 7. For pl, p2 6NPROG if p2 is a subprogram of pa then p does not
dominate p2.

Proof. Let a be such that aij(l, h)= aj(i, i) for all j and <_-i _-< h. Then clearly the
cost of each operation pt of program p is independent of and is constant. Since p
has all the operations in p2, we must have

COST (pl, a) > COST (p2, a).

LEMMA 8. Ifp2 is not a subprogram ofp , then pa does not dominate p2.
Proof. Suppose

V/p =BIB:z B =PIP2 "Pml,

2 B2B2 B
. 2 2

P 2" M2 =PlPl "Pro2.

Since p2 is not a subprogram of pl, there must exist k < m2 such that 2
Pml-t Pm2-t

fort=0,1,.., k-1 andp,l-k P,,2-. We show that there exists /<k such that
the cost of p,l_i can be arbitrarily higher than that of p,,2-i: because of P2-k. Let
2 (when 2-k Yi then weP m:Z-k--Xi. Then we can find 2 2

pmg.-i =Pml-i Yi+I or Xi+l Pm
can find p2m:Z-i Pml-j Yi-1 or xi-1). However, for the cost of p,l-i not to be bounded
by the cost of any other operation in p2 then p,,2-j must be the first operation of its
kind to appear in p2. (In other words, there does not exist r<m2-/ such that
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2 2
Pr =Pm2-j.) We can choose/’ as follows:

(a) If 2
PmE-k Xi and Xi+l xi+r are in the same block and xi+r+l is not in the

same block, then for r > 0 p2 2
m2-j"- Xi+r, and for r =0 Pm2-i Yi+I.

(b) If p2mE-k Yi and Yi-l’’’Yi-r are in the same block and yi__l is not in the
same block, then for r > 0 p2 2

,2- Yg-,, and for r 0 Pm2- Xi-l.
The existence of such a/’ is guaranteed by the covering and boundary properties

of p. Now we can find a such that

Cost (pl ](m 1-j), a) COST (p2 a)1-h

This completes the proof of Theorem 5.

5.5. Some properties of NPROG. Some interesting properties of NPROG follow
from Theorems 4 and 5 and Lemma 5.

COROLLARY 1. Ifp B1B2" Bt NPROG, then M <= n.
Proof. Condition 2 of Lemma 5 and the covering property requires each block

to increase in length by at least 1, except that the last block may have the same length
as the (M- 1)st block. Since the maximum length a block can have is n- 1, we have
the result.

COROLLARY 2. LetPmax andPmin be the longest and shortestprograms of NPROG.
Then we have

where

Pmax B1B2. B,

B. y.y.-x y2, B.-x X lX2 Xn--1,

! Yn-k/2 Yk/2,
Bn-k

tX(k+l)/2 Xn-(k-1)/2,

k =2,4,- ., n-1 (even),
k 1,3,...,n-1 (odd),

Pmin YnYn-1 Y2,
n (n + 1)

1, Ilpminl[ n 1[[emax[I---and both Pmax and Pmin are unique. [3

The proof is straightforward and is omitted. By adapting the proof technique of
Theorem 5, we can verify that Pmax is optimal for some meaningful parameterization
a. This is a somewhat unexpected result of the analysis.

COROLLARY 3. Let N, denote the number of distinct programs in NPROG. Then
N, is bounded by

5 +4(3 +2X/) n-1 5 + X/’ (3 2"q/-) n-1+ <N, <2nn+)/2-1

10 10

Proof. The upper bound can be obtained by observing that every program of
NPROG is a subprogram of Pmx. Since the converse is not true, the bound is not tight.

The lower bound can be obtained by converting only those programs in which
each block is a consecutive sequence of semijoins. This gives us the recursive equation

j--1 n--1

f(n)= l + ., f(j- l) l + kf(n- k)
j=l i=1 k=l

where f(n) is the lower bound. Since we know f(1)= 1 and f(2) 2, the solution f(n)
is easily obtained.
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Corollary 3 suggests that a brute force exhaustive search for the optimal pro-
gram from the minimal noninferior set NPROG is feasible only for small n. In the
next section, we present an efficient algorithm that finds the optimal program for
arbitrary n.

6. Searching for the optimal program.
6.1. Search by dynamic programming. The dynamic programming algorithm that

we will describe searches for the optimal program by comparing all programs in the
noninferior set in the most efficient way. The algorithm recursively computes and
compares the costs of those subprograms that solve the same subquery. The inferior
subprograms are abandoned since they cannot be part of the optimal program. This
process terminates with the computed cost of only one program, which must be the
optimal program.

Let P(l, h) denote the optimal subprogram that terminates and computes R(l, h),
as defined in 3. We know that the optimal subprogram to compute R(i, i) is to do
nothing, viz. P(i, i)= , the empty program, for all i. This is the boundary condition
for our recursive algorithm.

LEMMA 9. Pi(l, h) is one of the following subprograms:
(i) P-I(I, h) x_, provided < i;
(ii) P+I(/, h). y+l, provided <h;
(iii) Pi-l(1, 1) xi-, provided h;
(iv) P+1(i + 1, h). y+, provided l;
(v) P_(l, i- 1). xi- P+(i + 1, h). y+, provided <i <h (or arranged in

reverse: P+I(i + 1, h)" y+l" P-l(l, i-1) x_; the cost of these two programs is the
same).

Proof. The proof consists of two parts. First, the (sub)programs (i)-(v) all compute
R(l, h); second, no other (sub)program that computes R(l, h) is a subprogram of a
noninferior program. The first part follows simply from induction. If we assume that
each subprogram in (i)-(v) computes the corresponding subquery, then the composition
P(l, h) clearly computes R(l, h). To prove the second part, let us examine those
programs that compute R(l, h) but are not included in (i)-(v). First, P(l, h) cannot
be composed of a subprogram that is not an optimal subprogram. This leaves us with
programs only of the following form:

(vi) P-I(I, k). Xi-1 Pi+l(j, h)" y+ where -</" =<i, i- 1 -<k -<h, or -</" -<i + 1,
i<_k<_h.

(vii) P+l(j,h) Y+I P_(l,k) x-i where l<=j<=i, i-l <=k<=h, or l<=j<=i+l,
i<-k<=h.

Consider (vi). If P/I(/, h) has the subprogram x followed by YhYh-1 Yi+2, then
Pi-l(l,k)’xi-l" Pi/l(f,h) computes Ri/l(l,h) and must be dominated by Pi/l(l,h).
Else, we can show that (vi) violates the covering property as follows. P-l(l, k) must
contain

XIXl+l Xi-2 and YkYk+l Yi

and Pi+I(/’, h) must contain

XjXj+l X and YhYh-I Yi+2.

If we have -</-<i and i- 1 =<k _-<h, then xix/ x (which is in a different block
from xx/x xg-2 due to the earlier argument) cannot "cover’’3

XXl/ xi-2 since

An x-block "covers" another x-block means that the former covers a y-block which in turn covers
the latter.
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] _-> 1. On the other hand, if -</" _-< + 1 and -< k _-< h, then YkYk+l Yi cannot be
covered by xtxt+l xi-2 even with xi-1 in the same block.

So we have shown that (vi) either is dominated by Pi/l(l, h) yi/l or violates the
covering property, and therefore cannot be a candidate for Pi (l, h). A similar argument
will verify that (vii) cannot be Pi(l, h) either.

Lemma 9 essentially outlines the algorithm. P(l, h) is obtained recursively by
comparing costs of those candidates listed in Lemma 9, namely:

COST (P (l, h))

min {COST (P-I(/, h). x,-1), COST (P_x(l, i- 1). xi-1)}
ifi=h, l<-i-1

min {COST (Pg+l(l, h y+l), COST (Pi+l(i + 1, h yi+l)}
if/=/, h>-i+l

min {COST (P-I(/, h). x,-1), COST (P+a(l, h). y,+l),
COST (P,-I(I, i- 1). X,-l P,+x(i + 1, h). y,+l)}

if <i <h.

The costs on the right-hand side satisfy respectively the equations

COST (Pi-(l, h xi-1) COST (Pi-l(l, h )) / ai+l,2(l, h) + b,

COST (Pi+l(/, h). yi+l) COST (Pi+(l, h))+ag+l,(l, h)+b,

COST (Pi-l(l, i- 1)xg_ Pi+l(i + 1, h yg+l)

=COST (P,-I(/, i- 1). x,_) +COST (P,+l(i + 1, h). yi+l).

With the boundary condition COST (P(i, 1))= 0 for all i. The ultimate goal is to find
P1 (1, n and COST (P1 (1, n )).

Let us illustrate the algorithm by an example. Consider an order-3 chain query.
The optimal strategy Pa(1, 3) can be derived by recursively applying Lemma 9 and
comparing the different alternatives. The result is the creation of a decision tree as
shown in Fig. 2. The leaves of the tree are composed either of P(i, i), which we know
is the empty program, or of its grandparent subprogram (indicated by dashed back-
arrows). In the latter case, it is not necessary to look any further since the optimal
P(l, h) cannot contain itself as a (strict) subprogram.

The optimal program is found based on the database state parameterization
aij(l, h ), 1, , n, <= i, <= h and j 1, 2, and on the given initiation cost. For our
example, suppose we have

a12(1, 1)= 100,

a2a(2, 2)= 500,

a21(1, 2)= a21(1, 2) 100,

a2a(2, 3) 400,

a12(1, 3) a21(1, 3) 50

a22(2, 2) 400,

a31(3, 3) 350,

a22(1, 2) 200,

a22(2, 3)= a31(2, 3)= 300,

a22(1, 3)= a31(1, 3)= 100,

b 100.

Note that this a {aj(/, h)} satisfies the properties of Lemma 2 and is thus a meaningful
parameterization of the database state. Now the costs of the optimal subprograms
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/

P2(2, 3)x2

X2Y3Y2 Y3Y2 XlY3Y2 XlX2Y3Y2

"P2(2, 3) y2

P3(2, 3)’y3 P3(3, 3)’y3

P2(3, 3)" Y3

FIG. 2. Decision tree ]’or optimal subprograms.

can be recursively calculated (see Fig. 3). For this example, the optimal program is
x ly3y2 and the cost is 800. By using dynamic programming, we avoid having to
compute the cost of each (noninferior) program. Instead, we compute the optimal
costs for all the subprograms of noninferior programs, Pi(l, h), 1 <-l <= <= h <= n. The

COST(P (1, 3)) 800
(PI(1, 3) =xly3y2)

+500

COST(P2(2, 3))=450
(P/(2, 3) y3)

+400 N50COST(P3(2, 3)) 500
(P3(2, 3)= x2) COST(P3(3, 3))= 0

COST(P2(2, 2)) 0

COST(P2(1, 3))=650
(P2(l’ 3) =xy3)

,200+450 +200
COST(P(1, 1))=0 COST(P3(1, 3))= 500 oo

COST(P3(3, 3)) 0 (P3(1, 3) x x 2)

/:300
COST(P2(1, 2)) 200

(P_(1, 2) x)

200 N20

COST(PI(1, 1))=0 COST(P(1, 2)) 600
(P(1, 2) yz)

COST(P2(2, 2)) 0

FIG. 3. Cost of optimal subprograms.
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number of such optimal subprograms is

(.) K Y i(n -i + 1) =n(n +2),+ 1)(n
i=1 6

and the cost of each Pi(l, h) can be calculated based on at most 4 subprograms whose
costs are already known (due to Lemma 9). So we can make the following statement:

THEOREM 6. There is a dynamic programming algorithm that finds the optimal
strategy and the cost of an order n chain query. The time complexity of the algorithm
is linear in the input size.

The time complexity follows from the fact that input size is O(n 3) (Theorem 2)
and the number of comparisons in the dynamic programming algorithm is also O(n 3)
(Lemma 9 and eq. (.)). Also, notice that the analysis in the previous sections on
noninferior sets not only serves a pedagogic purpose in our understanding of the
problem, but also is important in making the dynamic programming algorithm efficient
(through Lemma 9).

6.2. Optimization based on partial parameterization. In practice, of course, it is
unrealistic to assume that the complete parameterization of the database state is
available to the query processor. In this section, we briefly discuss some approaches
to optimization based on partial information about the database state.

Let the parameterization a be composed of two components a (al, a2), where
al corresponds to those parameters known (exactly) to the query processor and a2
corresponds to parameters that are unknown, or for which only some statistical
behavior is known. For chain queries, it is reasonable to assume that

a ={aij(i,i),i 1,..., 1, 2}.

This subset of the parameters corresponds to the number of distinct values in each
column of the relations before any semijoin is applied. The following two measures
can be taken for such an incomplete characterization.

First, knowing al may have severely restricted the values a2 could take. Let

MP (A) {a" a (a, a2)la A and a is a meaningful parameterization}.

NPROG is the minimal noninferior set of programs for database states parameterized
by meaningful parameterizations a. Let NPROG (MP (A)) be the corresponding set
for states aMP (A). Depending on MP (A), NPROG (MP (A)) may be left with a
handful of candidates. For example, the set A for which the shortest program Pmin is
optimal can be explicitly described.

THEOREM 7. Let A be the set of a {aj(i, i), 1,. ., n,/" 1, 2} such that

a,2(i,i)
a+x’x(i+l’i+l)<=b4

(n-i + 1)’ i=l,2,...,n-1.

Then NPROG (MP (A)) has only one member, Pmin, and therefore Pmin is optimal.
The proof is in [4]. We will just give a sketch here. Suppose that n is large, so

a/1.1(i + 1, + 1)<-b. Then

COST (Pmin, tl) ak,1 (k, n) + (8 1)b
k=2

<= ak.l(k, k) + (n 1)b
k=2

=< 2(n 1)b.
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In fact, as a rule of thumb, when the size of the database is "small" relative to
the set-up cost b (measured in appropriate units), it is sufficient to consider only the
shorter programs (for example, programs with no more than two blocks) to find the
optimal, or a good suboptimal, program.

Secondly, knowing al, we may consider a probabilistic model by treating a2 as
random variables conditioning on al. In this case, the optimal program is only optimal
in a statistical sense, viz. in minimizing

E[COST (p, a)lal] COST (p, E[a21al]).
Here g(al)&E[a21al] is but a function of al. Again, g defines a subset of meaningful
parameterizations,

{a[a (al, g(a)) is a meaningful parameterization} _a_ MP (g).

Let us denote the minimal noninferior set of programs for the states a MP (g) by
NPROG (MP (g)). For a given g, NPROG (MP (g)) is usually a much smaller subset
of NPROG. We demonstrate this point again by describing a function g such that
NPROG (MP (g))= {Pmin}.

THEOREM 8. Let g(al) be given by

ai.(i,k)=ai.(i,i) fori=l,2,...,n-1, k>i,

ai,z(k, i) ai,2(i, i) for 2, 3,. ., n, k < i.

Then NPROG (MP (g)) contains Pmin only, and Pmin is therefore optimal.
Proof. Pmin incurs cost

COST (Pmin, (al, g(al)))= Y ak,l(k, n)+(n 1)b
k=2

Y. ak, l(k, k) + (n 1)b.
k=2

Any other program would clearly only incur higher cost.
Following this example, another rule of thumb is" If the intermediate relations

are not expected to be reduced much in comparison to the initial database, then the
shortest program is the optimal or a good suboptimal one.

7. Generalizations and concluding remarks. The methodology that we used to
study the problem

QUERY Chain queries
STATE Arbitrary finite relational database
PROG Semijoin programs
COST Linear function of "data moved"

can be applied to study more general problems. One generalization is to consider
QUERY to be the larger set of queries called tree queries, defined in [1]. It can be
inferred from [1] that the parameterization of the initial state for this problem will
still be a function of n. A detailed exposition is given in [6].

We believe that we have made a viable preliminary study of the query optimization
problem. Future work should let cost reflect local processing cost, and allow programs
to contain other operations, such as join. We would also like to see more complicated
parameterizations of the initial state, and increased dimensionality of the correct
programs. The key should again be in obtaining the suitable NPROG for different
meaningful parameterizations of the database state.
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ALTERNATING PUSHDOWN AND STACK AUTOMATA*

RICHARD E. LADNERt, RICHARD J. LIPTONS; .AND LARRY J. STOCKMEYER

Abstract. The classes of languages accepted by alternating pushdown automata, alternating stack
automata, and alternating nonerasing stack automata, both with and without an auxiliary space bounded
worktape, are characterized in terms of complexity classes defined by time bounded deterministic Turing
machines. It is also shown that alternating 2-way finite state machines accept only regular languages.

Key words, alternation, pushdown automata, stack automata, 2-way finite state automata, computa-
tional complexity

1. Introduction. Alternating Turing machines were introduced by Chandra,
Kozen and Stockmeyer [2] as an interesting generalization of nondeterministic Turing
machines. In this paper we investigate the effect of adding alternation to auxiliary
pushdown automata, first investigated by Cook [3], and to auxiliary stack automata,
first investigated by Ibarra [12]. We characterize the power of alternating auxiliary
pushdown automata (Alt-Aux-PDA), alternating auxiliary stack automata (Alt-Aux-
SA) and alternating auxiliary nonerasing stack automata (Alt-Aux-NESA) in terms
of time bounded deterministic Turing machines. The word "auxiliary" in these models
refers to an auxiliary space bounded worktape that the machine has in addition to
the pushdown store or stack. A stack is like a pushdown store except that the interior
contents of the stack can be read, but not changed except by the usual pushing or
popping. In a nonerasing stack automaton, the stack cannot be popped. See Table 1
for a summary of our results in comparison to known results concerning deterministic
and nondeterministic versions of these classes of automata. There are several interest-
ing things to note about Table 1. For each type of auxiliary machine the deterministic
and nondeterministic versions have exactly the same power while the alternating
version has strictly more power. Alternating auxiliary stack automata and nonerasing
stack automata have exactly the same power while it is open whether or not nondeter-
ministic auxiliary stack automata are more powerful than their nonerasing counterpart.
Chandra, Kozen and Stockmeyer [2] proved that alternating Turing machines with
space bounded by s(n) have exactly the power of deterministic Turing machines that
run in time 2csn) for some c > 0. It is open whether or not DTIME (2"")) properly
includes DSPACE (s (n)). So it is not known whether or not the addition of a pushdown
store alone or alternation alone increases the power of space bounded Turing
machines. However, if both alternation and a pushdown store are added to a space
bounded Turing machine then a more powerful device results.

Two-way pushdown automata and stack automata without auxiliary storage were
first investigated by Gray, Harrison and Ibarra [7] and Ginsburg, Greibach, and
Harrison [6], respectively. There is no known characterization of 2-way pushdown
automata (either deterministic or nondeterministic) in terms of time or space bounded
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TABLE
Characterization of auxiliary pushdown and stack automata in terms o]’ time or space bounded Turing

machines. The function s(n bounds the space used on the auxiliary worktape of the pushdown and stack
automata. Unions are over all constants c > 0, and s(n) is assumed to be at least log n.

AUX-PDA(s(n))

AUX-SA(s(n))

AUX-NESA(s(n))

Deterministic Nondeterministic Alternating

U DTIME(2cstn)) U DTIME(2cstn)) U DTIME(22cs(n))
Cook Cook

E(222cs(n)U DTIME(22cs(n)) U DTIME(22cs(n)) U DTIM
Ibarra Ibarra

U DSPACE(2cs(n)) U DSPACE(2cs(n))
lbarra lbarra

U DTIME(222cs(n))

Turing machines. Hopcroft and Ullman have characterizations of both deterministic
and nondeterministic nonerasing stack automata in terms of time or space bounded
Turing machines [10] and Cook has such characterizations of the erasing versions of
stack automata [3]. Chandra, Kozen and Stockmeyer 12] show that alternating PDA’s
have at least the power of deterministic exponential time. Table 2 summarizes our
results and past results concerning pushdown automata and stack automata. There
are also several interesting things to notice about Table 2. For each type of machine

TABLE 2
Characterization of 2-way pushdown and stack automata in terms of time or space bounded Turing machines.

PDA

SA

NESA

Deterministic Nondeterministic Alternating

U DTIME(2cn)

U DTIME(2 log n) U DTIME(2cn2) U DTIME(22cn)
Cook Cook

DSPACE(n log n) NSPACE(n2) 13 DTIME(22cn)
Hopcroft and Ullmaa Hopcroft and Ullman

the alternating version is more powerful than either the deterministic or nondeterminis-
tic version. This is true for pushdown automata because the languages accepted by
nondeterministic PDA’s are also accepted by deterministic Turing machines that run
in polynomial time. Alternating stack automata and their nonerasing versions are
equivalent while it is not known whether or not deterministic (nondeterministic) stack
automata and their nonerasing versions are equivalent.

We also investigate alternating 2-way finite state automata (Alt-2-FA) and show
that these automata accept only regular languages. Moreover, an m-state Alt-2-FA
can be simulated by a 2"2"-state deterministic 1-way finite state automaton. This result
is applied in our simulation of alternating stack automata; we mirror arguments as in
[3], [10], [12] for nondeterministic stack automata where reading into the stack is
eliminated in a way similar to the elimination of the left moves of a 2-way finite
automaton.
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Apart from providing fairly precise characterizations of the power of alternating
PDA’s and stack automata, another motivation for this work was the hope that the
results could be applied to help understand the computational complexity of certain
problems, in the same way that alternating Turing machines [2] have been applied in
classifying the computational complexity of certain problems in logic (Berman [1],
Fischer and Ladner [4], Kozen [14]), combinatorial games (Fraenkel and Lichtenstein
[5], Stockmeyer and Chandra [19]), and communicating sequential processes (Ladner
[15]). One application of our results has been made: Lewis [16] has used the charac-
terizations of alternating pushdown automata and alternating stack automata (without
an auxiliary worktape) to prove exponential and double-exponential lower bounds
on the time complexity of certain decidable subcases of first-order predicate calculus.

In several instances our proofs for alternating machines generalize in a natural
way corresponding proofs for nondeterministic machines. The concept of a computa-
tion tree for alternating machines is quite analogous to the concept of a computation
sequence for nondeterministic machines. This analogy is the basis for our generalized
proofs. This is further evidence that alternation is a valid generalization of nondeter-
minism. Alternation is truly a robust concept in complexity theory.

Regarding other related work, other authors, including Gurari and Ibarra [8],
King [13], and Ruzzo [17] give relationships between alternating Turing machines on
the one hand and deterministic or nondeterministic auxiliary pushdown or stack
automata on the other. However, these papers do not consider alternating auxiliary
pushdown or stack automata. Gurari and Ibarra [9] place upper bounds on the power
of alternating auxiliary pushdown and stack automata when the auxiliary space bound
is augmented by bounds on other complexity measures such as stack reversals or
acceptance tree size.

In 2 we discuss the precise meaning of an alternating computation and apply
it to Turing machines. Sections 3, 4 and 5 contain the results on alternating PDA’s,
finite automata and stack automata, respectively.

2. Alternating automata. Because alternation is a fairly new concept it pays to
take time to study the meaning of an alternating computation and in particular the
meaning of acceptance by an alternating machine. It helps to contrast the definition
of alternating automata with that of nondeterministic automata. Think of an automaton
as a set of instantaneous descriptions (ID’s) together with

(i) an initialization function INIT which takes inputs to ID’s,
(ii) a set __. 5 of accepting ID’s,

(iii) a transition relation

_
with the property that for all L {JIIJ} is

finite.
An alternating automaton has the added property

(iv) a set q/_ 5 of universal ID’s.
The members of 5 -07/are called existential ID’s. If I :=>J, we say that J is a successor
of L

Let M be an automaton. A computation of M is a finite nonempty sequence
I0, ll, In such that Ii ::2pli+1 for 0 =< < n. An accepting computation of M on an
input x is a computation Io, I1, , In such that I0 INIT (x) and In ’. We say M
accepts x if there is an accepting computation of M on input x.

Let N be an alternating automaton. By contrast, a computation or computation
tree of N is a finite, nonempty labeled tree with the properties’

(a) each node zr of the tree is labeled with an ID,/(Tr);
(b) if zr is an internal node (a nonleaf) of the tree, l(r) is universal and

{Jll(cr)J} {J1," ", Jk}, then r has exactly k children pl," ", Pk such that l(pi) J;
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(c) if r is an internal node of the tree and l(zr) is existential then zr has exactly
one child O such that (zr) :=> (p).

An accepting computation (tree) of N on an input x is a computation tree whose
root is labeled with INIT (x) and whose leaves each have labels in ’. We say Naccepts
x if there is an accepting computation of N on input x. Define

L(N) {xlN accepts x}.

Deterministic and nondeterministic automata are special cases of alternating
automata. An alternating automaton is nondeterministic if q/= and is deterministic
if for each ! there is at most one J such that ! =:>J.

We extend the complexity concepts of space and time to alternating computations.
With each alternating automaton N we associate a space complexity function SPACE
which takes ID’s to natural numbers. Informally, SPACE (I) is the storage "used"
by the ID L We say that N is s (n)-space bounded if for all n and for all x of length
n, if x is accepted by N then there is an accepting computation tree of N on input x
such that for each node r of the tree, SPACE(I(zr))<=s(n). We say that N is
t(n)-tirne bounded if for all n and for all x of length n, if x is accepted by N then
there is an accepting computation tree of N on input x of height <= t(n).

We now apply these concepts to the Turing machine. Formally an alternating
Turing machine is an object of the form

M=(Q, qo, U,F,,,F, 8)

where

Q is a finite set of states,
qo Q is the start state,
U Q is the set ot universal states,
F Q is the set of accepting states,
E is the input alphabet (, $ E serve as left and right endmarkers),
F is the tape alphabet (# F is the blank symbol),
8: Q ( (.J {, $}) F(Q {R, L}2 x (F-{#})) is the transition function,

where denotes the power set operation, and R (L) signifies a right (left) shift of a
head. Of course, we are defining a Turing machine with a read-only input tape and
one read/write worktape.

An ID has the form (q, x, i, ct,/’) where q Q is the state, x E* is the input,
with 0-<i-<lxl+ 1 is the position of the input head, a (F-{#})* is the nonblank
portion of the worktape, and/" with 0 =< ].-< la[ + 1 is the position of the worktape head.
An accepting ID has its first coordinate in F while a universal ID has its first coordinate
in U. INIT (x) is (q0, x, 0, A, 0), where A denotes the empty word. The transition
relation between ID’s is straightforward to define (see, for example, [11]). Finally
SPACE ((q, x, i, a, ))= la I. Define
ASPACE (s(n))={L(M)[M is an s(n)-space bounded alternating Turing machine}.

Chandra, Kozen and Stockmeyer [_2] prove the following useful theorem.
THEOREM 2.1 (Chandra, Kozen, Stockmeyer). If s(n)>= log n then

ASPACE (s(n))= (.J DTIME

Throughout the paper, unions (.J are over all constants c > 0. Here, DTIME (t(n))
is the class of languages recognized by t(n)-time bounded deterministic Turing
machines. Note that since we define deterministic machines as a special case of
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alternating machines, the time bound t(n) is not imposed for rejected inputs; indeed,
a deterministic machine is not required to halt on rejected inputs. Of course, if t(n)
is real-time countable, the machine can be modified to halt within t(n) steps for all
inputs.

Remark 2.2. Theorem 2.1 continues to hold even if the input head on the
alternating machine is only allowed to move in one direction as can be seen from the
proof of this result in [2].

To see this another way let M be a normal 2-way s(n)-space bounded alternat-
ing Turing machine with s(n)>-log n. To construct a 1-way alternating machine M’
we have M’ simulate M step by step. In order to simulatd the reading of an input
symbol, M’ maintains on its tape a count of the input head position of M. When M
reads an input symbol, M’ guesses the symbol using an existential state and then
enters a universal state to choose one of two further actions" one action is to continue
the simulation of M and the other is to check that the symbol guessed is actually in
the input position indicated by the count. This latter action is the only time the input
head of M’ moves and it can do so 1-way.

In stating our results, the time bounds involve exponentiation iterated to two or
three levels, so we define notation for iterated exponentiation. Define the function
E(k, z) for integer k => 0 by

E(O, z) z, E(k + 1, z) 2E(k’z).

.3. Alternating auxiliary lmshtlown automata. The definition of an alternating
auxiliary pushdown automaton is similar to Cook’s definition of a nondeterministic
auxiliary pushdown automaton [3] except that, as described in 2, a subset of the
states are designated as universal states. Formally, an alternating auxiliary pushdown
automaton (Alt-Aux-PDA) is an object of the form

M=(Q, qo, U,F,E,F,A,,)
where

Q is a finite set of states,
q0 Q is the start state,
U Q is the set of universal states,
F

___
Q is the set of accepting states,

E is the input alphabet (, $ E),
F is the auxiliary worktape alphabet (# F is the blank symbol),
A is the pushdown store alphabet,

A is the bottom symbol on the pushdown store,
8 is the transition function where

8: Q (E [.J {, $}) F A --> (Q x {L, R, S}2 (F- {#}) ((A- {}) U {POP, IDLE})).

Recall that is the power set operator. The input is read-only and is delimited on
the left by and the right by $. If the machine is in state q scanning cr on the input
tape, 3" on the auxiliary worktape, and p on the top of the pushdown store, and if
(q’, dl, d2, 3", P’) belongs to 8 (q, tr, 3", p), then the machine can enter state q’, shift
the input head in direction dl (Left, Right, or Stationary), write 3" on the auxiliary
worktape and shift the worktape head in direction d2, and manipulate the pushdown
store by either (i) pushing p’ onto the pushdown store if p’ A-{C}, (ii) popping the
top symbol if p’= POP, or (iii) idling, that is, not changing the pushdown store if
p’= IDLE. We assume that 8 has been constrained so that the bottom symbol is
never popped nor pushed, and that the input head is never shifted outside the area
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delimited by the endmarkers (inclusive). Note also that the blank symbol cannot be
written on the auxiliary worktape. Other inessential assumptions which help smooth
out our proofs are that the machine enters an accepting state only if it is reading the
bottom pushdown symbol , and the machine behaves deterministically while it is
either pushing or popping, that is, if D belongs to the range of ; and if D contains
more than one move, then all moves in D are of the form (q’, dl, d2, y’, IDLE).

An ID has the form (q, x, i, a,/’,/) where

q Q indicates the current state,
x ,v.,* is the input,
i, where 0 =< =< Ix I+ 1, indicates the input head position,
a (F-{#})* indicates the contents of the nonblank portion of the auxiliary
worktape,
/’, where 0-<_/" -< I 1/ 1, indicates the worktape head position,
/3 CA* indicates the contents of the pushdown store.

The function INIT is defined by

INIT (x) (q0, x, 0, A, 0, ).

Accepting ID’s are those of the form (q, x, i, a,/’, ) where q F. Universal ID’s are
those of the form (q, x, i, a,/’,/3) where q U. The transition relation is straightforward
but tedious to define formally. The space of an ID is counted only on the auxiliary
worktape; that is

SPACE ((q, x, i, a, f, fl )) la 1.
The definition of L(M), the set of words in Y.,* that M accepts, and the definition of
M being s(n)-space bounded now follow from the general definitions given in 2.
Define

ALT-AUX-PDA (s(n))= {L(M)IM is an Alt-Aux-PDA that is s(n)-space bounded}.

Our principal result concerning alternating auxiliary PDA’s is the following charac-
terization.

THEOREM 3.1. If S (n >= log n, then

ALT-AUX-PDA (s(n)) DTIME (E(2, cs(n))).

Proof. (1) We first show that for any c > 0

DTIME (E(2, cs(n))) ALT-AUX-PDA (s(n)).

We do this indirectly by showing that

ASPACE (2c") ALT-AUX-PDA (s(n))

and appealing to Theorem 2.1.
Let M be an alternating Turing machine which is 2"")-space bounded. Let Q

be the states and F be the worktape alphabet of M. We can of course assume that M
has only one tape which is 1-way infinite to the right and that c _>-1. Therefore, the
ID’s of M for an input of length n can be viewed as words of length 2c") in
F* (Q F) F*; the meaning of ID tz (q, y)u, where /x, , F*, q Q, y F, is that
/zy, is written on the first 2c" squares of the tape, and M is in state q scanning 3’.
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For example

INIT (x) (q0, Xl)X2X3 x,, #a
where x x xx2 x,, and d 2cs’)- n.

We can assume without loss of generality that each ID of M has at most two
successors. This is enforced by assuming that the transition function of M is a partial
function of the form

a.Q x r -, (O {, R, S} (r- {#})).
For certain (q, y) Q x F, the two components of 8 (q, y) can be identical (indicating
a deterministic move). (q, y) is undefined iff q is an accepting state of M. For ID’s
a and fl we write a :=>1/ (resp., c =2/3) iff Il- Il and c can reach/ in one move
according to the first (second)component of 8. (The condition I l- ensures that
ID’s remain 2cs")-space bounded. For example, if a -/z (q, y) and the first component
of (q, y) moves the head right, then there is no/ such that c =>1/3.)

Assume for the moment that s(n) is space constructible [11]. Fix an input x of
length n. The Alt-Aux-PDA M’ which simulates M first lays off a block of s (n) tape
squares on its auxiliary worktape. In general, the pushdown store of M’ will contain
a string of the form

ot om ot mEtx Emaot 3

where o, c x,. are ID’s of M, m {1, 2} for >= 1 (we assume 1, 2 Q 1.3 F), ao
INIT (x), and c-1=,,,,a for _>- 1. The symbol m is chosen by a universal (existential)
branch of M’ if c_ is a universal (existential) ID of M. The words c for => 1 are
chosen by existential branching (i.e., the usual nondeterministic "guessing"). After
each extension of c by a new guessed symbol, say 3’, M’ enters a universal state to
choose one of two further actions: one action is to continue choosing a; the other
action is to check that 3’ is consistent with a legal move of M according to =:>,,, and
to accept or reject accordingly. To perform this check we use the fact that if ci-1 :,"ci,
then the/’th symbol of a is uniquely determined by m and the (/’-1)th,/’th, and
(/’ + 1)th symbols of ai-1. The auxiliary worktape of M’ is used as a counter to measure
the distance (roughly) 2cs") between the/’th symbol of c and the/’th symbol of
Of course, the pushdown store must be popped to perform the check. Notice that the
alternation of M’ is being used in two ways. First, in choosing the m it is used directly
to simulate the alternation of M. Second, alternation is used to existentially guess and
universally check the ID’s of M. Universal branching permits one branch of the
computation to read into the pushdown store, popping and destroying information,
while another branch retains the information for future use.

It is useful to make more precise the fact that c =:>,./3 can be checked by performing
local checks within a and/3. For a word a, let a(j) denote the/’th symbol of a for
1 _-< j <_-la I. For m 1, 2 there is a function

fM,,.’(I"UQ x 1-’ U {1, 2})3 ---) I"UQ x 1-"

such that if a and/3 are ID’s of M with Il- I1- z, then a ==>,./ iff

/(/’) =f.,.(a(j- 1), c(/’), a(] + 1)) for 1 </" <l,

/(1) f." (1, c (1), c (2))= f." (2, a(1), c (2)),

/(t) f.,,,( (t- ), , (t), )= f,,,,,(, (t- ), , (t), 2).
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We now describe the procedures of M’ more carefully. The and’s (^) and or’s
(v) in these procedures are implemented by using alternation; that is, A ^ B (resp.,
A v B) means to enter a universal (resp., existential) state to choose which one of A
or B to perform.

INIT: Push INIT (x) onto the pushdown store;
(The s (n) auxiliary storage is used as a counter to ensure that INIT (x)

is the correct length 2"));
Call TOP.

TOP: ff the top ID is accepting, then accept; else
I the top ID is universal then ((push 1 ^ push 2); call NEW); else
If the top ID is existential then ((push I v push 2); call NEW).

NEW: # 0;
C: /#/+1;

If > 2cs(") then call TOP;
Existentially guess a y e F U O x F and push y;
(call CHECK ^ go to C).

CHECK: Remember the top pushdown symbol, say y, in the finite control;
Pop 2csC") symbols off the pushdown store, and at the point when a
symbol m e {1, 2} is popped, remember m in the finite control;
Pop and remember three more symbols, say y3, y2, and
If y ft,,,(yl, y2, y3) then accept; else reject.

M’ executes INIT. A proof that M accepts x itt M’ accepts x can be based on the
obvious correspondence between computation trees of M and computation trees of
M,. Figure 1 shows the correspondence for a universal configuration a of M with
two successors/31 and/32. Although the existential branch in the procedure NEW can
push any symbol 3’ onto the pushdown store, only the correct choice will survive the
subsequent call to CHECK. Further details of the proof that M’ correctly simulates
M are left to the reader.

If s(n) is not constructible, then M’ guesses the value of s(n) using existential
branching. If M accepts x, then M’ accepts x after guessing the correct value s(n),
so M’ is s(n)-space bounded. If M does not accept x, then for no guessed value of
s (n) does M’ accept x.

(2) To prove that

ALT-AUX-PDA (s(n))_ DTIME (E(2, cs(n)))

we generalize the proof of Cook [3] that an s(n)-space bounded nondeterministic
auxiliary PDA can be simulated by a 2cs(n)-time bounded deterministic Turing machine.
Let M be an s(n)-space bounded Alt-Aux-PDA and let x be an input of length n.
A surface ID is an object of the form (q, x, i, a,/’, B) where q indicates the current
state, x is the input, indicates the input head position, a indicates the contents of
the auxiliary worktape, /’ indicates the auxiliary worktape head position, and B
indicates the top symbol on the pushdown store. Let

top(q,x,i,a,f,B)=B.

Recall that the PDA behaves deterministically when pushing or popping. Hence only
when the pushdown store is idle can there be true branching in the automaton. With
this in mind we can think of each surface ID as being in one of three possible modes"
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TOP (( is on the top of the
(b) pushdown store)

CHECK "Y CHECK
h2(2)

CHECK CHECK

push ( push

(2cs(n)) i/2 (2cs(n))

CHECK TOP CHECK TOP

FIG. 1. (a) A universal branch of the Turing machine M; (b) the corresponding portion of an accepting
computation of the Alt-Aux-PDA M’.

PUSH, POP, or IDLE. IDLE surface ID’s are partitioned into U-IDLE and E-IDLE
surface ID’s depending on whether they are universal or existential. We can view the
transition relation :=> of M as a relation on surface ID’s provided that the first
component of the relation is not in POP mode.

A surface computation is a finite rooted tree whose nodes are labeled with surface
ID’s and which has the following properties"

(a) On each path from the root to a leaf, the sequence of modes traversed
(including the mode of the root but not the mode of the leaf) can be generated by
the following grammar SURFACE:

(S) -> IDLE

<S) --> PUSH(S)POP.

That is, the PUSH’s and POP’s are matched analogously to left and right parentheses.
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(b) A PUSH node has exactly one child labeled with the surface ID obtained by
running the PDA for one move. A POP node has exactly one child whose label is
obtained by running the PDA for one move and looking back along the path to the
root to the matching PUSH node to obtain the top symbol of the pushdown store
(this is possible because of (a)).

(c) If a node is labeled with a U-IDLE surface ID r, then, for each w such that
r=w, the node has a child with label w. If a node is labeled with an E-IDLE surface
ID r, then the node has exactly one child and the child is labeled w for some w with

The surface ID (q, x, i, c, f, B) is s (n)-bounded iff Ic I=< s (Ix [). A surface computa-
tion is s (n )-bounded iff all surface ID’s in the computation are s (n )-bounded. If r is
an s (n )-bounded surface ID and W is a set of s (n )-bounded surface ID’s, then we write

rW

iff there is an s (n )-bounded surface computation T whose root is labeled r and whose
leaf labels are contained in W (see Fig. 2). Because M accepts only when it reads

(PUSH)

(U-IDLE)

5(POP)

(POP)

(PUSH)

4(E-IDLE)

w

w 2 e (POP)

w

FIG. 2. A surface computation which witnesses r {w 1, W2, W9}’

the bottom symbol , then x is accepted byM iff I(x) A for some set A of accepting
surface ID’s, where

/(x) (qo, x, 0, x, 0, )

is the initial surface ID.
We now define a kind of proof system. In this system we will "prove" terms of

the form r {w 1,’’ ", wk} where r, w 1,’’ ", wk are s (n )-bounded surface ID’s. The
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system has the following proof rules"

r -> {r}

2. (a)
r-->W,WV

r--> V

(b)
r-> WU{w}, w-> V

r--> WUV
3. (a) (E-IDLE)

r -> {w}

W1 W2, Wk

r-’>{Wl, Wk}

r (PUSH)

W, W --’> {/31, /)k},

/31 (POP)

ZI
ik (POP)

Zk, top (Zi)"-" top (r) for 1 _-< =< k
r->{z, ,z}

In each proof rule, the term below the horizontal bar can be concluded from the
information above the bar. Lower case letters stand for s (n )-bounded surface ID’s
and upper case letters stand for sets of s (n )-bounded surface ID’s. In 3(a), r is an
existential surface ID and row. In 3(b), r is a universal surface ID and {Wl, , Wk}
(wlrw}; in order to apply this rule, all successors of r must be s (n )- bounded. In
(4), w is the successor of the surface ID r which is in PUSH mode; furthermore, zi
is the successor of vi which is in POP mode and top (zi)= top (r) for all i. We write

r--> W
if the term r -> W is provable in this system.

For x fixed, there are at most

bn s(n). 2b’")_-<2b’")

s (n )-bounded surface ID’s for some constants b, b’, b">0 (recall that s(n)->log n),
so there are at most E(2, ds(n)) terms for some d>0. This is the key to our
E(2, cs(n))-time bounded simulation of M. In order to prove that the simulation is
correct, we first show that the proof rules are sound and complete.

LEMMA 3.2. Let r be a surface ID and let G be a set of surface ID’s. Then

r--> G ff r-> G.

Proof. (if) Let T be an s (n )-bounded surface computation whose root is labeled
r and whose leaf labels are contained in G. The proof is by induction on the size (i.e.,
the number of nodes) of T. If the size of T is 1, then r G, so r --> G by rules 1 and
2(a). If the size of T is greater than 1, we consider three cases. In each case, we
describe how to break T into pieces such that there is a proof for each piece by
induction and such that the pieces can be put together using the proof rules to give
a proof of r --> G.
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(i) r is an E-IDLE surface ID. Let to be the (unique) child of the root of T,
and let w be the label of to. Let T’ be the maximal subtree of T with root to. Note
that T’ witnesses w -> G. Since the size of T’ is less than the size of T, it follows by
induction that b-w ->G. But b-r ->{w} by rule 3(a), so b-r ->G by rule 2(b).

(ii) r is a U-IDLE surface ID. Let to1,"’", tok be the children of the root of T,
and let wi be the label of toi for 1-<_ i-< k. Let T be the maximal subtree of T with
root to, and note that T witnesses w->G. Now b-r->{Wl, , Wk} by rule 3(b) and
b-wi -> G by induction, so b-r -> G by rule 2(b).

(iii) r is a PUSH surface ID. Let p be the root and to be the child of the root of
T. Let w be the label of to. If z and : are nodes of T, we write surf (r, ) to indicate
that either r sc, or sc is a proper descendant of - and the sequence of modes traversed
on the path from r to (including the mode of r but not the mode of :) can be
generated by the grammar SURFACE defined above. Let T’ be the (unique) subtree
of T such that the root of T’ is p and, for all nodes : of T’ with : p, surf (p, sc) iff
sc is a leaf of T’. In other words, we obtain T’ by pruning each branch of T at the
node where the pushdown store first returns to the same level as the root r. Let
rx,... r, be the leaves of T’. For 1 <-i <_-m, let , be the parent of r and let v be
the label of the node ,. (Note that the surface ID’s v i," ", v,, are not necessarily
distinct. We let {v,..., v,,} denote the set, not the multiset, of surface ID’s among
vl,. ., v,,.) Since surf (p, ’i) but not surf (p, ,), it follows that surf (to, ,) and v must
be in POP mode for all i. Therefore, for 1 <_-i <_-m, the label of ’ must be zi where v
pops to yield z and top (z) top (r) for all i. By deleting the nodes p, (1, , (,,, from
T’ we obtain a surface computation which witnesses w->{v,..., v,}, so
{v i, , v,} by induction. By applying rule 4

(3.1) b-r ->{Zl, Zm}.

Now for 1-<_i <-m, let Tg be the maximal subtree of T with root sri; note that T
witnesses z -> G, so b-z -> G. Combining this with (3.1) using rule 2(b) gives b-r -> G.

The root of T cannot be in POP mode by condition (a) in the definition of surface
computation, so the proof by induction is complete.

(Only if) This is proved by induction on the length of a proof that r-> G. If the
last step of the proof (the step from which r-> G is concluded) is an application of
rule 1, 3(a), or 3(b), then it is immediate by the definition of surface computation that
r -> G. If the last step is an application of rule 2(a), then the surface computation
which witnesses the antecedent term also witnesses the conclusion term. If the last
step uses rule 2(b) with G W LI V, then by induction there are surface computations
T and T’ which witness r -> W LI {w } and w -> V, respectively. If each leaf of T which
is labeled w is replaced by the root of T’ (which is also labeled w), the resulting tree
witnesses r -> W LI V. In the case that the last step uses rule 4, the induction step
follows by a similar pasting of surface computations, and we leave this case to the
reader. I3

Assuming that s(n) is space constructible, the deterministic Turing machine M’
which simulates M generates all provable terms simply by applying the proof rules
until no new terms can be proved. Initially the set.6 of provable terms is empty. At
a given stage, M’ attempts to generate a new term by applying the proof rules to
in all possible ways. If is the number of terms, then the time for each stage is
polynomial in t. Since there are at most stages, the total time is polynomial in t, that
is, E(2, cs(n)) for some c >0. M’ accepts x iff there is a provable term
where A is a set of accepting surface ID’s. So L(M)= L(M’) by Lemma 3.2.
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If s(n) is not constructible, then M’ iterates the above procedure for s(n)=
1, 2, 3,... until it accepts. If M does accept x, then M’ will discover this fact when
s (n) reaches its correct value. The total time is a geometric series which is dominated
by the last term E(2, cs(n)). This completes the proof of Theorem 3.1.

Theorem 3.1 can easily be generalized to cases where s(n) grows slower than
log n. In part (1) of the proof, the s(n) storage is used only as a counter with capacity
2cs("). For general s(n ), the input head can be used in conjunction with the s(n storage
to provide a counter with capacity n2c("). In part (2) of the proof, the key quantity
is the number of s (n )-bounded surface ID’s (for x fixed); in general, n2c(") is an
upper bound on their number. Therefore, we have actually proved the following.

THEOREM 3.3. If S (n >-- 1 then

ALT-AUX-PDA (s(n))= DTIME (E(1, n 2s())).
Letting ALT-PDA denote the class of languages accepted by alternating PDA’s

without an auxiliary worktape, and taking s(n)= 1 in Theorem 3.3, we obtain the
following corollary claimed in Table 2.

COROLLARY 3.4. ALT-PDA U DTIME (2c).

4. Alternating 2-way finite automata. In this section we show how to simulate
an alternating 2-way finite automaton with m states by a deterministic 1-way finite
automaton with 2"="‘ states. Our construction combines ideas in Chandra, Kozen and
Stockmeyer’s construction of a deterministic 1-way finite automaton which simulates
an alternating 1-way finite automaton [2] and Shepherdson’s construction of a deter-
ministic 1-way finite automaton which simulates a deterministic 2-way finite automaton
[18]. Our simulation will be used in 5 where we show that an alternating auxiliary
stack machine with s (n) auxiliary storage can be simulated by an alternating auxiliary
PDA with 2(n) auxiliary storage for some c > 0.

Formally an alternating 2-way finite automaton (Alt-2-FA) is an object of the
form

M=(Q, qo, U,F,,,8)

where

Q is a finite set of states,
qo Q is the start state,
U Q is the set of universal states,
F
_
Q is the set of accepting states,

5; is the input alphabet (, $ Y_, serve as left and right endmarkers),
is the transition function where

: Q (E U {, $}) ,(O x {L, R, S}).

The input is delimited on the left by and on the right by $. For convenience we
assume that the machine starts in the start state while reading the right endmarker.
The machine accepts only if it has just read the right endmarker and moved right into
an accepting state. Further, the machine moves right or left deterministically, that is,
if (p, d)e (q, a) and d e {R, L} then 8(q, a)= {(p, d)}. Hence the automaton can only
do universal or existential branching while the reading head is stationary. It is useful
to give a precise definition of acceptance by alternating 2-way finite automata using
the terminology of 2. An ID has the form (q,z, i) where q Q, z E*{)t, $}
and 1 -< _-< ]zl+ 1. A universal ID has the form (q, z, i) where q U. An accepting ID
has the form (q, z, Iz] + 1) where q F. The initialization function INIT mapping E*
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into the set of ID’s is defined by

INIT (x) (qo, Cx $, Ix I+ 2).

Let z a la2" a, where ag I..J {, $}. The transition relation is defined by

(q, z, i)=>(p, z, i)

(q, z, i)=#(p, z, + l)

(q,z,i)(p,z,i-1)

if (p, $) 6(q, ai) and 1 -<_ =< n,

if (p,R)6(q, ai) and l<=i<=n,

if (p,L)6(q,a) and l<i<=n.

Let M (Q, q0, U, F, Z, 6) be an Alt-2-FA. We now begin the description of a
deterministic 1-way FA M’ which simulates M. For each q Q define a new symbol
and let 0--{lq Q}. If A ___Q, then fi ={lr6A}. Define a term to be an object

of the form q A where q Q and A
___
Q IO Q. A term q A is closed if A

_
Q. A

partial response is a set of terms while a response is a set of closed terms. The states
of M’ are exactly the responses.

At this point we give a nonconstructive definition of the rest of the components
of M’. Later in this section we show how to construct it. For each z E*{h, $} we
define a response (z). A closed term q A is in Y (z) if q Q, A Q and there is
a computation tree of M whose root is labeled with (q, z, [z 1) and each leaf is labeled
with (p, z, Izl / 1) for some p A. In other words there is a computation tree of M
starting in state q and reading the rightmost symbol of z such that each branch ends
in a state of A while moving off the right end of z.

LEMMA 4.1. If(w)=(z) then (wa)=(za) for a Y-,U{, $}.
Before proving Lemma 4.1 we complete the definition of M’. The transition

function 6’ is defined by

Y(za)
6’(Y, a)

if Y Y(z),
if/ (z) for any z.

6’ is well defined by Lemma 4.1. The start state of M’ is Y (), and Y is an accepting
state of M’ if q0 F 6’(, $). Now x is accepted by M if and only if qo F (x $)
if and only if 6’(Y(), x) is an accepting state of M’. Hence M and M’ accept the
same language.

Proof of Lemma 4.1. In order to prove this it is useful to associate with each
z CE*{A, $} a partial response (z). A term q -A is in (z) if q Q, A

__
O LI t

and there is a computation tree T of M whose root is labeled with (q, z, [z I) and each
leaf is labeled with either (p, z, Iz [) for some p A or (p, z, [z[+ 1) for some ,0 A. We
say that T witnesses q A (z). In words, q A (z) if there is a computation
tree of M starting in state q and reading the rightmost symbol of z such that each
branch ends in a state p A while reading the rightmost symbol of z again or ends
in a state p where/ A while moving off the right end of z. The response (z) is
exactly the set of closed terms in g(z). Since (wa) (za) implies (wa)

(za) then we can prove the lemma by showing that (w) (z) implies (wa)
(za ).
We now introduce a constructive method of producing g(wa) from (w) and

a. We consider a proof system similar to the one in the proof of Theorem 3.1. Let
be a response and let a LI {, $}.
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Proof system for (, a ).

q {q}

2. (a)
qB,B_C

(b)
qBt.J{p},pC
qBUC

6(q, a) {(Pl, S),..., (Pk, S)}, q universal
3.

q{Pl," ",Pk}

(p, S) 6 6 (q, a), q existential
q{P}

6 (q, a {(p, R )}
q {0}

8(q,a)={(p,L)},pA ,a_Q

Let TH (, a) be the set of terms "provable" using the proof system for (Y, a).
CLAIM. (wa) TH ((w), a ).
We prove that (wa) TH (Y (w), a) inductively on the size of witnesses for

terms in (wa). Suppose q A (wa) is witnessed by a single node tree with
the label (q, wa, Iwa I). Clearly q A so that q A is provable using rules 1 and 2(a).
Suppose now that q A l(wa) is witnessed by a tree T with more than one node.
There are four cases to consider.

(i) 8(q, a)={(pl, S),..., (Pk, S)} and q is universal. In this case the root of T
is labeled with (q, wa, Iwal) with k immediate children rl," ’, rk labeled respectively
with (pa, wa, Iwa]),’’ ", (p,, wa, Iwa[). The complete subtree rooted at 7r, witnesses

Pi A t(wa). By the induction hypothesis pi A TH ((w), a). By 3 and 2(b)
we obtain q A TH ((w), a).

(ii) 8(q, a)={(p,S),..., (pk, S)} and q is existential. This case is just like (i)
except we use 4 and 2(b).

(iii) 6 (q, a) {(p, R)}. We must have p A for T to witness q A (wa).
Hence by rules 5 and 2(a) we have q A TH ((w), a).

(iv) 8(q, a)={(p,L)}. The child rr of the root of T has the label (p, wa, Iwal-1).
Every path from zr to a leaf of T must pass through a node with label of the form
(r, wa, Iwal). That is, the computation must return to reading the rightmost symbol
of wa again. Let P {p,..., Pk} be the descendants of r with the properties (a) pi

is labeled (r, wa, [wa I), (b) no node between rr and p has a label with third coordinate
]wa[ and (c) every path from r to a leaf passes through a node of P. Let T’ be the
unique subtree of T whose root is zr and whose set of leaves is P. If we change the
second coordinate of every node label of T’ from wa to w then T’ witnesses
p-*{?,’’’,Fk}t(W). Since this is a closed term then p{FI,’’’,Fk}Y(W).
By 6, q {rx,. ., rk } TH (Y (w), a). The complete subtree of T rooted at pi witnesses
ri A (wa). So by the induction hypothesis r A is provable for all i. Hence by
2(b), q A TH (Y/(w), a).

We prove that TH (t(w), a)_l(wa) by induction on proof length. Suppose
qATH (t(w),a) has a proof of length I. If the last step of the proof (the step
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from which qA is concluded) is an application of rule 1, 3, 4, or 5, then it is
immediate that there is a computation tree which witnesses q-A (wa). If the
last step is an application of rule 2(a) then the same computation tree that witnesses
the antecedent term also witnesses the conclusion term. If the last step is an application
of rule 2(b) then suppose that q B t.J {p} and p C are the antecedents from which
q B LI C is concluded (A B LI C). By the induction hypothesis there are computa-
tion trees T and T’ which witness q B LI {p} and p C respectively. If each leaf of
T labeled (p, wa, [wa l)is replaced with the tree T’ (whose root is labeled (p, wa, Iwa [)
then the resulting tree witnesses q B t.J C (wa ).

If the last step is an application of rule 6 then suppose q A is concluded from
8(q, a)={(p,L)},pA (w) andA Q. SincepA (w ), then there is a computa-
tion tree T’ with root labeled (p, w, ]w I) and each leaf labeled (r, w, [w[ + 1) for some
r A. First modify T’ so that the second coordinate of each node label is wa instead
of w. Next make the root of the modified T’ the child of a node labeled (q, wa, Iwa I).
The resulting tree witnesses q A.

This concludes the proof of the claim. We are now ready to complete the proof
of Lemma 4.1. Assume (w) (z). By the claim, TH ( (w), a) (wa) and
TH ((z), a) (za). Thus (wa) (za).

We now know how to construct the transition function 8’ of M’. If 5 is a response
and a E IA {, $} then first using the proof system for (, a) construct the set TH (, a).
Let CTH (, a) be the set of closed terms in TH (, a). Now 8’(, a)= CTH (, a).

We summarize the main results of this section in the following theorem. Parts
(2) and (3) are used in the next section.

THEOREM 4.2. (1) If M is an m-state Alt-2-FA, then L(M) is accepted by a
2"2"Lstate deterministic 1-way finite automaton.

(2) There is a deterministic Turing machine which, when given the description of
an m-state Alt-2-FA, responses and ’, and an input symbol a, checks whether

’ CTH (, a) within time 2d" for some constant d. A deterministic Turing machine
can also check, within time 2a", whether ().

(3) Any response of an m-state Alt-2-FA can be written in space 2 for some
constant c.

Proof. (1) There are at most m 2 closed terms. Since a response is a set of closed
terms, there are at most 2’’2" responses.

(2) The deterministic Turing machine generates the terms in TH (, a) by apply-
ing the rules in the proof system for (, a) until no more terms can be generated.
The machine then checks that ’ is the set of closed terms in TH (9, a). As in the
previous section, the time is polynomial in the number of terms. To check that

(), note that () is generated by a proof system similar to the one above,
except that there is no rule 6.

(3) This is obvious. [3

5. Alternating stack automata. An (alternating) stack automaton is just like an
(alternating) pushdown automaton except that the interior contents of the pushdown
store may be read, but not changed except by normal pushing or popping. A stack
can also be viewed as a Turing machine tape, 1-way infinite to the right, with the
restriction that symbols can be changed only on the right end of the nonblank tape
contents. In the special case of a nonerasing stack automaton, the stack cannot be
popped, or, equivalently, stack symbols cannot be erased. As in [12], we consider
stack automata with a space bounded auxiliary storage tape. Formally, an alternating
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auxiliary stack automaton (Alt-Aux-SA) is of the form

M=(O,S, qo, U,F,,,F,A,,6)

where (2 (the states), qo (the start state), U (the universal states), F (the accepting
states), ,E (the input alphabet), F (the auxiliary storage alphabet), A (the stack alphabet),
and (the bottom, or leftmost, stack symbol) are as in the definition of Alt-Aux-PDA’s.
In addition, S

_
O and the states in S are called scan states. We also define P (2 -S

and refer to states in P as pushdown states. The blank symbol # belongs to A as well
as to F. The transition function is of the form

:0 (U{, $})Fa
--, ((2 x {L, R, S}: x (F-{#}) x ((,- {#, }) U {POP, DL, L, R})),

where R (L) in the last component signifies a right (left) shift of the stack head.
When the state of the machine is in S (P) the machine is said to be in scan mode

(pushdown mode). Initially, the machine is in pushdown mode (i.e., q0 P), the stack
contains ###. and the stack head is scanning . Generally, when in pushdown
mode the stack contains fl ### for some fl . (A-{#, })* and the stack head
is scanning the rightmost symbol of/ the machine behaves just as an Alt-Aux-PDA,
manipulating the stack by pushing, popping, or idling. At some point, the machine
can enter scan mode without moving the stack head. While in scan mode the machine
can read stack symbols and move the stack head left and right (and idle), but it cannot
push or pop. When in scan mode the machine behaves much like an alternating Turing
machine with an auxiliary storage tape, and with the stack providing a read-only
"input" (in addition to the original read-only input in Y_,*). The machine must remain
in scan mode until it first reads a blank (which must be the blank just to the right of
fl). Then it must shift the stack head left and enter pushdown mode. Furthermore,
we require that F _c p, but we now allow M to accept when reading stack symbols
other than . We assume that the machine behaves deterministically when either
pushing, popping, moving the stack head left or right, or changing from pushdown
mode to scan mode or vice versa. Some of these conventions for stack automata differ
from those in [10], [12], but they are convenient for our proofs. An alternating auxiliary
nonerasing stack automaton (Alt-Aux-NESA) is an AIt-Aux-SA which cannot pop
the stack.

An ID of an Alt-Aux-SA has the form (q, x, i, a,/’, fl, k) where q, x, i, a, ], and
/ have the same meaning as for ID’s of Alt-Aux-PDA’s, and k, 1 -<_ k -<_ [fll + 1, indicates
the position of the stack head. The stack positions are numbered from left to right
so, for example, k 1 if M is reading the leftmost symbol , or k Ifl[ if M is reading
the top nonblank stack symbol. Now

INIT (x) (qo, x, 0, ;t, 0, , 1),

the accepting ID’s have their first coordinate in F, and the universal ID’s have their
first coordinate in U. The definition of the transition relation should be clear from
the discussion above. Let

SPACE ((q, x, i, a, j, fl, k))= a I.
Define

ALT-AUX-SA (s(n))= {L(M)IM is an Alt-Aux-SA which is s(n)-space bounded},
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ALT-AUX-NESA (s(n))= {L(M)IM is an Alt-Aux-NESA
which is s (n)-space bounded}.

One consequence of our characterization of space bounded alternating auxiliary
stack automata is that the ability to erase the stack is inessential.

THZORZM 5.1. Let s (n >- log n.

ALT-AUX-SA (s(n)) ALT-AUX-NESA(s (n)) LI DTIME (E(3, cs(n))).

Since obviously ALT-AUX-NESA (s(n))
___
ALT-AUX-SA (s(n)), Theorem 5.1

follows immediately from Lemmas 5.2 and 5.3.
LEMMA 5.2. If S (n >-- log n, then

(.J DTIME (E(3, cs(n)))_ ALT-AUX-NESA (s(n)).

Proof. By Theorem 2.1, it is sufficient to prove that

0 ASPACE (E(2, cs(n))) ALT-AUX-NESA (s(n)).

The proof is very similar to the first part of the proof of Theorem 3.1. The only
difference is that now the ID’s of the alternating Turing machine are words of length
E(2, cs(n)). The extra exponential is handled by preceding each symbol of an ID by
a binary address; for each ID, the addresses run consecutively from 0 to E(2, cs(n))- 1.
Since the length of an address is only 2cs(n), s(n) storage is sufficient to record a pointer
to a particular bit-position within an address. Therefore an s(n)-space bounded
Alt-Aux-NESA can check that two physically consecutive addresses are numerically
consecutive (in fact, this can be done deterministically), and it can check that the
address of a symbol deep in the stack which is being scanned in scan mode matches
the address of the symbol on the top of the stack (universal branching is used here).
This ability to match addresses is used to implement a procedure similar to CHECK
in the proof of Theorem 3.1. More precisely, the procedures NEW and CHECK are
replaced by:

NEW" If the topmost address is all l’s, then call TOP;
Existentially guess a binary word a with lai 2cs(") and push it

onto the stack;
Existentially push a symbol y F (.J Q F;
(call ADDCHECK ^ call CHECK ^ call NEW).

ADDCHECK" Let a be the address on the top of the stack;
Let a’ be the address just below a on the stack;
If a =a’+ 1 mod E(2, cs(n)) then accept; else reject.

CHECK: Remember the top pushdown symbol 3,;
In scan mode, existentially choose a symbol 3,2 in the ID just
below the ID currently being guessed on the top of the stack,
let 3,3 and y be the ID symbols just above and below 3’2, and
let a2 be the address of 3’2;

If 3’ YfM,m(3"1, 3,2, 3,3) then reject;
Universally choose a/" with 1 <=/’ <= 2
Let b be the/’th bit of
Return to the top address c and check whether or not b equals

the/’th bit of c, and accept or reject accordingly.

INIT must also be changed in the obvious way to incorporate the addresses. I3
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Let

LEMMA 5.3. If s (n >- log n, then

ALT-AUX-SA (s(n)) U DTIME (E(3, cs(n))).

Proof. By Theorem 3.1, it is sufficient to prove that

ALT-AUX-SA (s(n)) G U ALT-AUX-PDA (2cs(")).

M=(Q,S, qo, U,F,E,F,A,,8)

be an Alt-Aux-SA which is s(n)-space bounded. A 2cs(")-space bounded Alt-Aux-
PDA M’ will perform a step-by-step simulation of M when M is in pushdown mode.
During this simulation, M’ will maintain on its pushdown store the response of the
stack contents ofM (see 4); this will allow M’ to simulateM whenM is in scan mode.

Fix an input x of length n. When in scan mode, M can be viewed as an alternating
2-way finite automaton 4t with about 2es(n) states for some constant e >0. The
states of 4t are of the form (q, i, a, ]) where q e S, indicates M’s input head position
(0<-i <=n +1), a e (F-{#})* with Il_-<s(n) indicates the contents of M’s auxiliary
tape, and/" indicates the auxiliary tape head position. The universal states of ’t are
those of the form (q, i, a,/’) where q U. The input alphabet of dt is A, the stack
alphabet of M. For our purposes here, we need not specify an initial state or accepting
states for 4M. It should be obvious how the transition function of ’t is obtained
from that of M; note that the ID

((q, i, a,/),/, k) oft
corresponds to the ID

(q, x, i, a, j, [3, k of M.

To describe the simulation, suppose that M is in some ID

r0 (q, x, i, a,/’,/, I/ 1).
M’ will maintain q, i, a, and/" on its auxiliary storage tape. Furthermore, the pushdown
store of M’ will contain

(p)fl (p)fl2 (p )fl

where/ fllfl2" flz, fli I m for all i, Pi is the length prefix of/ (in particular, 01
and pz =/3), and the response is with respect to ’t. The concept of a response is
defined and discussed in 4. To recapitulate briefly in the context of this proof, if
q s S and (q, i, a,/’) --> A is a term in gt (/3) where A is a set of states of t, then there
is a computation tree of M with root r0 such that if (q’, x, i’, a’, ]’, fl’, k) is a leaf of
the computation, then (q’, i’, a’,/") s A,/3’=/, and k I/3[ + 1;in particular, at each
leaf the stack scan has just finished and M must reenter pushdown mode.

We now describe how M’ simulates M in an ID r0 in various cases. If q e F then
M’ accepts. If ro has more than one successor, then M’ simulates this directly by using
its own alternation (recall that the stack head cannot move in this case). If M pops
the stack, then M’ pops gt (/)fl off the pushdown store (while updating q, i, a, ] as
necessary).

If M pushes a symbol a A onto the stack, then M’ existentially pushes some
string of symbols in the alphabet used to encode responses, and then pushes a. M’
then enters a universal state to choose one of two further actions. One action is to
continue the simulation as though (/a) was guessed correctly. The other action is
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to verify that the guess really was correct. We must argue that this can be done using
2cs(n space. By Theorem 4.2(2), the set

UPDATE {(, ’, a)[’= CTH (g/, a)}

can be accepted by a deterministic Turing machine within time 2" where m
is the number of states of ’t; this is done by applying the proof system for (, a).
Recall that CTH is the transition function of a deterministic 1-way finite automaton
equivalent to t. So by Theorem 2.1 and Remark 2.2, UPDATE is accepted by an
alternating Turing machine M" which is 2(")-space bounded; moreover M" has a
1-way input head which we can assume starts on the right end of the input and
moves left. (We are using here the fact that the space 2" is at least logarithmic in
the length of the "input" (, ’, a). This is true because, as noted in Theorem 4.2(3),
a response can be written in space 2’" for some constant c’.) So M’ can simulate M"
where the pushdown head of M’ plays the role of the left-moving input head of M".
(By a similar argument, M’ can guess () and check the correctness of the guess at
the start of the computation.)

IfM has entered scan mode (i.e., if q S in r0), then M’ existentially guesses a term

(q, i, a, j)-A

where A is a set of states of 4M and writes it on the auxiliary storage tape. M’ then
enters a universal state to choose one of two further actions. One action is to check
that (q, i, a,/’)-->A (/3); this is done in the obvious way by popping the pushdown
store. The other action is to universally choose some state (q’, i’, a’, ’) A and continue
the simulation as though M were in the ID (q’, x, i’, a ’, f’,/, I 1/ 1), By convention,
from this ID M must move the stack head left and reenter pushdown mode, so M is
again in an ID of the form r0.

As discussed at the end of 3, we have actually proved the following result for
general s (n).

THEOREM 5.4. Let s (n >-- 1.

ALT-AUX-SA (s(n))= ALT-AUX-NESA (s(n))= U DTIME (E(2, n2")).
Let ALT-SA and ALT-NESA be the classes of languages accepted by alternating

stack automata and alternating nonerasing stack automata, respectively, without an
auxiliary worktape.

COROLLARY 5.5. ALT-SA ALT-NESA LI DTIME (22c").
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LIMITATIONS ON EXPLICIT CONSTRUCTIONS OF
EXPANDING GRAPHS*

MARIA KLAWEt

Abstract. Expanding graphs are the basic building blocks in constructions of many types of graphs
with special connectivity properties which arise in a variety of applications including switching networks,
sorting networks and establishing time-space trade-offs for numerous computational problems. Only one
explicit method of constructing arbitrarily large expanding graphs with a linear number of edges is known
(Margulis [13], Gabber and Galil [8]), but the number of edges used is much greater than the number
known to be sufficient via probabilistic arguments. In this paper we show that various other constructions
which have been proposed to obtain expanding graphs, including one-dimensional analogues of the
Gabber-Galil construction and some pseudorandom constructions, cannot ever yield expanding graphs.

Key words, network, expander, superconcentrator

1. Introduction. For any bipartite graph, whose two vertex sets are called inputs
and outputs, if X is a subset of inputs we will use FX to denote the neighborhood
of X, i.e. the set of outputs which are adjacent to some input in X. Moreover, we will
denote the cardinality of any set A by IAI. For the purposes of this paper, we will
call a bipartite graph with n inputs and n outputs an expanding graph, if there exist
positive constants a and 8, such that for any subset X of inputs with IXI =<an we
have IFX] -> (1 + g)IX I. (There are many slight variations in the definitions of expanding
graphs in the applications we will mention, but the basic idea is always that every set
in some class of subsets of inputs is guaranteed to expand by some fixed amount.)

It is obvious that expanding graphs exist since the complete bipartite graph is an
expanding graph for any a and 5 with (1 +)a =< 1. What is more surprising is that
there are families of expanding graphs with only a linear number of edges. In fact,
for any a and 8 such that (1 + 8)a < 1, there is some constant k such that for every
n there is a bipartite graph with n inputs, n outputs and at most kn edges, which is
an expanding graph with respect to a and 8. Pinsker [19] gave a fairly simple
probabilistic proof of this for a particular a, 8 and k in 1973; similar arguments have
been used in subsequent papers to prove this fact for other combinations of a and 8,
and it not hard to see that these probabilistic arguments succeed in general.

Over the past ten years expanding graphs with a linear number of edges have
been used as building blocks in constructions of graphs appearing in a broad spectrum
of applications. As motivation for the importance of obtaining good explicit construc-
tions, and consequently for the significance of the results in this paper, we give a brief
survey of these applications.

The study of the complexity of graphs with special connectivity properties origi-
nated in switching theory, motivated by problems of designing networks able to connect
many disjoint sets of users, while only using a small number of switches. An example
of this type of graph is a superconcentrator, which is an acyclic directed graph with
n inputs and n outputs such that given any pair of subsets A and B of the same size,
of inputs and outputs respectively, there exists a set of disjoint paths joining the inputs
in A to the outputs in B. Some other examples are concentrators, nonblocking
connectors and generalized connectors (see [6], [21] for more details). There is a large
body of work searching for optimal constructions of these graphs (Pinsker [19],

* Received by the editors July 14, 1982, and in revised form February 8, 1983.
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Bassalygo and Pinsker [3], Cantor [5], Ofman [15], Masson and Jordan [14], Pippenger
[20], [21], Chung [6]). So far all optimal explicit constructions depend on expanding
graphs of some sort.

Superconcentrators have also proved to be useful in theoretical computer science.
By showing that the computation graphs of straight line programs for problems such
as polynomial multiplication, the Fourier transform and matrix inversion must be
superconcentrators, it has been possible to establish nonlinear lower time bounds and
time-space trade-offs for these problems assuming certain models of computation
(Valiant [25], Abelson [1], Ja’Ja’ [9], Tompa [24]).

These space-time trade-otis are obtained via a game known as pebbling which
is played on acyclic directed graphs and mimics the storage of temporary results
during a straight-line computation. In considering the problem of pebbling an arbitrary
acyclic directed graph, expanding graphs have been used in several instances to

corstruct graphs which are (in some sense) hardest to pebble, hence establishing lower
bounds in space-time trade-otis (Lengauer and Tarjan [12], Paul and Tarjan [17],
Paul, Tarjan and Celoni [18], Pippenger [22]).

Expanding graphs have also been used to construct sparse graphs with dense long
paths (Erdos, Graham and Szemeredi [7]). Interest in sparse graphs with dense long
paths stems from studying the complexity of Boolean functions, and more recently
from problems of designing fault-tolerant microelectronic chips. Paul and Reischuk
strengthened this result by constructing (still using expanding graphs) sparse graphs
of bounded in-degree with dense long paths, which is of interest since computation
graphs have bounded in-degree.

Perhaps the most practical applications of expanding graphs occur in the two
most recent results. Ajtai, Komlos and Szemeredi [2] have announced the construction
of an oblivious sorting network using O(n log n) comparators, and having depth
O(log n). Again, expanding graphs form the basic components, and of course, the
explicit construction of the sorting network depends on the explicit construction of
expanding graphs. The problem of constructing such a sorting network has been open
for twenty years [4], which perhaps illustrates best the unexpected power of expanding
graphs. Finally, expanding graphs have been used by Karp and Pippenger [10] to
design an algorithm which can be applied to virtually all the well-known Monte-Carlo
algorithms to reduce the number of uses of a randomization resource (i.e. coin-flips
or calls to a random number generator) while still maintaining polynomial running time.

In several of the applications mentioned above the usefulness of expanding graphs
depends on the existence of an explicit construction of expanding graphs with a linear
number of edges. In 1973 Margulis [13] gave an explicit construction, but, although
he was able to prove that the constant was greater than zero, he was not able to
bound strictly away from zero. In 1979, after slightly modifying Margulis’s construc-
tion, Gabber and Galil [8] were able to obtain a positive lower bound for 8, and thus
obtained the first usable explicit construction, which we now present for future
reference. Let Z,, denote the integers mod m, and let fi for 0, 1,..., 6 be the
functions on Z, Z, defined by

fo(s, t) (s, t),

fl (s, t) (s, 2s + t) mod m,

f(s, t) (s, 2s + + 1) mod m,

f3(s, t) (s, 2s + + 2) mod m,
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f4(s, t)= (s + 2t, t) mod m,

f5(s, t)= (s + 2t + 1, t) mod m,

f6(s, t) (s + 2t + 2, t) mod m.

The graph G(m) is defined as the bipartite graph with inputs {x(s,t): l<=s, t<=m}
and outputs {y(s,t): l_<-s, t<=m} such that x(s,t) is adjacent to y(f(g,t)) for
i=0, 1,...,6.

There are two aspects of this construction which make it less than completely
satisfactory. The first, and most important, is that the combination of a and 8 for
which Gabber and Galil are able to prove that G(m) expands is significantly worse
than those combinations which can be proved to exist by probabilistic methods. As
a result, for example, the best construction of superconcentrators using their expanding
graphs has 261.5n edges, which compares unfavorably with the fact that it is known
(via probabilistic methods) that superconcentrators exist with (38.5n + O(log n)) edges
(Chung [6]). The second is that the proof that their construction succeeds is fairly
sophisticated mathematically. One might hope for a more elementary and intuitively
satisfying proof. Consequently the search has continued for explicit constructions of
expanding graphs with a linear number of edges.

The most obvious approach is to look for some variant of the Gabber-Galil
construction which would either yield a better combination of a, 8 and k, or at least
yield a simpler proof of expansion. Another possibility which has occurred to many
people, is that since it can be shown that for any a and 8 there exists k such that
almost all random bipartite graphs with kn edges expand with respect to ct and d;,
one could use pseudorandom number generators to construct a bipartite graph with
kn edges. Then, presumably with high probability, this graph should be an expanding
graph with respect to a and 8. We will refer to this type of construction as a
pseudorandom construction. Yet another direction has been proposed by Tanner
[23]. He observed that if h and h 2 are the two largest eigenvalues of MM, where
M is the incidence matrix of a regular bipartite graph G, then G is an expanding
graph with respect to a and (h 1/(ah 1+(1--O)h2))--1. Thus it suffices to construct
regular bipartite graphs with a linear number of edges such that the two largest
eigenvalues of MM7" are widely separated. Tanner also showed that a class of graphs
known as generalized n-gons have this property, but unfortunately generalized n-gons
only exist for finitely many n.

The results in this paper show that at least the most obvious examples of the first
two above approaches cannot succeed. We will define a class of constructions which
both is a natural variant of the Gabber-Galil construction, and includes all the graphs
which can be obtained by pseudorandom constructions when linear congruential
pseudorandom number generators are used in the following fashion. Given a finite
set {f} of pseudorandom number generators, the edges of the pseudorandom graph
are all pairs of the form (x, f(x)) where 1 <_-x _<-n.

Notice that each f in the Gabber-Galil construction is the restriction mod m of
a two-dimensional linear function, all of whose coefficients are either 0, 1 or 2. In an
analogous manner, for any finite set F {ax + b: 1 _-< _-< k } of one-dimensional linear
mappings, we can define a bipartite graph G(n,F) with inputs {x(i): l_-<i_-<n} and
outputs {y (i): 1 =< =< n } such that x (i) is adjacent to y (/’) if and only if/" [f(i)J rood n
for some f in F. By choosing the coefficients a to be integers, it is easy to see that
this class includes all graphs which could be obtained by pseudorandom constructions
using linear congruential pseudorandom number generators. Suppose 0 < a < 1 and
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let F be a finite family of one-dimensional linear functions with rational coefficients.
The main result of this paper is the following.

THZORZM. There exist ]’unctions N(a, IFI) and (a, F, n) such that the limit
3 (a, F, n) as n goes to infinity is O, and such that for each n >- N(a, IFI) there is a subset
X of the inputs of G (n, F) with an/2 < IX] <- an and Irxl < + F, n))lxl.

Since lim,_. 6 (a, F, n) 0, there is no > 0 such that G (n, F) is an expanding
graph with respect to a and for all n. Moreover, if the coefficients of the functions
in F are integers, we can prove a stronger result. Namely that 6 (a, F, n) depends only
on , [El and n. This strengthening is particularly important when applying the result
to pseudorandom constructions using linear congruential number generators since it
means that even if the multipliers are chosen as a function of n, expanding graphs
cannot be obtained.

The theorem above is proved by explicitly constructing a nonexpanding subset
X, and establishing a number of its properties. In an earlier version of this paper [11],
we proved similar results using an entirely different construction of nonexpanding
subsets. There are two ways in which this paper’s construction improves upon the
previous one. First of all, the old construction did not yield the stronger result for
integer coefficients. The second improvement is that in the new construction the size
of the nonexpanding subset can be specified fairly precisely, whereas previously the
size of the nonexpanding subset was O(n 2/3) and thus could not be applied to situations
where one is only interested, for example, in the expansion of sets of approximately
half the inputs. We should, however, point out one aspect in which the old construction
may dominate the new one. LetF be the family {(pi/qi)x + bi: 1 <= <= k}. The 6 function
in the old construction is ( l_<-_-<k log pi + log q,)(l__<,__<k Ip /q l / Ib l)/ og n, whereas the
6 function in the new construction (for rationals) is Ya______< ((3 +q)/s +(q(p2i + 1))/r)
where

s=[(logan/loglogan)/3+2J and r=

It is not hard to see that for some sets F and choices of a and n the value of the old
6 function is much smaller than the value of the new 6 function, and hence in those
cases the old construction would give a stronger nonexpansion result. The new 6
function for integers is 3k/s, and again in some cases the old 6 function is less than this.

There are two major questions about one-dimensional linear constructions which
remain unsettled. The first is whether it is possible to obtain expanding graphs using
real coefficients, and the second is whether it is possible to extend the stronger integer
result to rational coefficients. Of course a positive answer to the second would also
imply a negative answer to the first, since for any fixed n and finite set F of
one-dimensional linear mappings with real coefficients there is a set F’ with rational
coefficients such that G(n,F)=G(n,F’). However, as n increases so must the
numerators and denominators in the rational coefficients in F’, and so the kind of
result for rational coefficients given in this paper has no implication for real coefficients.

The next section describes the construction of the nonexpanding subset X and
establishes sufficiently many of its properties to prove the result for integer coefficients.
In 3, we continue to explore the properties of X, finally achieving the result for
rational coefficients. We are also able to apply this construction to shuffle-exchange
graphs, thus proving that shuffle-exchange graphs cannot be expanding graphs either.

2. Integer eoettieients. Given integers a and b for 1 <-i-<_ k for each let us
define a mapping fi on Z, by f(x)=aix +b modn. For sets A and B we use A\B to
denote the difference set of elements which are in A but not B. This section is devoted
to proving the following theorem.
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THEOREM 2.1. For each real number a between 0 and 1 them is a constant N
depending only on a and k, such that for each n >-N, there exists a subset X ofZ, with
an/2 <- IX[ <-an, and Ifi(X)\X] < 3[XI/ [(log cn/log log cn l/(3k+E)J for 1 <-- <- k.

We begin by introducing some notation and conventions that we will use. For
any numbers x and p in Z,, unless otherwise noted we will understand px and x +p
to mean px mod n and (x +p)mod n respectively. The greatest common divisor of p
and x is denoted by (p, x), and if X is a subset of
defined by p-aX -{z’pz X}. For subsets X and Y we will use XY to denote the
product subset, i.e. XY {z" z xy for some x in X and y in Y}. Similarly Hl__<ii Xi

)/(3+2],denotes the product setXX. X.. Finally, let s denote [(log an/log log an
let - denote [(s/a)(+l*], let u=max {4k +4, (1/a)3+}, and let N=2/a. For
the remainder of this section we will assume that n and are integers satisfying n ->N
and r-< <= n. The next lemma states the inequalities involving these numbers which
we will require in the remainder of this section.

LZMMA 2.2.
(i) s/a >- s >-_ 2.

3k+2(ii) a log log an >- 1.
(iii) " -> (2s(s- 1)(s/a))/(s-2) for s >=3.
(iv) r >=2St’(S/a)sk2 (t’+a).
(v) s(s/)%(+ <=(s/)(++-.
(vi) (s/a)(+2)s+2 <_-an.

Proof. (i) and (ii) are consequences of our assumption that n >_-N, k >- 1 and a < 1.
(iii), (iv) and (v) can be established in a straightforward manner by applying (i) and
the inequalities k --> 1 and k + 1 =< s in a variety of circumstances. Finally (vi) follows
from (ii) and the identity an (log on) (lgan/lglgan).

We are now ready to describe the basic ideas in our construction. We will construct
a set X with the following properties:

Property 2.3.1. an _-< IX] _-< an.
Property 2.3.2. For each i, [(X + bi)\X[ < [Xl/s.
Property 2.3.3. For each/such that (a, n)<-_ s/a, [aX\XI < 2lXl/s.
For any subsetX of Z, and a Z, we have [aX\XI <-laXI <-]aZ, n/(a, n). Thus

Property 2.3.1 also implies the following additional property:
Property 2.3.4. If (ag, n) > s/a then [aX\X[ < 2[XI/s.
Finally [(aiX + bi)\XI <- [((aX X) + b)\X[ + ](aX\X) + bgl <- I(X + bi)\X] +

[aX\X[, and hence the above properties imply the following property, as desired"
Property 2.3.5. For each i, [f(X)\X[ < 3IX[Is.
Let P {a’ (a, n) <-s/a}, and let Q be the subset VIpp {1, p,. ., p-}. For each

p in P and 0-< -< s 1, let Q(p, i) be the subset pi I-Iqp\t,) {1, q, , q-X}. Thus Q
is the set of elements of Z, which can be written as a product of powers of elements
of P in which the exponent of any element is at most s- 1, and Q(p, i) is the subset
of elements of (2 which can be so expressed with the exponent of p equal to i.

Next for each with -_-< t_-<n we define another subset A(t) of Z, by A(t)=
{zOn a(z)z" a maps QB {0, 1,. ., t- 1}}, where B {1, b,. ., bk}. Now, finally,
we define X(t) as X(t)= tAoq-aA(t). We will show that X(t) has Properties 2.3.2
and 2.3.3 for in the range " =< =< n. Moreover we will show that for some in this
range X(t) also satisfies Property 2.3.1.

Before continuing with the proof we will attempt to provide some intuition as to
why X(t) has these properties. First of all, in order for any set X to have Property
2.3.2, it is clear that for each b it must be true that most of the elements of X can
be arranged into long sequences of the form x, x + b, x + 2b, , or in other words,
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into long arithmetic progressions with period bi. The set A(t) is constructed so that
for each q in Q, the set q-lA (t) (and hence also X(t)) can be arranged into arithmetic
progressions with period bi and of length at least t. This and its consequences are
more formally presented in Lemmas 2.6 and 2.7.

Next let us consider why X(t) should satisfy Property 2.3.3. The set Q is
constructed so that [Q(p, 0)[ is small relative to IQ[ for each p in P. Moreover for any
set A and i>0, if x is in t.Jqo(p,iq-lA then px is in tAqo(p,i_lq-lA. Thus if

Iq-lal=lA[ for each q in Q, one could hope that (IpX\Xl/lxl)(lO(p, o)[/[QI). In
general [q- al may be much smaller than (q A could be empty, for example),
but one kind of set A which has lq-’al-lAI for every q is a long interval, i.e.
{x, x + 1, x + 2,..., x +/’} for sufficiently large/’. This is expressed more precisely in
Lemma 2.8. Examining the definition of A(t) shows that A(t) has been constructed
so that it is the union of intervals of length at least and so has the desired property.
Since the sets q-lA(t) are not disjoint in general, the proof that }pX\XI is small is
still quite complicated, and depends heavily on the fact that each set q-lA(t) is also
the union of long intervals.

Finally we consider Property 2.3.1. It is obvious that [g(t)l increases with t, and
that for large enough (t n for example) X(t) is all of Zn. What is harder to prove
is that Ix(t)l increases slowly enough in the appropriate range so that there is some
with an/2<-_[X(t)l<-an, and it is precisely for this reason that is chosen to be so

much larger than s.
We begin the proof by establishing some upper bounds on the size of our sets in

terms of s, and k.
LEMMA 2.4.

(i) IOl_-<s .
(ii) IA(t)l<=t(k+l)sk
(iii) For each q in (2, [q-A(t)l<=(s/a)lA(t)l.
(iv) [X(t)l <-sk(s/a)st
Proof. Il is obvious since IPI -< g, and (ii) follows directly from (i)since clearly

IA (t)l-< Il For the proof of (iii) note that for any subset Y of Z, and any q in Z,
we have [q-1YI -< (q, n)lYI. Moreover, it is easy to see that for any q in (2 we have
(q, n)<- (s/a), which completes the proof of (iii). Finally (iv) follows in an obvious
way from (i), (ii) and (iii).

COROLLARY 2.5. Ix( )l <--an.
Proof. This follows immediately from inequalities (v) and (vi) of Lemma 2.2 and

(iv) of Lemma 2.4.
In order to prove that X(t) has the properties that we desire we will need the

following lemma describing the structure of X(t) in terms of b-intervals. If b Z, and
Y is a subset of Z,, then we say Y is a b-interval of length rn if the elements of Y are
the elements of an arithmetic progression in Z, of length rn and of period b. Note
that the actual cardinality of a b-interval will be less than its length if its length exceeds
n/(b, n), but if rn <- n then a 1-interval of length m is simply an interval of length rn
in the usual sense except that it is interpreted mod n. A b-block of a subset Y is a
b-interval which is maximal with respect to containment in Y.

LEMMA 2.6. For each q in Q, b in B, and x in q-lA(t) there is a b-interval Y of
length such that z Yand Y c q-lA (t).

Proof. Let a map QB {0, 1,..., t-1} such that qx Yzon a(z)z. Then it is
easy to check that the set Y {x +fb: -a (qb) <- f <- 1 a (qb)} has the desired
properties.

COROtLAR 2.7. For each b in B we have I(X(t)+b)\X(t)l<-IX(t)[/t.
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Proof. Let X,... ,Xa be the b-blocks of X(t). By Lemma 2.6 each X is a
b-interval of length at least t, and it is easy to see that this implies that for any such
that IX[ < we must have (X + b) X. Consequently I(X(t)+ b)\X(t)l <-I{i" Ix, => t)l <-
IX(t)I/t since the Xi are disjoint.

In proving a similar result about IpX(t)\X(t)! for each pP, we will use the
following observation, whose proof we omit since it is almost trivial.

LEMMA 2.8. I.f Y is a 1-interval, then .for any rZ,, we have
IY[-((r,n)-l).

PROPOSIWION 2.9. I[p P then [pX(t)\x(t)l <21x(t)l/s.
Prool. This clearly holds for s 2 so suppose s-> 3. For 0-<_ <=s- 1 let D

o,.) q-aA (t), and let D D0\(t.J a_-<_-<- D). Then it is easy to see that for _-> 1
we have pDD_, and hence (pX(t)\X(t))=pD. Thus it suttiees to show that
Iol < 21x(t)]/s. Let Y, , Ya be the a-bocks of D in increasing order with respect
to size, and let m=max(O, max{i’lYl<(s-2)t/(2s(s-1))}). We first show that
Y<-_<=,,, [YI < (s -2)lX(t)l/(s(s 1)). Since every 1-block of Do has length (and hence
cardinality) at least by Lemma 2.6, if ]Yl<(s-2)t/(2s(s-1)) we must have that Y
is adjacent to some 1-block of (U a__<i___<_a Di) either on the right or on the left. Let us
denote this 1-block as b(Y). Notice that any particular 1-block of (Ll_<_i__<s_aDi) could
be b(Y) for at most two distinct since it can border at most one of them on the
right and at most one on the left. Thus
Finally, since Lemma 2.6 implies that lb(Y,)l>=t for each such i, we have IY, l<
(s-2)lb(Y)[/(2s(s- 1)), which completes this part of the proof.

It now suffices to prove that E,.<,<_alY, l<ls(t)l/(s-), since (s-2)/(s(s-1))+
1/(s- 1) 2Is. For convenience, if Z is a subset of Z, and is a nonnegative integer,
we will use p-Z to denote the subset (p)-aZ. We first observe that if 0<=i </" -<_s 1
then p-D (3 p-iD , since if x p-D (3 p-iD then px D (3 Di_, which contradicts
the definition of D. Combining this with the fact that the Y are disjoint, it is easy to
see that the sets p-iy are disjoint, and hence Ix(t)l>_-y..<,yo___, Ip-Y,l. By
Lemma 2.8 Ip-Y,l>-_lY,[-(p.n)+X, and since (p,n)<-s/, clearly (pi, n)<-(s/a)i.
Combining these observations, and recalling that s/a->_s >_-3, we see that Ix(t)i>
Ym<i<_a(slYi]-(s/)). Moreover, since t->r, Lemma 2.2(iii) implies (s/a)<=
(s-2)t/(2s(s-X))<-_lY,[, and hence Ix(t)l>Z..<,_a(s-X)lY, l. or equivalently
Z,u IY, <lx(t)[/(s 1) as promised. [3

The remainder of this section is devoted to showing that for r=
max {t" Ix(t)[ <-cn}, we have an [X(r)l _-<cn. Note that Corollary 2.5 guarantees
that r ->_ ’.

PROPOSITION 2.10. IA(r + 1)\A(r)lan/(2sk(s/a)k).
Proof. Let C=A(r+ 1)\A(r), and suppose Icl>n/(2s(s/a)). For each x in

C we can choose a mapping QB {0, 1,. , r} such that x oBax(Z)Z. Also, for
each such x we define a subset T(x) of QB by T(x)={z" a(z)=r}. Notice that
T(x) f since otherwise we would have x A (r). Finally for each nonempty subset
Z of QB we define a subset g(Z) of C as g(Z)={x" T(x)=Z}. Now since Icl>
an/(2sk(s/a)k), there must be some nonempty subset Z of QB with ]g(Z)l>
an/(2sk(s/a)’21nl). As r->" and IOBl-<(k +l)s, by Lemma 2.2(iv) this implies

For each with 1 <=i <-r let y(i) be the element Yziz. From the definition of
g(Z) it is easy to see that for each such we have (g(Z)-y(i))=A(r). Moreover, we
claim that if 1 -<i </" _<-r we have (g(Z)-y(i))fq(g(Z)-y(f))= (, since otherwise we
would have g(Z)fq(g(Z)-y(])+y(i))=g(Z)fq(g(Z)-y([-i)); yet g(Z)fq
(g(Z)-y(f-i))=CA(r)=(. Thus IA(r)l>-_Za_,_[g(Z)[=rlg(Z)[>n, and
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hence [X(r)l > an, which contradicts the definition of r. Consequently we must have
Icl<-n/(2s(s/)).

COROLLARY 2.11. ]X(r)]>an/2.
Proof. It suffices to show that [X(r + 1)\X(r)l <=an since by the definition of r

we have IX(r / 1)l > cn. By the same arguments used in the proof of Lemma 2.4(iii)
we have [q-(A(r+l)\A(r))l<=(s/)kl(A(r+l)\A(r)[. Thus ]X(r+l)\X(r)[<-_
[Ql(s/a)SklA(r+l)\A(r)[<=sk(s/a)SklA(r+l)\A(r)l<=an/2 by Proposition 2.10. [3

If we take X =X(r), combining Corollaries 2.7 and 2.11 with Proposition 2.9,
we see that X satisfies Properties 2.3.1, 2.3.2 and 2.3.3, thus completing the proof
of Theorem 2.1.

Remark 2.12. It is easy to see that by choosing s and r in slightly different ways
one can prove slightly different results. For example, by changing s to
[c (log cn/log log tn) 1/3k /2)j, one obtains the following result’

THEOREM 2.13. For each real number t between 0 and 1 and each n >-0 there
exists a subsetXofZ, with n/2 <-Ixl <- tn, such thatfor 1 <= <- k we have If,(X)\Xl <
31xl/l (log cn log log tn)l/3k+2)J.

Notice that this avoids having to choose n sufficiently large at the expense of
weakening the bound on [fi(X)\X[. Of course this theorem is trivially true for any
subset Ixl when s -<_ 3, so really, when one takes Theorem 2.1 into consideration, this
theorem is only interesting for n (approximately) in the range defined by the inequality
(3/Ce)3t+2 <--log cen <--21/)+’.

Similarly our choosing cen/2 and an as the limits on the size ofX were completely
arbitrary. In fact if 0 </3 < ce < 1, there is a constant N depending on k, ce and/3, and
a function g(n, ce,/3, k) going to infinity as n goes to infinity, such that for each n _->N
there exists a subset X of Z, with n <-_lxl<-n and ]fi(X)\Xl<=3lXl/g(n,a,,k).

3. Rational coefficients. The special problems, which occur in constructing non-
expanding subsets for the case of rational coefficients, are basically caused by the way
that the floor function /x interacts with the multiplying and taking inverses mod n.
Our first goal in this section is to prove a result similar to Proposition 2.9. We wish
to show that the subset of elements x of X(t) such that p-lx is not contained in X(t)
is small relative to [x(t)l for each p in P with p <=s. This result will be proved in
Proposition 3.2, but first we prove a useful technical lemma.

For any subset Z of Z, let/3 (Z) denote the number of 1-blocks in Z.
LEMMA 3.1. Let Z, V, W be subsets o]: Zn, and let p, Z, such that 0 <p < < n.

Moreover, suppose that every 1-block in either V or W has length at least t, and that
pZ c V\ W. Then there is a subset h (Z) of V\Wsuch that

(i) (h(Z))<=(Z)+lh(Z)l/t,
(ii) Ih(Z)l>-_([zl-2pt(z))/(1 +(p- 1)/t), and
(iii) Ih (z)[ _-<

Proof. If D {x, x + 1,. ., y} is a 1-block of Z, we will use p&D to denote the
1-block {px, px + 1,... ,py}. Let K t.J{p&D: D is a 1-block of Z}, and let H
K f’)(V\ W). We first prove that in fact H K 0 V. Clearly it suffices to show that for
any 1-block D of Z we have p&D (’1 (V\W) p&D f’) V. Suppose z p&D f-I V f-) W.
Since pD V\ W, z cannot be in pD and hence for some adjacent pair x, x + 1 in D,
we have px < z <p(x + 1). This shows that the 1-block of W containing z has length
at most p- 1, which contradicts the assumption that every 1-block of W has length
at least t.

We next prove that Ig\vl<-(p-1)(lnl/t+(g)). Let Y be a 1-block of K.
From the definition of K and the fact that pZ V, it is easy to see that every 1-block
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of Y\ V has length at most p- 1. Moreover, since every 1-block of V has length at
least it is easy to see that/S(Y\ V) is at most Y CI VI/t + 1. Combining these we see
that Y\ vI <-_ (p 1)(1Y vI/ + 1), which yields IK\ VI--< (p 1)(IHI/t + fl (K)).

To complete the proof thatH satisfies (ii), we will first show that [KI IZI- p/S (K).
Clearly every element of pZ is a multiple of p, and thus from the definition of K we
see that every 1-block of K both begins and ends with a multiple of p. As at most
one out of any (p, n) consecutive elements in 1-block can be a multiple of p (and
hence an element of pZ), this shows that IKI => (p, n)(IpZ]-/3 (K)). Obviously IpZ] >-
Izl/(p,n), so Igl>-IZl-pt(g) as desired. Finally, we have IHI=IKI-IK\VI >
Izl-pt (g)-(p )(t (g)/ Inl/t), yielding Inl--> (Iz[- 2p/3 (z))/(1 / (p 1)/t) since
obviously/3 (K) -</3 (Z).

Let K’ be any subset of K with/3(K’)-<fl(K), and let H’= K’f3 V. Since every
1-block of V has length at least t, for each 1-block Y’ of K’ we must have/3(Y’ V)<=
]Y’tq Vl/t + 1, and hence /3(n’)_-<X{IY’f3 vlt+ 1: Y’ is a 1-block of K’}<-
B(g’)+ln’l/t<-B(Z)+ln’l/t. If Inl<-IZ[ we may take h(Z) to be H since the
preceding remark shows that H satisfies (i). Otherwise take h (Z) to be K’f’l V, where
K’ is a subset of K with/3(K’)-</3 (K) and IK’tq VI Izl. To see that such a set K’
must exist note that it is easy to construct a family {K (r): 1 <- r <= [K]} of nested subsets
of K with/3 (K (r)) -</3 (K) and IK (r)l- r. Now combining the facts that ]K (Igl) vI >
[zl and ]g(r) (q Vl-[g(r-1)f’) V]=<l for each r> 1 shows that ]g(r)fq vl-Izl for
some r. I3

For each p P and with 0-<_i =<s- 1 let V(p, i)= Urop.i)r-lA(t), and let
W(p,i)=tAo<_i<=i V(p,j). For convenience we also adopt the convention that
W(p,-1) for any p.

PROPOSITION 3.2. For each p in P such that p <-s we have

IV(p, s 1)\ W(p, s -2)1-< 21x(t)l
$

Proof. We assume s-> 3 since the proposition holds trivially for s 2. Let
(s -2)t/(2s(s 1)), and let Z(0) be the union of the 1-blocks of V(p, s 1)\ W(p, s -2)
which have length at least . Then by the same argument as used in the proof of
Proposition 2.9, we have ](V(p, s 1)\ W(p, s 2))\Z (0)1 < (s 2)[x(t)l/(s(s )), and
hence it suffices to show that Iz(o)l<lg(t)l/(s-1). Now observe that if i->l then
p(V(p, i)\ W(p, 1)) c V(p, 1)\ W(p, 2). Moreover, by Lemma 2.6 every block
in either V(p, i) or W(p, i-1) has length at least t. Thus by Lemma 3.1 we can
recursively define Z(i) h(Z(i 1)) such that Z(i) c V(p, s 1)\ W(p, s 2),
fl(Z(i))<-fl(Z(i-1))+lZ(i)[/t, and ,(]z(i)l-2pl(z(i-1)))<__lz(i)l<__lz(i-1)[
where 3’ 1/(1 +(p- 1)/t). Since every 1-block in Z(0) has length at least :, clearly
t (Z(0))-<_ Iz(0)l/ , Also obviously [z(i)]/t <-Iz(0)l/, and hence by induction one can
trivially show that (Z(i))<=3IZ(O)[/. Using this, again by induction it is easy to
show that Iz(i)[>-v’lz(o)l-3lz(o)l/. Since the sets V(p,s-i-1)\W(p,s-i-2)
are disjoint for O<=i<=s-1, the sets Z(i) are disjoint, and hence IX(t)[=>
Y.o<_,<=s_l[Z(i)[>=lZ(O)lY.o<_,_s_l(y’-3p/). Now y =(1/(l+(p-1)/t))’, and it is
easy to verify that (1/(l+(p-1)/t))>=l-i(p-1)/t. This shows that Ix(t)l_->
IZ (0)l(s s2(p 1)It 3p/:). Finally it can easily be checked that s2(p 1)It + 3Sp/ <
lsincet->-,s=>3, s->pandk->l. [3

Proposition 3.2 yields the following corollary which will be useful for proving the
nonexpansion of shuffle-exchange graphs, as well as of G(n, F) when the mappings
in F have rational coefficients.
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COROLLARY 3.3. For each p in P such that p <-s we have

[{x X(t)" {{x/pJ +jn/(p,n)" O<-i<(p,n)}\X(t)# }l< -+ Ix(t)l.

Proof. Let W be the set of elements of W(p, s- 2) which are among the first p
elements of their 1-block in W(p, s-2). We claim that for each x in W(p, s-2)\W
we have {[x/pJ+fn/(p,n):O<=f<(p,n)}cX(t). First note that since x-p[x/pJ<=
p-1 we have p[x/pJW(p,s-2) and hence p-l(p[x/pJ)cX(t). However,
p-l(p[x/pJ)={[x/pJ +fn/(p,n): 0=</’<(p,n)}. Thus ]{x S(t): {[x/pJ +jn/(p,n):
O<-/<(p,n)}\X(t)(R)}l<-_lX(t)\W(p,s-2)l+lWI. Clearly X(t)\W(p,s-2)=
V(p,s-1)\W(p,s-2) so we have Is(t)\W(p,s-2)l<21x(t)l/s by Proposition 3.2.
Moreover, since every 1-block of W(p,s-2) has size at least t, we have
plw(p,s-2)l/t<-plX(t)l/t, which completes the proof. I-1

Let X1 ={x X(t): [x/q] is not in X(t)}, X2={x X(t): px is not in X(t)}, and
X3 {x X(t): {x, x + 1, , x +p 1}\X(t) }. In the following corollary we will
use to distinguish real multiplication from multiplication mod n. Thus for p and x
in Z,p .x denotes the product of p and x regarded as real numbers, whereas px
denotes the product mod n.

COROLLARY 3.4. If p,qe and q<-s then I([p.X(t)/qJmodn)\X(t)l <
(2*(q + 1)Is +q *(p *p + 1)It)IX(t)[.

Proof. We first show that l( p , X( t)/ q mod n)\X( t)l <= lXll + q , IXzl +p , q , IX31.
Let Y={x X(t): {[x/qJ}{p [x/qJ,p [x/qJ +l,...,p [x/q] +p-1}=X(t)}. It is
not hard to see that for any x we have [p,x/qJmodn{p[x/qJ,p[x/qJ+l,.., p [x/qJ +p- 1}, and hence we see that [p, Y/qJ mod n X(t). This shows that
[[p*X(t)/qJ\X(t)]<-IX(t)\Y[. Now clearly [X(t)\Yl<-_lXll+l{x:[x/qJX2}l+
I{x: p [x/qJ X3}I, from which it is easy to see that sl(t)\YI <- Ix l /q, Ix21 /
P *q * Ixl.

The proof is completed by giving appropriate upper bounds for Ix l, Ix=l and
Ix l. From Corollary 3.3 we have Ix l (2/s +q/t)]X(t)], and from the proof of
Proposition 2.9 it is easy to see that Ix=l (2/s)[X(t)[. Finally, since every 1-block in
X(t) has length at least t, one easily concludes that Ix l (p/t)lx(t)]. [

Combining this corollary with the results of the previous section yields the
following theorem.

TIqEOREM 3.5. Let F be the family (px/q + b: 1 <-_ <= k} and let 0 < a < 1. Then
there exists a constant N depending only on a and k such that for each n >-N there
exists a subset X of inputs of G(n,F) with an/2<lXl<-an and
( +(,F, n))lxI, where 8(a,F, n) is the function Yl<-,<=k ((3+qi)/S +(q,(p2i + 1))/r)
where

s= [(logcen/loglogan)l/3k+2)J and 7"=

If d is a divisor of n, the perfect d-shuffle rearranges the numbers 1 to n into
the sequence

1, (n/d)+ 1,..., ((d- 1)n/d)+ 1,

2, (n/d)+2,..., ((d-1)n/d)+2,.

(n/d), (n/d) + (n/d),..., n

which corresponds to partitioning the numbers 1 to n into d segments of equal length
and performing a perfect shuffle. Suppose D is a subset of the divisors of n. If a graph
has inputs x(i) and outputs y(i) for 1 _<-i-<n, we say that it is a D-shuffle-exchange
graph if x(i) and y(j) are adjacent whenever for some d in D the perfect d-shuffle
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places in the/’th position, or/" in the ith position. By this definition, the usual
shuffle-exchange graph is simply a {2}-shuffle-exchange graph. It is not hard to see
that the D-shutfle-exchange graph is a partial subgraph of G(n,F(D)) where F(D)
is the family {dx +b: d D, O<=b <-d- 1}(.J{x/d +fn/d + 1: d D, 0-</" =<d- 1}. If we
take P D and B {1}, then it is not hard to see from Lemma 2.6 and Corollary 3.3
that, regarding X(t) as a subset of inputs in G(n,F(D)), if d =<s for each d in D
we have Irx(t)l<(l+Y,,o(4/s/2d/-))lx(t)l<(l+SlDI/s)lx(t)! since d<-s
obviously implies 2d/’r < 1/s. This shows that as long as the divisors used are small
enough relative to n, shuffle exchange graphs cannot be expanding graphs.
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PUSHDOWN PERMUTER CHARACTERIZATION THEOREM*

PRAKASH V. RAMANANf

Abstract. There is a well-known class of algorithms for permuting symbols which has been formally
characterized by a device called a pushdown permuter. Two theorems attempting to characterize the type
of permutations that can be achieved by a pushdown permuter have appeared in the literature. Counter-
examples to these theorems have also appeared in the literature. This paper presents a correct statement
of this theorem.

Key words, algorithm, permutation, stack, pushdown permuter

1. Introduction. There is a well-known algorithm which reads infix arithmetic
expressions from left to right, one character at a time up to an end-marker, and, using
a pushdown stack, produces from left to right, one character at a time, the suffix form
of the expressions. This algorithm belongs to a well-known class of algorithms,
characterized by their use of a single pushdown stack and a finite number of random
access memory cells, to shuffle the characters about between the input string and the
output string. Reingold [4] has developed a formal model for this class of algorithms,
which he calls a pushdown permuter, and has attempted to characterize the type of
permutations that can be achieved by a pushdown permuter. Carlson [1] has presented
a counterexample to Reingold’s characterization theorem. Shyamasundar [5] has also
attempted to characterize this type of permutations. Ramanan [3] has presented a
counterexample to Shyamasundar’s characterization. In this paper we present a correct
theorem characterizing the type of permutations that can be achieved by a pushdown
permuter.

2. Pushdown permuter. Reingold defines a pushdown permuter (p.d.p.) to be a
variant of a one-way, deterministic, finite state pushdown transducer whose finite
input, output, and stack alphabets coincide. Informally, a p.d.p, can perform only the
following kinds of steps: (a) It can read the input string one character at a time from
left to right until it reaches an end-marker. (b) The character read from the input
may be put directly into the output, which is also produced one character at a time
from left to right, or it may be put on the top of a pushdown stack. (c) At any time,
the only element accessible on the stack is the top element which can, if desired, be
popped off the stack allowing access to the second element in the stack. The element
popped off the stack can be thrown away, or it can be put into the output string. Once
a symbol has been put in the output string it is forever after inaccessible and immutable.

A p.d.p, is nothing more than a control for a "switchyard" arrangement between
the input string, the stack, and the output string. When the function of a p.d.p, is
limited to just the permutation of the symbols from the input string, the capability of
a p.d.p, to throw away symbols is not needed.

3. Pushdown permuter characterization. To simplify the notation we consider
12... n to be the input string and ptp2""p, to be the output string. Knuth [2,
2.2.1, ex. 5] has shown that if the p.d.p, can have access to nothing except the top

* Received by the editors January 22, 1982, and in revised form February 10, 1983. This research
was supported in part by the Office of Naval Research under grant N00014-79-C-0775.

t Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois
61801.
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stack symbol, then plp2" p,, can be produced if and only if there is no subsequencel
ppjpk of plp2 "p, for which p >pk > pj.

Reingold’s pushdown permuter characterization theorem attempts to generalize
the result stated in the previous paragraph to the case in which some fixed number
of symbols can be stored in a random access memory, in addition to the stack. His
characterization is as follows:

"A p.d.p, withM memory cells can permute the input string 12 n to plP_ P,
if and only if there is no subsequence xyl yM+lZl ZM+I of pip2" "P, such that
for all and ], x > z > y."

Carlson has presented a counterexample to this characterization. We present the
following characterization:

THEOREM. A p.d.p, with M memory cells can permute the input string 12... n
to PlP2""Pn if and only if there is no subsequence PrPilP’’’PiM1 of PlP2"’’Pn
satisfying the following conditions:

i) pr is the largest symbol preceding p in plp2""p,. Moreover p >p, for all
t, l<-t<=M+l.

ii) Let w =max (pi,,pi2, ,PiM/). For any prefix PlP2 P,, r<=m <=iM+l, of
PP2" P,,/et f,, max (p, P2," , P,). Then

I{p[] > m, w

Proof. First we shall prove the if part of the theorem. For a permutation plp2" p,
of 12... n consider the p.d.p, which behaves as follows: At each input symbol e the
p.d.p, places e into a vacant memory cell, if one exists; otherwise it examines e and
the symbols in the M memory cells, and, of those M + 1 symbols, it puts the one
which appears right-most in pip2" "p, onto the stack. If at any point pip2" "Pk has
been put into the output, and pg/l is in one of the memory cells, is at the top of the
stack, or is the next symbol in the input string, then Pk/l is put into the output and
if a memory cell is vacated, it is filled with the top symbol in the pushdown stack,
which is popped up. If there are no more input symbols, then, since we kept
the left-most occurring symbols in the memory cells, we put them into the output
in the appropriate order, filling the vacated cells with symbols taken from the top of
the pushdown stack. This process continues until all of the symbols have been
put into the output, or, perhaps, until the p.d.p, gets stuck with all memory cells filled
and the symbol which must be put next into the output inaccessible on the stack.
Clearly, if the p.d.p, does not get stuck, it will produce plp2""p,. We must verify
that if the p.d.p, gets stuck, then pip2 p, has a subsequence of the form mentioned
in the theorem.

Suppose at some point the p.d.p, gets stuck with all memory cells filled and the
symbol u which must be put into the output next, inaccessible below the top of the
stack. Consider the p.d.p, at the time the symbol u is put into the stack for the last
time, never to come out again, and call the contents of the M memory cells at that
time y 1, y2, , YM. Since the y stay in the memory cells while u is put into the stack,
they must precede u in pip2 p,, and since the p.d.p, does not get stuck until trying
to put u into the output, the yi are all in the output at the time the p.d.p, does get
stuck. Let x be the largest symbol in the output preceding all of the y at the time
the p.d.p, gets stuck. Clearly, x > y and x > u because at the time u goes into the
stack for the last time, the p.d.p, is "waiting" for some symbol still in the input, while
u and the yi have already been read.

We define pp Pi to be a subsequence of pP2 "P. provided that 1 _-< i <. < i _-< n.
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So far our proof is identical to that of Reingold’s. At the time the symbol u is
put into the stack for the last time, never to come out again, the largest symbol the
p.d.p, has read from the input is max (y 1, y2," ", yt, u). Consider the p.d.p, at some
later time t’ before it gets stuck. Our assumption concerning the last time the symbol
u is put into the stack implies that the number of symbols read from the input by the
p.d.p, after u is put into the stack and until time t’ be at least as large as the number
of symbols put into the output by the p.d.p, during the same time period; otherwise,
at some time during this period, the p.d.p, will pop up u from the stack and place it
into a vacant memory cell. This argument holds true at any time, after u is put into
the stack for the last time. Hence, we obtain the following condition" Let piP2" "P,,,
be any prefix of plp2" "p, such that x {pl, p2," ,p,,}, and ug{pl, p2,’" ,pro}.
Let w max (y 1, y 2, , yt, u and f,, max (p 1, p2," , P,,). Then

f,,, w >- I(p l l <- f <- m, > w}l / l{y, y, for some

Moreover, it is clear that if we take the prefix PlP2"’’Pk up to, but not including u,
strict inequality should hold; otherwise, u will be accessible at the top of the stack.
If we let p,.=x, {Pil, Pi,"" ,Pi,} {Y, y2,""", yt}, and pi,+l=u, for some i1<i2<

< it/l, we have proved the existence of a subsequence of the form mentioned in
the theorem.

Now we shall prove the only if part of the theorem. Let plp2""p,, contain a
subsequence of the form mentioned in the theorem. Since pr > pi, for all t, 1 =< -<_M + 1,
all of theM + 1 pi, must be read and stored before we read pr and put it into the output.
Since there are M + 1 p,, they cannot all be stored within the M memory cells. So at
least one of the p, must be on the stack at the time p is put into the output. Let
be the bottom-most p, on the stack at this time. Condition ii) of the theorem for
r-<_rn <iq guarantees that pq can never be popped off the stack, and placed in a
memory cell. When rn iq, it guarantees that p, is not at the top of the stack. Hence
the p.d.p, gets stuck when it tries to put p into the output.

Acknowledgments. The author is grateful to Edward Reingold and M. S. Paterson
for their valuable suggestions during the preparation of this paper.
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TIGHTER BOUNDS FOR THE MULTIFIT PROCESSOR
SCHEDULING ALGORITHM*

DONALD K. FRIESENt

Abstract. This paper considers the problem of nonpreemptively scheduling n independent jobs on
rn identical, parallel processors with the object of minimizing the "makespan", or completion time for the
entire set of jobs. Coffman, Garey, and Johnson [SIAM J. Comput., 7 (1978), pp. 1-17] described an
algorithm MULTIFIT which has a considerably better worst case performance than the largest processing
time first algorithm. In this paper we tighten the bounds obtained in that paper on the worst case behavior
of this algorithm by giving an example showing that it may be as bad as 13/11 and proving that it can be
no worse than 6/5.

Key words, binpacking, multiprocessor scheduling, approximation algorithms, worst case analysis,
performance bounds

1. Introduction. A fundamental problem in deterministic scheduling theory is
that of nonpreemptively scheduling independent tasks on a multiprocessor system to
minimize the completion time for the entire set of tasks. Since this problem is known
to be NP-complete [5], it is unlikely that an efficient algorithm will be found for
obtaining the optimal schedule.

Much work has been done in studying approximation algorithms for various
scheduling problems. For the problem discussed here, the "largest processing time
first", or LPT schedule was analyzed by R. L. Graham [3]. The length of the LPT
schedule on an M processor system was shown to be at most 4/3-1/(3M) times the
length of the optimal schedule. More complicated algorithms were described in [4],
which can be used to obtain results as close to optimal as desired, but their running
time grows rapidly as the accuracy desired is increased, and they are exponential in
M whereas Graham’s was not.

More recently, in [1] an algorithm called MULTIFIT was presented, which is
computationally comparable to the LPT algorithm. In this paper we propose to analyze
somewhat more closely the algorithm MULTIFIT. In 1 it was shown that the length,
MF (L), of the schedule produced by MULTIFIT for any list of tasks, L, and any
number of processors satisfied

1
MF (L)-<_ 1.22OPT (L)+-

where OPT (L) is the length of the optimal schedule and k is the number of iterations
used. The authors conjectured that the asymptotic bound was in fact (20/17) OPT (L),
the worst case example known at the time. They also determined bounds which are
tight for _<-7 processors.

In this paper we tighten the bound by showing that MF (L)<-(1.2) OPT (L)+ 1/2
and by giving an example showing that there exist lists L for which MF (L)=
(13/11) OPT (L). (Note that 13/11 1.1818... and 20/17 1.176

2. Bckground. The scheduling problem we are examining may be formulated
in the following way. There are M _-> 2 identical processors and n independent tasks
T, T2,’", T,, each T having length s(T). A schedule is an assignment of tasks to
processors. The length of the schedule is the maximum of the sums of the lengths of

* Received by the editors February 18, 1980, and in revised form July 15, 1982.
t Department of Industrial Engineering, Texas A&M University, College Station, Texas 77843.
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the tasks assigned to each processor. An optimal schedule is one for which the length
is as small as possible.

In both the LPT schedule and in MULTIFIT, the tasks are first sorted into
nonincreasing order of length. For the LPT schedule the tasks are assigned in decreas-
ing order so that whenever a processor finishes a task, it is assigned to the longest
task not yet assigned. Algorithm MULTIFIT is based on the "first fit decreasing" bin
packing algorithm.

By regarding the processors as bins and the tasks Ti as items of size s(Ti), the
completion of a schedule by time can be considered as the successful packing of the
n items into M bins of size t. In the FFD algorithm for bin packing the bins are
numbered from 1 to M and the items, pre-sorted into nonincreasing order of size,
are packed sequentially, each going into the lowest numbered bin in which it will fit.
By trying to pack the items using different bin sizes t, schedules of different length
can be obtained. More precisely, we use an upper bound, UP, and a lower bound,
LOW, on the length of the schedule we seek. A number of choices are available, for
example, LOW=YxLS(X)/M and UP= 2 LOW as shown in [1]. Using a binary
search technique, we can attempt an FFD packing initially using a bin size (schedule
length) of S (UP + LOW)/2. Whenever we succeed, we decrease UP to S; and when
we fail, we increase LOW to S.

We would like, then, to obtain an upper bound a such that MF (L)=< a OPT (L)
for all lists L. Suppose we find a0, the smallest number a for which the FFD algorithm
is guaranteed to pack the list L in M bins of size a whenever there exists a packing
into M bins of size 1. If we introduce the notation FFD (a, L) to denote the number
of bins of size a used by the FFD algorithm to pack the list of items L, and OPT (1, L)
to denote the minimum number ot bins of size 1 required to pack the list L, we can
describe the goal as finding the smallest a for which FFD (a, L)-< OPT (1, L) for all
lists L of items of size <-1. (Clearly, the size of the largest item can be normalized to
be <-1, for any list by an appropriate choice of units.) Then [1, Thm. 3.1] guarantees
that after k iterations of our binary search procedure, we will obtain a schedule length
MFk (L) satisfying

MFk (L)=< (ao+2--) OPT (L).

In [1], the inequality FFD (a, L)-< a OPT (1, L) was shown for a 1.22. We will
prove in 5 that it holds for a 1.2 and in 3, we give a list L for which FFD (a, L) >
OPT (1, L) for all a < 13/11. Thus the worst case bound on the ratio of the length
of the schedule is in the interval [13/11, 6/5].

3. Examples. In [2], a parametric approach to bin packing was used to determine
the effect of changing the bin size on various bin packing algorithms. Letting a denote
the bin size and L an arbitrary list satisfying s(b)<-min (1, a) for all b eL, the
lim sup (FFD (a, L)/OPT (1, L)) was determined for all a =< 3. Typical of these results
is the following theorem ([2, Thm. 3.4.10]).

THEOREM 3.1. For any list L, FFD(a,L)<=OPT(1, L)+I if a>72/61. The
techniques used to prove this result are similar to those in this paper and derive from 1].

If we examine this result from the standpoint of scheduling with algorithm
MULTIFIT, we can conclude that MF (L) <= (72/61) OPT (L) if we can use one
additional processor. Example 3.1 shows that 72/61 is indeed the smallest number a
for which the statement is true. Unfortunately, as Example 3.2 shows, the additional
processor may be required, at least if a < 13/11. Consequently the worst case bound
for MULTIFIT is at least 13/11. We state this formally in the following theorem.



172 DONALD K. FRIESEN

THEOREM 3.2. For any M-13, there is a list L such that FFD (a,L)>
OPT (1, L) M if a < 13/11. Equivalently, for 13 or more processors, the worst case
bound for algorithm MULTIFIT is at least 13/11.

Example 3.1. L ={al, a2, "’’, a4ok, bl, b2, "", b4ok, Cl, c2,’’’, C20k, dl, dE,
"’’, d8ok}, s(ai)=37/61, s(bi)=23/61, s(ci)=15/61, s(di)=12/61 for all
FFD(a,L)=61k for a[1,72/61] since the packing of Fig. 3.1(a) will result.
OPT (1, L)- 60k since L can be packed as in Fig. 3.1(b).

23/61

37/61

40k bins

5/6

5/6

15/61

15/61

5k bins

(a) FFD packing ofL for Example 3.1.

/6
12/61
12/61
12/6i
12/61

16k bins

1.’2/61 15/(51
12/6..1 23/61

37/61
23/61

40k bins 20k bins

(b) OPT packing of L for Example 3.1.
FIG. 3.1

Example 3.2. L contains k + 39 items, the FFD packing used k + 14 bins of size
[1, 13/11), OPT (1, L) is k + 13. The sizes and packings are given in Fig. 3.2.

kbins

25/66

40/66
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(a) FFD packing ofL ]:or Example 3.2.

i3/66
/66

40/66

16/66

25/66

25/66

8 bins 3 bins

(b) OPT packing o[ L’[or Example 3.2
FIG. 3.2
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4. Notation and preliminary results. In 5, we will prove that FFD (6/5,L)<_-
OPT (1, L) for all lists L. Since we will proceed by assuming that we have a minimal
counterexample and derive a contradiction, we need to know some properties of a
minimal counterexample. Essentially a counterexample is minimal if the number of
bins is minimal and if, given the number of bins, the number of items is minimal. We
begin by stating some definitions and results from [1] for reference.

A minimal counterexample L is a list satisfying
(i) FFD (6/5, L)>OPT (1, L)=M;
(ii) For all lists L’ satisfying (i), It’l--> ILl;

(iii) For all lists L’ satisfying (i), OPT (1, L’)->M.
From now on we assume that L is a minimal counterexample. If rn is the smallest
item in the list L, we have the following six lemmas, from [1], with trivial changes.

LEMMA 4.1. (a) FFD (6/5L) OPT (1, L) + 1.
(b) All items of L but rn are packed in the first OPT (1, L) bins. We say that, for

subsets X and Y of L, that X dominates Y if there is a one-to-one function f: Y X
such that s(t)<-_s(f(y)) for all y Y.

LEMMA 4.2. (cancellation lemma). If B is a bin of the FFD packing and B* is
a bin of the OPT packing of L, then B cannot dominate B*.

LEMMA 4.3. In the OPT (1, L) packing, no bin B* has fewer then 3 items.
LEMMA 4.4. S (m) 1/5 + A, A > 0.
LEMMA 4.5. For any b eL, s(b)<-3/5-2A.
From Lemma 4.5, we see that the two largest items will fit in the first bin, and

each bin of the FFD (6/5, L) packing except the last will contain at least two items.
We shall use a refinement of the classification system of [1] for describing the bins of
the FFD (6/5, L) packing and the items they contain.

A bin B of the FFD (6/5, L) packing is called a k-bin if there were k items in
the bin at the time the first item was assigned to a later bin. If a k-bin has more than
k items at the end, it will be called a fallback k-bin. The items added after the first
k are then called fallback items. If no other items are added, it is called a regular
k-bin.

LEMMA 4.6. (a) All k-bins precede all k’-bins for k <k’ in the FFD (6/5, L)
packing.

(b) All regular k-bins precede all fallback k-bins in the FFD (6/5, L) packing.
Using these lemmas we can deduce considerable information about L and the two
packings. If A => 1/5, then s (m) -> 1/5 + 1 / 15 4/ 15 and, in the light of Lemmas 4.3
and 4.4, each bin in the OPT (1, L) packing contains exactly 3 items. Since s(b)<=
3/5- 2A, if B is a bin of the FFD (6/5, L) packing containing only two items, bl and
b2, s(bl)+s(b2)<--6/5-4A. Then s(b)+s(b2)+s(m)<-6/5 and m would fit inB. Thus
each bin of the FFD(6/5, L) packing contains at least three items, and so
FFD (6/5, L)- OPT (1, L). We assume, therefore, that A< 1/15. If A> 1/25, then no
bin of the FFD (6/5, L) packing can contain more than 4 items since 5(1/5 + A) >6/5.
Thus there can be no 5-bins in this case.

We introduce the following notation for the types of bins and items. A regular
k-bin and its elements will be called of type X, except possibly for the last such bin.
The items of a regular k-bin must average more than (1-A)/k in size since otherwise
the last item m would fit. Hence all X items will be greater than (1- A)/k except
possibly in the last regular k-bin. If this bin contains an item of size <_-(1- A)/k, then
the bin and its items will be called exceptional and both the bin and its items will be
called of type Z.

If the fallback item in a fallback k-bin is of size >(1-A)/(k + 1), then the bin
contains k + 1 items each of size> (1-A)/(k + 1) and we will classify the bin as type
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Xk+. Note that this includes all fallback 4-bins, and if A>1/25, all fallback
3-bins.

For k 2 or 3, a fallback k-bin not covered by the preceding paragraph (and the
nonfallback items in it) will be called of type Yk, except possibly the last such bin. If
a fallback k-bin contains a nonfallback item <-_(6/5)/(k + 1), the bin and its items will
be called exceptional of type Vk. Note that in any fallback k-bin, the sum of the sizes
of the nonfallback items is >k(6/5)/(k + 1) so the average size must be at least
(6/5)/(k + 1) and there can be at most one Vk bin for each k.

It is impossible to have two fallback items in a fallback k-bin since each would
have size >1/5. Thus the sum of the sizes of the items would be greater than
(k/(k +1))(6/5)+2(1/5)_->6/5. The fallback item f in a Yk or Vk bin is classified
according to its size. If s(f)>(1-A)/4, f is classified as type X4, otherwise it is of
type Xs.

Next we assign a weight w (b) to each item b. Items of type Xk are assigned weight
(1-A)/k. Items of type Y2 are assigned weight (2/5)(1-A) if the fallback item is of
type X and weight (3/8)(1-A) if the fallback item is of type X4. Items of type Y3
are assigned weight (4/15)(1 A).

Note that for all bins B described so far the weight function w satisfies
(i) Zb w(b) 1 A,
(ii) s(b) > w(b) for all b B.

We wish to assign weight to the Zk and Vk items so that (i) and (ii) will be satisfied
for exceptional bins as well. For a Zk bin, Y.bBs(b)> 1--A. We define w(b)=
s(b)-(.,,Bs(b)-(1-A))/k, that is s(b)-w(b) is 1/k times the excess of the size
of the bin over 1- A. For bins of type Vz or V3, we assign a weight to the fallback
item according to its type. If the Vk items in the bin are b 1, , bk we assign weight

k

1Sk(bi)-(1-A)+w(f))/k.so that s(bi)-w(bi) is the same for all i" w(b)= s(bi)-(Y.i=
kSnce Yi=l s(bi)+w(f)> I-A, s(bi)> w(bi) in all cases and Y.i=I w(bi)+w(f)= 1-A.

Two special cases must be noted. The weight of the last item, m, is (1- A)/4 if
A> 1/25 and 1/5 if A=< 1/25. In the former case, m is of type X4. In the latter, it is
of no particular type and is treated separately. Also, if in a Y2 or V2 bin the regular
items are large enough, it is convenient to modify their weights so that each receives
a fair share of the excess weight. More precisely, if S(bl) + s(b2) > (4/5)(1 A) + 2A,
then we classify the fallback item as type X5 and we ensure that s(b)-w(b)> A for

1, 2. This can be done by weighting bl and b2 as we did in the V2 bin.
We summarize much of this information in Table 1, where the last column gives

the conditions that A must satisfy if an item of the given type is to exist.

TABLE

Type Minimum size Weight Restrictions on A

X2 (l-A)/2 (l-A)/2 None
Y2 2/5 (3/8 or 2/5)(1- A) None
X3 (l-A)/3 (l-A)/3 None
Y3 3/10 (4/15)(1-A) AN 1/25
X4 (l-A)/4 (1-A)/4 None
X5 1/5+A (l-A)/5 A_-< 1/25

For exceptional items in a bin Z, the average size is at least as great as the
minimum size for items of type Xi and for V items, the average is at least the minimum
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size for Yi items. Similar statements hold for the average weight of the exceptional
items. In the following lemma, we summarize some facts about the difference s (x)-
w(x).

LEMMA 4.7. If X is an item of type V3, Y3 or Xs, or if x rn and A _< 1/25, then
s(x)-w(x)>=A. If x is an item of type V2 or Y2, A=< 1/25, and the fallback item is of
type X4, then s (x w (x >= A.

Proof. If x is of type Xs, then

s(x)- w(x) >- (1/5 + A)-(1 a)/5 (6/5)A.

If x m, then s(x)- w(x) (1/5 + A)- 1/5 A.
If x is of type Y3, then A _<_ 1/25 and so

s(x)-w(x)>=3/lO-(4/15)(1-A)= 1/30+4/15A>A.

If x is of type V3, we again must have A_< 1/25. Let B be the V3 bin containing x
and suppose B {b 1, b2, b3, f} with ]" the fallback item. Then

3

E (s(b,)-w(b,))>9/lO-(4/5)(1-A)>3A.
i=1

Since s(bi)-w(bi) is the same for all i, s(x)-w(x)> A.
If x is of type Y2, A=< 1/25, and the fallback item in the bin containing x is of

type X4, then

s(x)-w(x)> 2/5- (3/8)(- A) 1/40 + (3/8)A--> A.

If x is of type V2, A<_ 1/25, and the fallback item/ in x’s bin B ={bl, b2, [} is of type
X4, then

2

E (s(b,)-w(b,))>4/5-(3/4)(1-A)>2A.
i=1

Again, s (x) w (x) > A as in the V3 case.
For convenience of notation we extend our weight function from items to sets

of items by defining
w(B)= E w(b)

bB

for B
___
L.

We complete this section by proving two additional lemmas needed several times
in the proof of 5. The first restricts the possibilities when a bin of the optimal packing
contains three items. The second shows that Z4 items ordinarily cannot be larger than
X4 items, even when the X4 items are fallback items.

LEMMA 4.8. Let B* be a bin of the OPT (1, L) packing with In*l-3, and
w (B*) > 1 A. Then B* contains an item of type X2 or Z2.

Proof. Suppose not. Let B* {b, c, d} with s (b) -> s (c) -> s (d). Suppose none of
the items of B* is in a fallback 2-bin; then the first bin B after the fallback 2-bins
dominates B* since all items of B* are available and B contains the three largest
available items. Thus at least one item of B* is in a fallback 2-bin.

Let B be the first fallback 2-bin to contain an item from B*, and let B {x, y, f}
with f the fallback item. Since x and y are the largest items available, we must have
s(x)>-s(b), s(y)>=s(c), and also b B since s(b)>=s(c). If s(f)>-s(d), we would again
have B* dominated by B. Hence d does not fit in B, i.e.,

s(z + s(b + s(d) > 6/5
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where z is that one of x and y which is not b (b f since s(b)>=s(d)> s(f)) while

Subtracting yields

s(c)+s(b)+s(d) <- 1.

s(z)>s(c)+l/5.

We now claim that s(z)+s(b)<=(4/5)(1-A)+2A. If not then by the definition
of w for Y2 and V2 bins in the special case where S(bl) + s(b) > (4/5)(1 A) + 2A, b
must have a size that exceeds its weight by more than A; and hence, since s(B*)<-1,
we have w(B*)< 1- A contradicting our assumption.

Thus s(x)+s(b)<=(4/5)(1-A)+2 and since s(d)>6/5-(4/5)(1-A)-2A=
2/5-(6/5)A. This implies that s(z) > s(c)+ 1/5 >=s(d)+ 1/5 > 3/5-(6/5)A contra-
dicting Lemma 4.5.

LEMMA 4.9. If b is an item of type Zn and c is an item of type Xn, then either
s(c)>=s(b) or s(b)>(1-A)/3.

Proof. Since all X4 items are packed before the Z4-bin, if s(b)> s(c), it must be
the case that c is a fallback item in a fallback 2-bin. If b would not fit and s(b)<=
(1- A)/3, then the nonfallback items, x and y, in this bin satisfy

s(x) + s(y) > 6/5 -(1 A)/3.

If s(x)+s(y)>(4/5)(1-A)+2A, then c would have been classified as type X5 so we
must have

and

(4/5)(1 A) + 2A>6/5-(1-A)/3

(13/15)A>1/15 contradicting A<=l/15.

5. Proof of the main result. The principal idea of the proof is to try to show that
if B* is a bin of the OPT (1, L) packing, w (B*) -< 1 A. If this were true for all such
B*, we would be done since then

w(L) , w(B*) <-_ OPT (1, L)(1 A),
B*

while

w(L) Y w(B)= (FFD (6/5, L)-I)(1-A)+w(m)>(FFD (6/5, L)- 1)(l-A)
B

where the summation over B is interpreted to mean the sum over the bins of the
FFD (6/5, L) packing and the summation over B* means the sum over the bins of
the OPT(1,L) packing. Combining these inequalities, we get FFD (6/5, L) <=
OPT (1,L) since both FFD (6/5, L) and OPT (1, L) are integers.

Unfortunately it is not true that w(B*)=< 1- A for all B*. Our proof will show,
however, that the potential excess from those bins B* of weight > 1- A is less than
the weight of m. First we show that only bins B* containing exceptional items can
have w(B*) > 1 A. This is enough to enable us to prove the result if A > 1/25 (Lemma
5.2). In Lemmas 5.3, 5.4, and 5.5 we examine more closely how the exceptional items
can be packed in preparation for the proof of the main result. Roughly the idea is to
show that the excess attributable to each exceptional item is at most A/2 (except for
possibly one bin).

LEMMA 5.1. IfB* is any bin of the OPT (1, L) packing containing no exceptional
items, then w (B *) <= 1 A.
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Proof. Suppose B* is a bin of the OPT (1, L) packing which contradicts the
lemma. It b is an item of type X5 or Y3 or if b m and
and since s (x) -> w (x) for all items x
B* contains an item of type X5 or I"3. We assume then that no such item is in B*.

Since 5s(n)> 1, B* must contain no more than 4 items; thus by Lemma 4.3,
IB*I 3 or 4.

Case 1. IB*]=3.
By Lemma 4.8, if w (B*)> 1- Z, B* must contain an X2 item. There can be no

other item of size>(1-A)/3 else s(B*)>(1-A)/2+(1-A)/3+(1/5+A)>I. The
only possibility is for the other two items to be of type X4 and w(B*)=
(1 a)/2 + 2(1 a)/4

Case 2. IB*I=4.
Now B* cannot contain an item of type X2 or Y2 since then s(B*)> 1. Thus B*

can only contain items of types X3 and X4. If all are of type X4, w(B*)= 1- fi, while
if even one is of type X3, s(B*)>(1-A)/3+3(1-A)/4= 13/12-(13/12)A>1.

Next we show that for a A large enough there is no difficulty.
LEMMA 5.2. If A> 1/25, then FFD (6/5, L)=<OPT (1, L).
Proof. We assume that L is a minimal counter-example and complete the proof

by contradiction.
By our earlier discussion and by Lemma 5.1, we need only show that the excess

weight (over I-A) in bins containing exceptional items is bounded by w(m)=
(1-A)/4. We shall in fact show that the excess is bounded by 3A which is less than
(l-a)/4 if 1/25 <fi,<= 1/15.

For A> 1/25, the only exceptional items are of type Z2, V and Z3. Let x be
either a V item or a Z3 item of size > (1-A)/3. (Note that both V. items must exceed
(1- A)/3 since if the smaller V item were <= (1- A)/3 then the larger V item is
> 1-A-(I-A)/3 2/3-2A/3>3/5-2A contradicting Lemma 4.5.) Let x B* in
the OPT (1, L) packing. IB*I < 4 since otherwise

8(B*)>(1-/)/3+3(1/5+ /)> 1.

But if }B*] 3, by Lemma 4.8, either w(B*) =< 1 h or B* contains an X or Z item.
Since

there cannot be an X2 item in B* and we conclude that the only bins of weight > 1 A
are those containing Z. items or Z3 items of size=<(1-A)/3. Since at least one Za
item must have size exceeding (1- A)/3, this means there are at most four exceptional
bins to contend with--two containing Z items and two containing the Z3 items of
size =< (1 fi,)/3.

Let B’ and B’ be the bins containing the two Z items. Then ]B* LI B:] 6
since there can be no 2-bins and IB 1" t_J B*I->_ 7 would imply that

s(n* n’) > -a+5(/5 +a)>e.

Also B* t.JB cannot contain an item of size > (1- A)/3 other than the Z items else

>-s(B t.JB*) > -a+(-a)/3 +3(/5 +a) 9/5 +(5/3)a,

contradicting A> 1/25. If a Z3 item of size =<(1-/)/3 is in B’ tAB* then there are
at most three bins B* with W(B*)> 1- A. If B* tA B* contains a Y3 item, then one
of the bins (B* or B*) must have weight =< 1-A by Lemma 4.7, and again there are
at most three bins B* with w (B*)> 1- A. If B* tA B* contains no Z3 items and no
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Y3 items, the four items that are not of type Z2 must be of type X4 and

W(B)+ W(B*) 1-A+4(1-a)/4 2(1- A).

In this case there are most two bins which can produce an excess above 1- A per bin.
In all cases then, the total excess is at most 3A. Hence

E w(b)= Y. (B*) < (- A) OPT (, 2) + 3A
bL B*OPT(1,2)

E (b)= E
beL BFFD(6/5,L)

and

Combining these yields

w(B) (1 A)(FFD (6/5, L)- 1)+ w (m).

FFD (6/5, L) < OPT (1, L)+ (3A- w(m))/(1 A)+ 1 < OPT (1, L)+ 1,

since 3A<w(m)=(1-A)/4 for A<l/15. Since FFD(6/5, L) and OPT(1, L) are
integers, the lemma follows.

We still have to consider the case where A =< 1/25. In the next lemma we show
that the only exceptional items we need to consider are of type Z2, Z3 and Z4 and
that the only other items that can be in a bin B* satisfying w (B*) > 1 A are of types
X2, X3, X4o

LEMMA 5.3. IfB* is any bin of the OPT (1, L) packing satisfying w(B*)> I-A,
then B* contains no Y2, V2, Y3, V3 or X5 items, and does not contain m.

Proof. For an item, x, of type Y3, V3 or Xs, and for m we have s (x)-w (x)-> A
by Lemma 4.7. Since s(y)->w(y) for all items, if x B*, w(B*)<s(B*)-A<--I-A.

Suppose x B* and x is of type Y2 or V2.
Case 1. IB*[=4.
In this case s(x)<= 1-3(1/5+A)= 2/5-3A. Certainly x cannot be of type Y2 or

be the larger V2 item, since such items must be larger than 2/5. If x were the smaller
V2 item, letting y be the larger V2 item, we would have

s(y)+s(x) >4/5 + 3A,

since the next smallest item after x did not fit. Hence by the way weights are assigned
to V2 items, letting be the fallback item,

s(x)- w(x) >= [(s(x) + sy)-(1 a) + w(f)]/2
_>- [4/5 + 3A-(1 A) + (1 A)/5]/2 > A.

Thus w (B*) _<- s (B*) X <= 1 A.
Case 2. IB*I=3.
By Lemma 4.8, B* must contain an X2 or Z2 item, c. Let y be the other Y2 or

V2 item packed with x in the FFD (6/5, L) packing. Then we must have s(c)>=s(y).
Hence s(c)+s(x)>s(y)+s(x)>4/5 and s(B*) would be >4/5+ 1/5+A> 1 which is
impossible. U

Thus there are now at most 9 exceptional items and hence at most 9 bins B*
satisfying w(B*)>I-A. For convenience of notation we define XS(B*)=
w (B*) (1 A). We need to show that for the bins B’, B 2"," ", B, satisfying
XS(B/* > 0 we have

Y XS(B* )< w(m)= 1/5.
i=1
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In the next lemma we bound XS(B) for some of these B* if B* contains only one
exceptional item.

LEMMA 5.4. IfB* is a bin containing exactly one exceptional item b andXS(B*) >=
//2, then the type of b cannot be Z4 and if it is Z3, then s(b)<(1-A)/3.

Proof. Suppose B* is a bin of the optimal packing with w(B*) > 1 A/2, and that
B* contains a single exceptional item b.

Then B* cannot contain an X5 item so if s(b)>=(1-A)/3 we must have IB*I <4.
(Otherwise s(B*)>=(1-A)/3+ 3(1 A)/4 > 1.) But if In*l- 3, by Lemma 4.8 B* must
contain an X2 item and then s(B*) > (1 A)/2 + (1 A)/3 + (1 A)/4 > 1. Thus we
must have s(b)<(1-A)/3. If b is of type Z3, we are done. Suppose b is of type Z4.

If ]B*I- 3, B* must contain an X2 item by Lemma 4.8. The remaining item, c,
can only be of type X4. By Lemma 4.8, s(c)->s(b). Now w(B*)=
(1-Z)/2+(1-a)/4+w(b). Also l >=s(B*)>(1-a)/2+s(c)+s(b)>=(1-a)/2+
2s (b). Therefore s(b)<l/4+A/4, and hence w(B*)<3(1-A)/4+ 1/4+
A/4 1- A/2 contradicting the hypothesis. Thus b cannot be of type Z.

If [B*[ =4 there can be no item of size>(1-A)/3 so all other items are of type
X4. By Lemma 4.9 each is at least as big as b and w(b)<2(b)<= 1/4. Thus w(B*)<
3(1-A)/4 + 1/4= 1-3A/4, again contradicting the hypothesis on B*. !-!

Next we consider what may happen to the Z2-items.
LEMMA 5.5. If B* andB are the bins of the OPT (1, L) packing which contain

the larger and smaller Z2 items respectively, and XS(B’) +XS(B’) >- A, then either
B*I t.J B* contains at leastfour exceptional items orone oftheZ3 items with size< (1 h)/ 3.

Proof. Suppose the lemma is false. Then there is no Z2-item in B* LI B2* whose
size is <(1-A)/3, and by Lemma 5.3, BI* B* contains only items of type X2, X3,
X4, Z, Z3, and Z4.

If there is any item of size-> (1- h)/3 in B* U B2* (other than the two Z2 items),
there must be at least two items of size < (1- A)/4, since otherwise

2>=S(B’)+S(B’)> 1- A + (1- A)/3 +2(1- A)/4+ 1/5 +A 61/30- (5/6)A-->2.

These two small items cannot be of type X, X3, or X4 and hence must be exceptional,
yielding a total of four exceptional items and a contradiction. From this argument we
see that there can be no items of size > (1- A)/3.

We must have IB tA B*I-- 6 since otherwise s(B’ t_J B*) > 1 A + 5(1/5 + A) > 2.
The remaining four items must be of type X or Z4. If there are two Z4 items, there
are four exceptional items while if there are none, w(B*)+w(B’)=
1- A +4(1- A)/4 2(1- A). Thus there must be exactly one Z4 item b. By Lemma
4.9, b is no bigger than the X4 items and hence

2>-s(B t_JB*) > 1-a+4s(b).

Hence s(b)<l/4+A/4 and, since w(b)<s(b), w(B* )+w(B’)<l-+
3(1-A)/4+l/4+A/4 from which we infer that XS(B*)+XS(B*)<A/2, again a
contradiction.

We now need to gather the pieces together to complete the proof of the main result.
THEOREM 5.1. FFD (6/5, L)-<OPT (1, L).
Proof. As in the lemmas we are assuming that L is a minimal counterexample.

From Lemma 5.2 we may assume that/_-< 1/25. From Lemmas 5.1 and 5.2 we know
that the only bins B* for which X$(B*) > 0 are those containing Z., Z3 and Z4 items.
Also the only nonexceptional items in such a bin are of types X, X3 or X4.

By the definition of type Z3, there are either one or two Z3 items of size (1- A)/3
or less.
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Suppose first that there is only one Z3 item, b, with s(b)<=(1-A)/3. Using the
notation of Lemma 5.5, if b B* B 2", then all other bins containing Z3 or Z4 items
either contain two or more exceptional items or have an excess > A/2. Thus for the
bins B* with XS(B*) >0,

, XS(B)<2A +6(A/2)= 5A.<= 1/5 w(m)
i=1

since A =< 1/25. Since the total excess is less than w(m), the theorem follows as in the
proof of Lemma 5.2.

If b’B* t_J B, then either XS(B.) +XS(B 2* =< A or B’ I..J B2* contains at least
four exceptional items. In the former case,

E XS(B*)<XS(B)+XS(B)+ A +6(A/2)--< 5a_<-- w(m),
i=1

while in the latter case,

E XS(n*)<XS(n*)+XS(n)+A+4(a/2)<-Sa<-_ w(m).
i=1

Thus in all cases the theorem follows if there is only one Z3 item of size <-(1- A)/3.
Now suppose that there are two Z3 items, b and c, of size <-(1- A)/3 and let the

third Z3 item be z. Suppose that one of b and c, say b, is in B* 12 B. If there are
four exceptional items in B 1" U B2*, then by the argument used above

Z XS(B*,)<XS(B*)+XS(B’)+A+4(A/2)<=5A<=w(m).
i=1

Similarly if B * B’ contains b and an X5 item or m

Z xs(B <XS(B*) +XS(B 2* + A + 5(A/2) < (9/2)A < w (m).
i=1

Hence all items in B* LI B’ other than b and the two Z2 items are of size > (1 A)/4
and s(b)<2-(1-A)-3(1-A)/4=l/4+(7/4)A. Then s(z)>l-A-s(b)-s(c)>
5/12-(29/12)A. Since (l-A)/2+ 5/12- (29/12)A + 1/5+A> 1, z cannot be in a bin
with an X2 item. Since B l* t_J B2*, by the above reasoning, contains only one item, b,
of type Z3, z cannot be in the same bin with a Z2 item. Thus, by Lemma 4.8, z must
be in a bin B* with three other items. None of these can be > (l-A)/4 in size since
5/12-(29/12)A+(1-A)/4+2(1/5+A)> 1 when A--<_ 1/25. But then either B* con-
tains an X5 item (or m), or B* contains three other .exceptional items. Either of these
can be shown by the previous reasoning to result in =1XS(B) <= w(m). We conclude
that B 1" B2* can contain no Z3 items of size _<-(1- A)/3.

Suppose now that b B* with XS(B*) > 0 and that B* contains no other excep-
tional items. We begin showing that s(b)< 1/4 + (3/4)A.

If IB*I- 3, by Lemma 4.8, B* contains an X2 item. The remaining item must be
of size > (l-A)/4 because items smaller than this are either exceptional or of type
X5 (or rn). Thus s(b) < 1 -(1 A)/2- (1 A)/4 1/4 + (3/4)A. If In*l- 4, the remain-
ing items must all be of size > (1 A)/4 and again s (b) < 1 3(1 A)/4 1/4 + (3/4)A.

But now

s(z) > (1 A)-(1 a)/3-(1/4 + (3/4)a)= 5/12- (17/12)A,

and we can show that this is impossible in the following way. Let B* be the optimal
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bin containing z. If [B*[ 3, then by Lemma 4.8, B* must be B* or B2* since B*
cannot contain an X2 item and still have s (B*) -< 1.

But then

2>-_s(B( UB*)> 1-A+5/12- (17/12)A+3(1/5 +a) 121/60+ (7/12)A> 1.

If [B*I =4, s(B*)>5/12-(17/12)A+3(1/5+A)> 1. We conclude that b and c each
belong to optimal bins containing other exceptional items or with excess <-0.

We can summarize our results when b and c are of size <(l-A)/3 by saying
that B ’ t.J B 2" either contains four exceptional items or XS(B +XS(B 2") --< A and
that for each other bin B* with XS(B *) > 0 either B * contains two exceptional items
or X$(B)<_-A/2. Combining these we see that

Y XS(B* )<-(9/2)A<w(m)
i=1

and the theorem follows.
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ON THE COMPLEXITY OF SOME COMMON GEOMETRIC
LOCATION PROBLEMS*
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Abstract. Given n demand points in the plane, the p-center problem is to find p supply points (anywhere
in the plane) so as to minimize the maximum distance from a demand point to its respective nearest supply
point. The p-median problem is to minimize the sum of distances from demand points to their respective
nearest supply points. We prove that the p-center and the p-median problems relative to both the Euclidean
and the rectilinear metrics are NP-hard. In fact, we prove that it is NP-hard even to approximate the
p-center problems sufficiently closely. The reductions are from 3-satisfiability.

Key words, computational geometry, facility location, p-center problem, p-median problem, NP-
hardness, approximation of NP-hard problems

1. Introduction. The goal of the present paper is to prove the NP-hardness of
the following common problems in geometric location theory"

P1. Euclidean p-center problem: Given a set X {(xl, yl), (x2, y2),""", (x,,, yn)}
of points in the plane, find a set S {(Zl, tl), (z2, t2),’ , (zp, to)} of p points so as to
minimize

max min {(xi z)2 + (yi- t)2}.
l<-i<=n

Intuitively, we wish to minimize the radius R such that the points (xi, yi)
(i 1, 2, , n) can be enclosed by p circles of radius R.

P2. Rectilinear p-center problem: Following the notation of Problem 1, we wish
to minimize

max min
l<=i<=n

In other words, we wish to minimize the number A such that all the points (xi, yi)
(i 1, 2,. , n) can be enclosed within p squares of area A, the edges of each square
forming angles of 45 with the axes.

P3. Euclidean p-median problem: Following the notation of Problem 1, we wish
to minimize

min {/(xi- z,)2 + (yi- tii:}.
i=1

P4. Rectilinear p-median problem: Here we wish to minimize

man {IXi- Z][ all-lYi- tl}.
i=l l]p

We will prove that in fact it is NP-hard even to approximate P1 to within about
15% and P2 to within 50%.

We note that the analogous problems on the real line (instead of the plane) are
both "easy": the p-center problem on the real line is solvable in O(n log n) time [10],
[2], and the p-median problem on the real line is solvable in O(np) time
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The 1-median problem is also known as the Weber problem. No known algorithm
finds the exact coordinates of the median (see [12] for a discussion of this difficulty).

The graphic counterparts of the p-center and the p-median problems are easily
shown to be NP-hard [6], [7], using a reduction from Minimum Dominating Set. It
is usually more complicated to prove NP-hardness of a geometric problem than of its
graphic counterpart (see [4] and [14]).

Shames [16] conjectures that P1 is NP-hard. Papadimitriou [15] proved NP-
hardness of a different Euclidean p-median problem, namely, that in which the points
(zj, tj) (/" 1, 2, , p) must be selected from the set X. He mentioned the NP-hardness
of both our Problems P1 and P3 as open. Previous versions of the proofs in the present
paper were given in [18] and [8].

2. An overview of the proofs. In each of the proofs we establish a reduction
from 3-satisfiability [5]. Formally, given a boolean expression

E =E^E^" ^
where E. X/" V y/’ V Z/" ({X], yj, Zi} {U 1, /1, U2, tTz, ’, uq, tTo}), the 3-satisfiability
problem is to decide whether there exists a set S

_
{ul, t71, u2, tTz,. , u,, to} such

that

and

S {x, Yi, z} # (/" 1, 2,...,m),

IS f3 {u,, a,}[ 1 (i= 1,2,...,q).

The reduction from 3-satisfiability to a geometric problem will be established as
follows. Each variable ui (i 1, 2,. , q) will be represented by a "circuit" of objects
(e.g. circles, squares, points) in the plane. There will be essentially two different ways
to partition the objects of the circuit so that the solution of the location problem is
close to optimal. These two different partitions correspond to the choice of truth value
for ui. The clauses E. (/" 1, 2,..., m) are represented by "clause configurations"
which determine how the different circuits meet each other. A clause configuration
relates the property that a clause is satisfied to the property that a partition is efficient
from the point of view of the location problem.

Circuits must cross each other, without interfering with each other’s properties;
this requires that we design the "junctions" carefully. A schematic view of the circuits
and their relations to the clause configurations is shown in Fig. 1. The details for each
of the four problems are given in the succeeding sections.

3. The Euclidean p-center problem. We shall establish the NP-hardness of the
Euclidean p-center problem by proving the following problem to be NP-hard"

Circle Covering. Given n unit circles in the plane and an integer p > 0, decide
whether there exist p points such that each circle contains at least one point (we say
that a circle contains a point if the point lies on, or in the interior of, the circle).

We now reduce 3-satisfiability to Circle Covering. In the reduction each variable
ui will be represented by a circuit of circles (see Fig. 2) Ci= {C, C, , Cr, }, where
Co r,, ri is even and C, C# (R) if and only if Ik- II <--1 (mod ri). We say that a
set of points Z covers a set of circles C if each circle in C contains at least one point
in Z. Thus, at least ri/2 points are required to cover Ci. There are essentially two
different ways to cover all the circles, n.amel.y, either all the points belong to C f’l C/1

for k 0, 2, 4,.. , or all belong to C, f) C,/1 for k 1, 3, 5, . In the former case,
corresponding to the assignment of "true" to ui, the points are called true points; in
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FIG. 1. A schematic view of the reductions.

FIG. 2. A circuit in the reduction ’or circle covering,.

the latter case, corresponding to the assignment of "false" to ui, the points are called
[alse points. We note that circuits may have to cross each other; we specify later how
the "junctions" are designed.

Each clause E. is represented in the reduction by a configuration of four circles
as shown in Fig. 3. Specifically, there is one central circle that intersects the intersection
of every two other circles of the configuration. However, the intersection of all four
circles is empty. These properties imply that two points are both necessary and sufficient
to cover all four circles, namely, one point to cover the central circle and two other
circles, and another point to cover the remaining circle. Denote the central circle by
D and the other three by D{, D and D{, corresponding to the literals x, y. and
z., respectively. The circle D{, for example, intersects precisely two circles C, C/1,
where is such that x. e {u, a}. Moreover, D 1C Ck+l . If xi ui then k is
even; otherwise (xi =tii) k is odd. Thus, if the assignment of a truth value to ui implies
that some point in Ck Ck/l is selected, then this point may be selected so as to
belong to D as well. It thus follows that if the overall truth assignment satisfies Ei,
then at least one of the circles D, D, Dz can be covered by a true or a false point.
The circle D can never be covered by such a point; thus we need precisely one more
point per satisfied clause to guarantee that all the corresponding clause configurations
are covered.
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FIG. 3. A clause configuration in the reduction for circle covering.

We now discuss junctions. In each junction, a vertical segment of one circuit
crosses a horizontal segment of another; the exact structure is shown in Fig. 4. Formally,
a junction common to the circuits corresponding to ui and to u. has the following
characteristics" Suppose that the circuits meet at a circle C (of the circuit correspond-
ing to ui) which is identical with a circle C (of the circuit corresponding to uj). We
insist that both k and be odd numbers. This ensures that the segments of circuits
between consecutive junctions have equal numbers of true points and of false points.

F

FIG. 4. A/unction in the reduction for circle covering.

Furthermore, the junction is designed so that the central circle C, C intersects the
following nonempty sets: C-1 ’)C[-1 C-1 Cl+l, Ck+l f’)C-i and Ck+l C{+1.
Note that the requirement C_ CJC+ C{_ f3 C{+ is satisfied. These facts
imply that one point may be saved at each junction. Specifically, a point of the
intersection Ck/l f’)Ck fq C_I, for example, is both a false point for the circuit of u
and a true point for the circuit of u. Thus if we assign false to ui and true to u then
the points marked with arrows in Fig. 4 constitute a cover for the two circuits that
complies with this truth assignment. We denote the number of junctions by J.
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Letting

p +m -J,
i=1

we claim that E is satisfiable if and only if there exists a set Z of p points covering
our entire structure. First, assume that E is satisfied by a truth assignment r. For

1, 2, , q, if ’(ui) true, then include in Z the true points of the circuit for ui;

otherwise include in Z the false points of the circuit for us. Since one point is saved
per junction, Z so far contains q r/2-J points. Since each clause is satisfied,i=1

include in Z only one more point per clause in order to cover the central circle as
well as the at most two more circles of the clause configuration not covered by a true
or a false point. Thus Z contains p points and covers the complete structure.

To prove the converse, let Z be a set of p points that covers the entire structure.
We will construct a truth value z satisfying E. To that end, we will count the number
of points available and conclude that the points selected for covering each circuit are
either all true points or all false points. Consider a segment of a circuit between two

{C/,C/3,.consecutive junctions, i.e. a maximal set of circles of the form Ci-2 ,
where k and are odd and for each s, k +2 =<s <=l-2, Cs is not involved in any
junction. It follows that the length of each segment is odd, and that segments are
pairwise disjoint. Furthermore, there are 2J of them, since each junction touches four
segments and each segment touches two junctions. The total length of the segments
is equal to

(Y. ri -J)- 5J E r -6J.

Since there are 2J segments, each of odd length, it follows that

1 ri- (E ri- 6J 2J)+ 2J E-2J

points are required to cover all of them. It is easy to verify that within each segment,
except for at most one point, either all the selected points are true, or all are false
(provided that all of the segments are covered with no more than Y’. ri/2-2I points).
We are therefore left with only

p- --2 =m +J

more points with which to cover the rest of the circles (i.e. the junctions and the
clause configurations), possibly with the aid of the previous points. However, the
central circle of each junction and the central circle of each clause configuration are
not covered by any point that covers a circle of a segment; hence we need to allocate
precisely one more point for each junction and for each clause configuration. However,
this implies that the aid from the previous points must be organized carefully.

Consider first the junctions. Each junction consists of five circles. The point which
covers the central circle can cover at most two more circles; thus two circles per
junction need to be covered with the aid of points covering the segments. However,
each segment may assist in covering at most one circle of the junction; hence each
segment must assist by covering precisely one such circle. Moreover, the assistance
at each junction must come from segments of two distinct circuits, since the point
that covers the central circle of the junction also covers two more circles belonging
to distinct circuits. It finally follows that at each junction the two segments of the
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same circuit involved must be covered with the same truth-value type of cover. This
implies that the points selected for the cover induce an assignment r of truth value
to the literals.

Now consider any clause configuration. The point that covers the central circle
cannot cover all three other circles; hence at least one of the other three is covered
with the aid of points covering the segments. The particular way of constructing the
clause configuration ensures that its corresponding clause is satisfied by -. This
completes the proof that 3-satisfiability is reducible to Circle Covering. It is easy to
verify that the reduction is polynomial.

An interesting consequence of this reduction applies to the NP-hardness of finding
an approximate solution to the p-center problem. Suppose that instead of unit circles
we draw circles of radius R => 1 centered at the centers of the circles used in the
reduction. We claim that as long as R <2/x/, the same intersection relations hold
among the circles; that is, the minimum number of points required to cover all the
circles is independent of R when I<-R <2/x/ (if R =2// then the intersection
of all the four circles in a clause configuration is nonempty and hence p points suffice
even if E is not satisfiable). It follows that an approximate solution to the p-center
problem less than 2// times the optimal is necessarily an optimal solution. This
implies that if P NP then no polynomial-time algorithm for the p-center problem
always gives a solution less than 2/x/ 1.15 times the optimal; in other words, it
is NP-hard to approximate the p-center problem with a relative error of less than
about 15 %.

4. The rectilinear p-center problem. We now prove the NP-hardness of the
rectilinear p-center problem, which is more surprising that the NP-hardness of the
Euclidean problem because of the following facts:

(i) The rectilinear 1-center problem is trivially solvable in linear time [3], while
the Euclidean problem requires much more sophisticated tools [1], [13], [17], [9].

(ii) The rectilinear problem seems to decompose into two one-dimensional prob-
lems. This is true in the case p 1, but turns out to be false in general, in view of our
NP-hardness result.

As in the Euclidean case, we will consider a "covering" problem. In the present
case, instead of circles, we deal with squares that are all identically oriented; without
loss of generality we may assume that their boundaries are parallel to the axes.

Square Covering. Given n unit squares in the plane, each of whose boundaries
are parallel to the axes, and an integer p > 0, decide whether there exist p points such
that each square contains at least one point.

As an aside, we note that our squares have the property of interval intersection,
namely, a set of such squares has a nonempty intersection if and only if every two
squares in the set intersect. We now define the concept of a square-intersection graph,
which extends the notion of an interval-intersection graph. Specifically, an undirected
graph is a square-intersection graph if there is a one-to-one correspondence between
the vertices of the graph and a set of squares in the plane (whose boundaries are
parallel to the axes) such that two squares intersect if and only if their corresponding
vertices are linked with an edge. Obviously, two such squares intersect if and only if
their intervals of projection on the axes intersect. However, the problem of minimum
cover by cliques is easily seen to be polynomial on an interval-intersection graph and,
as follows from our results, NP-hard on a square-intersection graph.

The proof of NP-hardness for square covering is an adaptation of that for circle
covering. First, variable Ui is represented by a circuit {Sg, S, Sr,}, of squares as
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is shown in Fig. 5; ri is even. Two squares of a circuit intersect if and only if they are
adjacent. A clause configuration is shown in Fig. 6. The intersection of two squares
may have positive measure. Each clause Ej is represented by a single square Sj that

FIG. 5. A circuit in the reduction for square covering.

S13

$134
$23

$20

FIG. 6. A clause configuration in the reduction for square covering.

touches the three circuits involved (this differs from the proof for circle covering, in
which each clause was represented by four extra circles; see Fig. 3). A junction is
illustrated in Fig. 7. In a junction we simply coalesce a square of one circuit with a
square of the other circuit. The coalesced squares must each be odd indexed in its
respective circuit so that there will be an odd number of squares between consecutive
junctions of a circuit. The four corners of the junction square correspond to the four
combinations of possible truth values for the corresponding variables. Thus, in order
to cover all the circuits, we need p =Y. ri/2-J points, where J is the number of
junctions. If E is satisfiable then p points suffice for covering the clause configurations
as well as the circuits if the type of cover in each circuit is chosen appropriately.
Conversely, suppose that p points suffice to cover the entire structure. Then consider
segments of circuits between consecutive junctions’ {S ik/2, Sk+3,’i Si-2}, where Sk
and S are consecutive junction squares in the circuit for ui. As in the Euclidean case,
we need Y. ri/2- 2J points in order to cover all these segments. We are therefore left
with only J more points with which to cover the junctions and the clause configurations.
By arguments analogous to those used in the Euclidean case, it follows that the cover
with p points induces truth values that satisfy E.
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s{9

s0

s15 s16 s17 ;$21 $18 $19

FG. 7. A ]unction in the reduction .for square covering.

An example of the entire structure of squares in the reduction is illustrated in
Fig. 8.

As in the Euclidean case, the problem of finding an approximate solution is
NP-hard. More precisely, the intersection relations among squares remain the same
even if we enlarge their sizes by any factor less than 23- Indeed, if the two unit squares
of a circuit which touch a square representing a clause have 50% overlap (see Fig.
6), then by inflating each square by a factor of we obtain nonempty intersections of
squares belonging to distinct circuits. This implies that, assuming P # NP, no poly-
nomial-time algorithm for the rectilinear problem always gives solutions less than
times the optimal.

] x i11,

-7;i x:

q-I ;X! X X I1

t’l’l’ I"X X X[] X 1.1.1

I’1 X X X: )’<: !’1 I’]

.11 X II!1

Z Ii"’1" _I, "1

I1

FIG. 8. The complete structure ]’or a sample square-covering reduction.
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5. The rectilinear p-median problem. We reduce 3-satisfiability to the rectilinear
p-median problem. Here clause Ej is represented by a single point P, while variable
ui is represented by a circuit C of points {P, P, , Pin}, such that P Pn, and
r =0 (mod 3). Denoting the rectilinear distance by d, we also require that if k =0
(mod 3) then d(P,P/I) 1, and that otherwise d(P, Pk/l)=b >> 1. Moreover, if
I tl > (mod r,) then d(P , > b. An example of a circuit is shown in Fig. 9.

b ,1

FIG. 9. A circuit in the reduction for rectilinear p-median. The triangles indicate points Pk such that
k =0 (mod 3); hence the dotted lines indicate a true partition.

Consider the p-median problem on the circuit C with p ri/3. The circuit may
be partitioned into triples of points of the form (x, y, z), where d(x, y)= 1, d(y, z)= b
and d(x, z)= b + 1. We claim that the optimal solution of the p-median problem on
C is obtained by partitioning into such triples and allocating one point per triple.
Formally, let f(S) denote the minimum of the 1-median problem on a subset S of a
circuit C i. The p-median problem on C may be rephrased as" Partition C into p sets
$1, $2," , Sp so as to minimize Y f(Si). Now consider the function g, where

g(1)=0, g(2)=l, g(k)=(k-2)b+l fork>--3.

It can be verified that for every subset S of C, f(S)>= g(Isl). Considering the problem
of minimizing ’. g(si) subject to Y. s 3p, we observe that the optimal solution is s 3,
/" 1, 2,..., p. Thus, the value p (b + 1) is a lower bound on the minimum of Y [(Si).
Note that there are two different partitions that yield the same value of p (b + 1). These
are the partitions into triples Pik-1, pk,i Pk/ where either k--0 (mod 3) for every k
(this is called the true partition) or k--1 (mod 3) for every k (this is called the false
partition). The solution points coincide with the middle points Pik Of the triples. Note
that every other selection of solution points does not achieve the lower bound of
(b + 1)ri/3 on a circuit.

We now discuss the clause configurations. For each clause E -x v Yi v z, we
allocate one point P’ that is situated at a distance of b from three points, one from
each circuit related to the clause Ei (see Fig. 10). The point of a circuit that is nearest
to P is chosen according to the relation of the corresponding literal to Ei. For
example, if xi u, then the point P of the circuit of u that is nearest to P is such
that k 0 (mod 3); if xi ti then k 1 (mod 3). The second nearest point is at a
distance of b + 1 from P} and each other point is at a distance of at least 2b. Suppose
that S is a set of points that contains precisely one "clause point" P and 0 or more
circuit points (we have not yet introduced junctions). Consider the minimum sum of
distances f(S) in the 1-median problem on the set S. We claim that f(S) >-_ h (Isl), where

h(1)-0, h(2)=b, h(3)=b+l, h(k)=(k-2)(b+l)-I fork>-4.
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In particular, the minimum f(S) when ISI =4 is attained at sets of the form S
{PI-1, PI, PI+I, P}, where PI is closest to P, in which case f(S)= 2b + 1 (the solution
point coincides with pit). Our strategy is to enforce that if the truth values are chosen
so that Ej is satisfied, then there is a solution point at a distance of b from P.

We now describe the junctions. As in the previous problems, a junction is
established when a vertical piece of one circuit meets a horizontal piece of another.
A junction of the circuits C and C is shown in Fig. 11. The junction occurs at a unit

FIG. 10. A clause configuration in the reduction ]:or rectilinear p-median.



192 NIMROD MEGIDDO AND KENNETH J. SUPOWIT

square whose vertices are the points P, P, P+I, P{+I such that k, 1--0 (mod 3). The
points pik_l, P-I, Pk+2, P+2 are each at a distance of b-1/2 from some vertex of this
square. Note that the sum of rectilinear distances from the vertices of a unit square
to any point on the square is equal to 4. Suppose that S is a set of points of our
structure that contains at least one junction point. Then f(S)>= e (Isl), where

e(1)=0, e(2)=l, e(3)=2, e(4)=4, e(5)=b+3.5, e(6)=2b+4,

e (7) 3b + 4.5, e (8) 4b + 6.

Consider now the p-median problem on the entire structure we have defined,
where p Y. ri/3-J. Note first that there is a set of p solution points such that each
of the points P with k 2 (mod 3) and each clause point P’ has a solution point at
a distance not greater than b + 1 from it, while each other point has a solution point
at a distance not greater than 1 from it. Thus, if b is sufficiently large, then an optimal
solution for the p-median problem must yield a total distance less than (Y’. ri/3 + rn)b +
A, where A is some constant independent of b. By considering the segments between
consecutive junctions (as in the previous problems), we find that we must allocate
precisely one solution point per junction.

More formally, let

riT=(b+l)Y+mb+2Y.
First, assume that E is satisfied by a truth assignment -; we will construct a solution
to our p-median problem of value T. - induces a set of solution points at locations
on the circuits and on one edge per junction square such that every point P (k--
2 (mod 3)) has a solution point at a distance of b from it (see Fig. 11). The same is
true for the clause points P. We thus manage to have a total distance of

ri+ m)b ri- 2J) l+4J+(E ri=(b +l)Z+rnb +2J= T.

To show the converse, assume that there is a set Z of p points such that

X min (Ix,-zl+ly,-z=l}=T,
i=1 (z ,z2)Z

Note that the p-median problem amounts to partitioning our set of n Y’. ri + rn points
into p Y ri/3-J sets $1, $2,"’, Sp and then solving a 1-median problem of each
S.. We know that the partition is into sets of the following types:

(i) m sets each containing precisely one clause point and no junction points. If
S is of this type then f(S)>-h (Isl),

(ii) J sets containing four junction points (one whole junction) and no clause
points. If S is of this type then f(S)>-e(lS[).

(iii) p-m-J sets containing neither junction points nor clause points. These
sets satisfy f(S) >- g([S]).

Now consider the optimization problem of finding a vector s (sl, sz,"’, so) so as
to minimize

m+J p

E h(st)+ Y. e(st)+ Y’. g
/’=1 ]=m+l j=m+J+l
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subject to Y. s. n. Consider Table 1, showing "marginal costs". It follows from Table
1 that by letting

l<=j<=m,

sj= 6, m+l<-f<-m+J,
3, m+J+l<-f<=p,

TABLE

k 2 3 4 5 6 7

h(k)-h(k-1) b 1 b b+l b+l b+l
e(k)-e(k-1) 2 b-1/2 b+1/2 b+1/2
g(k)-g(k-1) 1 b b+l b+l b+l b+l

we obtain an optimal solution to the optimization problem. The value of this solution
is

h(4)m + e (6)J + g(3)(p -m -J)= m(2b + 1) +J(2b +4) + (p-m -J)(b + 1)

(Y’. )(b + 1)+mb+2Y= T,

which is, of course, a lower bound on the solution of the p-median problem. We have
already seen that it is realizable if E is satisfiable. Hence the solution induced by the
truth values is optimal. Moreover, if this bound is realizable then necessarily every
set of four points of type (i) must have a total distance of 2b + 1, and this is possible
if and only if each clause point has a solution point that reflects the fact that the clause
is satisfied. The characteristic that a solution with total distance of T must induce
truth values is established by considering the segments of circuits between junctions
as in the previous problems. In summary, E is satisfiable if and only if the optimal
solution of the p-median problem is T.

6. The Euclidean p-median problem. The proof that the Euclidean p-median
problem is NP-hard is very similar to that for the rectilinear case. Note-that if the
angles of the polygon corresponding to a circuit are greater than or equal to 120,
then solution points around the polygon coincide with circuit points (see Fig. 12). A
clause configuration is shown in Fig. 13. We note that the 1-median problem on a
set of three points of a circuit pik, Pk/l, Pk/2 (where k --0 (rood 3) or k -= 1 (mod 3))
has an optimal value of b + 1. Moreover, the function g of the preceding section is

,, e

\\xx ,\

,"

FIG. 12. A circuit in the reduction .for Euclidean p-median. The triang&s indicate points P such that
k 0 (rood 3)’ hence the dotted lines indicate a true partition.
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FIG. 13. A clause configuration in the reduction for Euclidean p-median.

valid for lower bounding in the present section. The same is true for the function h,
i.e. lower bounding for a set 6’ that contains a clause point (there are sets of four
points for which f(S) h (4) 2b + 1; see Fig. 13).

The situation with junctions (shown in Fig. 14) is a little more delicate in the
present section. Points P,P/1, P and P/I form a unit square. The distance between
a point Pk-1 (k 0 (mod 3)) and a corner of the square equals b. We now need to
revise the definition of the lower-bounding function e(k) of the preceding section.
We define e(k) to be the minimum of the optimal solutions of 1-median problems
on sets S such that IS] k and S contains four junction points. Then e(4)= 2x/.

P"
b - b

\\p

FIG. 14. A junction in the reduction lor Euclidean p-median.
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The problems corresponding to e(5), e(6) and e(7) are shown in Fig. 15(a, b, c). It
follows that, for b sufficiently large,

b +2x/=<e(5) =< b + 2x/+ 0.5.

(a) (b)

(c)

FIG. 15. Covering points near a function for Euclidean p-median.

Furthermore, as b ,
e (b - 2b +’f+ 2

and

e(7)e(5)+2b + 1.

These facts are sufficient for deducing that an optimal solution to the optimization
problem of minimizing

+Y p

Y, h (si) + , e (si) + , g(si)
j=l j=m+l j=m+Y+l

(subject to Y=I si n) is the same as in the preceding section, i.e., si =4 (j
1,2,...,m), si=6 (j=m+l,m+2,...,m+Y), si=3 (j=m+Y+l,m+J+
2,..., p). The value of the optimal solution is asymptotically equal to

m (2b + 1)+J(2b +/+ 2)+ (p rn J)(b + 1) (Y’, ( + 1) + mb +
\ D/

The optimal value is realizable in the p-median problem if and only if E is satisfiable.
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MINIMAL-COST BROTHER TREES*
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Abstract. We investigate three cost measures for the recently introduced brother search trees. In
particular we characterize node visit optimal, comparison-cost optimal and space-cost optimal 1-2 brother
trees and present linear-time algorithms to construct optimal I-2 brother trees for each cost measure. Furth-
ermore we also consider, briefly, these cost measures for brother leaf search trees.

Key words, brother trees, node visit cost, comparison cost, space cost, optimal cost

1. Introduction. In many data processing situations we are given a large set of
keys as an initial configuration. Then the set is dynamically altered by inserting new
keys and deleting unwanted keys. Furthermore, member operations and other queries
which do not alter the set of keys are also posed. Queries of this latter type may far
exceed the others. Data structures for which an arbitrary sequence of member, insert,
and delete operations can be carried out efficiently are usually called dictionaries; see
Aho, Hopcroft and Ullman [1974]. It is well known that dictionaries can be imple-
mented in such a way that all three dictionary operations can be performed in time
O(logn). Various balanced tree schemes are known which may be used for this task.
Among them are the AVL trees of Adelson-Velskii and Landis [1962], the 2-3 trees of
Hopcroft (see Aho, Hopcroft and Ullman [1974]), the brother (leaf-search) trees of
Ottmann and Six [1976], and Ottmann, Six and Wood [1978] and the 1-2 brother
trees of Ottmann and Wood [1981]. The insertion procedure for a balanced-tree
scheme can also be used to handle the initialization phase in the above mentioned data
processing situation: By iteratively inserting the N keys of the given initial set, begin-
ning with the empty tree, we obtain an initial tree in time O(N logN). However, this
iterative insertion method does not utilize the often valid assumption that the initial
set of N keys is given in lexicographic order. Therefore, a natural question arises,
namely, how to construct efficiently a balanced tree which is optimal in some sense,
when given a set of keys in lexicographic order. This problem has been solved for the
class of 2-3 trees by Miller, Pippenger, Rosenberg and Snyder [1979] and by Rosen-
berg and Snyder [1978]. The present paper addresses this question for 1-2 brother
trees and brother leaf-search trees. We characterize those trees which are optimal
with respect to three different cost measures, the expected number of node-visits per
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access, the expected number of key comparisons per access, and the space cost.
Linear-time algorithms to construct optimal trees are also designed.

2. Brother trees, 1-2 brother trees and their cost. A brother tree is a rooted,
oriented tree each of whose nonleaf nodes has either one or two sons. Each unary
node must have a binary brother. All root-to-leaf paths have the same length.

There are two basic ways of representing a set of keys as the (values of the)
nodes of a tree. Either the keys are stored at internal nodes and the leaves are not
used, or the keys are stored at the leaves while the internal nodes contain separating
or routing values to direct queries to the correct leaf. Which is the appropriate form
of representation depends on the particular application. If, for example, a sequence of
insert, delete, and min operations has to be performed (that is if we want to imple-
ment a priority queue by using brother trees) storing the keys at the leaves and assign-
ing to each internal node the minimum value stored in the subtree of that node is
appropriate.

The two ways of storing sets of keys lead to the class of 1-2 brother trees on the
one hand and to the class of brother (leaf-search) trees on the other: In a 1-2 brother
tree a binary node has one key and both unary nodes and leaves have no keys. All
keys resident in a binary node’s left subtree are strictly less than the key resident at
the node; all keys resident in a binary node’s right subtree are strictly greater than the
key resident at the node.

In a brother leaf-search tree the leaves contain the keys ordered from left to
right in increasing order. The internal nodes contain separating or routing information
which enables us to retrieve the keys stored at the leaves. Various assignments of
such separators, that is routing schemes, (of. Kwong and Wood [1980]), are possible:
we may, for example, assign to each internal node the maximum value of its sons, or
we may assign to each internal node the rightmost key in the left subtree of that node.

We simply speak of brother trees if we are only interested in structural properties
and wish to disregard the method of representing keys.

We will make frequent use of some basic notions of trees. The depth of a node p
in a tree is its distance from the root, that is, the number of edges on the path from
the root to p. The height of a node p is the largest distance from p to a leaf in the
subtree of the tree with root p. The height of a tree is the height of its root.

The root of a tree is said to be at level 0; the sons of a node at level are said to
be at level + 1.

Given a binary tree T of height h, with leaves on level h only. The profile
t(T) is the integer sequence (T)= V0,...,Vh where vi is the number of nodes at
level in T. The detailed profile A(T) is the sequence of pairs

A(T) <030,O>,...,<fDh,h >

where each coj (resp., j) denotes the number of unary (resp., binary) nodes at level j
in T. Here we are setting h Vh N+ 1, and f.oh 0 by convention, where N+
is the number of leaves of the tree.

From these definitions we immediately obtain:

Vo 1, (2.1)
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h-1

Vh h + ] 13i N+ 1, the number of leaves of T,
i--0

(2.2)

Vi toi "" i, 0 <_ _< h, (2.3)

Vi+l =toi -i- 21i, 0_<i <h. (2.4)

PROPOSITION. Let A--<too,130>,..., <toh,I]h > be the detailed profile of a
binary tree of height h with leaves on level h only. Then A is the detailed profile of
a brother tree if and only if

Io 1, (2.5)

[i " toi+l (0.i <h). (2.6)

Proof It is clear that the detailed profile of a brother tree fulfills conditions
(2.5) and (2.6). It remains to show that there exists a brother tree having detailed
profile A, where A is the detailed profile of a binary tree of height h with leaves on
level h only which fulfills the conditions (2.5) and (2.6). Using (2.4) we obtain for all
i, 0_<i <h"

i+ + (l)i + 213i + toi >-- 2" toi + + toi, by (2.6).

Thus

From (2.5) we obtain Io >_ tOo. Summarizing we have

I>--to, 0_<i_<h. (2.7)

Thus starting with level h we can now associate to every unary node a binary
one on the same level. Each of these pairs can be provided with a binary father on
the next higher level because of condition (2.6). Thus we ultimately obtain a brother
tree having detailed profile A. El

In analogy with the related cost measures for 2,3-trees, (see Miller, Pippenger,
Rosenberg and Snyder [1979], and Rosenberg and Snyder [1978]) we define the
node-visit cost NVCOST, the comparison-cost COMPCOST, and the space-cost SPA-
CECOST of 1-2 brother trees: Let T be a 1-2 brother tree of height h with
n:(T) Vo,..., vh and A(T) <tOo, 13o>,..., <tOh,1 >

h-I
NVCOST(T) (i + 1)- I]i

i---0

iffiO

(by (2.3), (2.4)).

(2.8)

This definition implies that 1-2 brother trees having the same (detailed) profile have
the same NVCOST.
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The comparison-cost is (tho number of keys times) the average number of key-
comparisons needed to access a key in T. Since no key-comparison is necessary to
access the only son of a unary node, we define

COMPCOST(T) bindist(p) (2.9)
pbinary

where bindist(p
Finally, let

) denotes the number of binary nodes on the path from the root to p.

h-1
SPACECOST(T) v (2.10)

i--0

number of internal nodes of T.

Observe that for each 1-2 brother tree T we have:

NVCOST(T) + SPACECOST(T) h" vh

height(T)" number of leaves of T.

A tree is called optimal with respect to a certain cost measure if it has the
minimum cost among all trees with the same number of keys.

In 3, 4 and 5 we will characterize the 1-2 brother trees which are optimal with
respect to the three different cost measures introduced above. We will use the follow-
ing abbreviations throughout:

NVO for node-visit optimal,
CCO for comparison-cost optimal, and
SCO for space-cost optimal.

Since 1-2 brother trees are "expanded" height-balanced or AVL trees (see
Ottmann, Six and Wood [1979]), it should be clear that the placement of the unary
nodes plays a central role in determining optimality. We will show that to a certain
extent there is a duality between NVO and SCO trees, in that their only differentiat-
ing feature is the number of unary nodes. On the one hand an NVO tree has as many
unary nodes as possible, so they must necessarily appear close to the leaf level of the
tree. On the other hand a SCO tree has as few unary nodes as possible, so they must
appear close to the root. "NVO" is to 1-2 brother trees what "bushy" is to 2-3 trees,
while "SCO" is similar to the notion of "scrawny" for 2-3 trees (see Miller, Pippenger,
Rosenberg and Snyder [1979]). This analogy is not complete, since the "scrawny" 1-2
brother trees or Fibonacci trees of Ottmann and Wood [1981] are not SCO. However,
as we shall demonstrate "SCO" is "scrawny" under the constraint that the trees’
height be minimal. We will also show that CCO trees are characterized as those 1-2
brother trees, which have at most one unary node on each root-to-leaf path.

In 6 we compare the three cost measures for 1-2 brother trees.
For brother leaf-search trees the above-introduced cost measures have to be

modified slightly in order to take account of the fact that keys are stored only at the
leaves while internal nodes contain separators. In 7 we briefly discuss appropriate
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modifications and their difficulties, and address the question of characterizing optimal
brother leaf-search trees. Finally in 8 we mention some open problems, and give a
brief history of this paper.

We conclude this section with an example:

T

FIG.

The trees Ta and T0 of Fig. are both 1-2 brother trees representing the set of keys
1,..., 5}. Their detailed profiles are:

A( Ta ) <0,1>, <1,1>, <0,3>, <0,6>,

A( To <0,1 >, <0,2>, <2,2>, <0, 6>.

Their costs are:

NI,"COST 12 11
COMPCOST 11 11
SPACECOST 6 7

In fact, Ta is SCO but not NVO, and To is NVO but not SCO. Both trees are
CCO. This example already shows that node-visit cost optimality and space cost
optimality are independent of each other.

3. Node-visit-optimal 1-2 brother trees. We characterize NVO 1-2 brother trees
and design a linear-time algorithm to construct them. The first result gives a neces-
sary condition for 1-2 brother trees to be NVO, namely, height-minimality.

LEMMA 3.1. Let T and T’ be 1-2 brother trees both having the same number of
leaves (that is containing the same number of keys). Let T(respectively, T’) be of
height h ( respectively, h’). If h < h’ then NVCOST(T)< NVCOST(T’).

Proof Let x(T) Vo,...,vh, x(T’) V’o,...,v’h’, where vn v’n,, h < h’. Then
by (2.8)
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h’-I h-1
NVCOST(T’) NVCOST(T) h’v’,- Z v; (h’v E v,)

O --0

h’-I h -1

v’(h’-- h) E v; -+- vi, since Vh Vh’
O O

h-I
>--" Vh’-- E Vi- E V, since h’> h.

O O

By (2.2) both trees have the same number of binary nodes. This implies
h-I h’-I h-I h’-I h’-I

=ffiO -----0 ----0 O O

Furthermore, the number of unary nodes of a 1-2 brother tree is always strictly less
than the number of binary nodes in the tree, since each unary node must have a
binary father and brother. This implies

h’-I h’-I
X ; > E 13; -(v’-l).
=0 i--0

Therefore we have NVCOST(T’) NVCOST(T)>_

The trees of Fig. a, b illustrate that height minimality is not sufficient for NV-
optimality of a 1-2 brother tree.

There does not appear to be a 1-2 brother tree correspondent to the 2, 3-tree
notion of "dense profile" as in Miller, Pippenger, Rosenberg and Snyder [1979], with
which to characterize NVO 1-2 brother trees. We demonstrate that the number of
nodes at each level of a NVO tree is not completely specified by the number of nodes
on the level below. Thus one cannot hope for a simple modification of the notion of
denseness for 2-3 trees, namely

vt min(3 [v/+l/2/)j for < _<h

to something like

vt=min(2 [2/3vt+lJ) l<l<h-1

for 1-2 brother trees. We argue as follows.
We consider for example 1-2 brother trees with N+ 1---18.2h-5 leaves of

height h. The following two detailed profiles are both profiles of equally costly 1-2
brother trees:

A <0,2> <0,2h-4>, <2h-5,3"2h-5>, <3"2h-5,4"2h-5>,
<4"2h-5, 7"2h-5>, <0,N+ >,

A’ <0,2>,..., <0,2h-4>, <2h-4,2h-4>, <0,3"2h-4>,
<3"2h-4, 3"2h-4>, <0,N+ 1>.

Lemma 3.2 given below will show that both are profiles of NVO 1-2 brother trees.
However, the numbers of nodes Vh-1 and V’h-1 on level h- are different:
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Vh-1 4"2h-5 + 7"2h-5
11

(N+I),
18

Vh-1 3.2h_4 + 3.2h_4 12
18

(N+ 1).

This shows that for NVO 1-2 brother trees the number of nodes on level h- is not
uniquely determined by the number of nodes Vh-----N + on level h. Similar argu-
ments carry over to level h-2 and to other numbers of leaves.

In order to characterize profiles of NVO 1-2 brother trees each three adjacent
levels have to be considered:

LEMMA 3.2. Let A <(Oo, I]o>,..., <(Oh,h > be the detailed profile of a NVO
1-2 brother tree of height h. Then for each k, 3 <_ k <_ h at least one of the fol-
lowing conditions must hold:

(0k- 2 0, (3.1)

k-2 t’0k-1, (3.2)

Ik-1 t0k. (3.3)

Proof Assume the contrary, that is there exists a NVO 1-2 brother tree of
height h and a k 3 _<k _<h such that none of the conditions (3.1), (3.2), (3.3) is
met. We show that there exists another 1-2 brother tree representing the same
number of keys with the detailed profile

A <t.00, I0>,..., <t.0k-2- 1,k-2+ 1>, <t.0k- -I-2, k- 1>,

which has better NV-cost. First note that 0k_2- >_ 0 because (3.1) does not hold
by assumption. Furthermore, 3k_l>Ok >_0, because (2.6) holds for the given
detailed profile A. Thus the assumption 13k-1 :/: 0k implies 13k- > 0k, hence
13k-1--1 >_. 0. Therefore we know that all numbers occurring in A’ are nonnegative.
It remains to show only that A’ obeys the constraints (2.4), (2.5), (2.6). In order to
show (2.4) it suffices to prove

2k-3 "" (0k-3 (k-2 "" 1) + (0k-2 1)

2(lk_2 -I- 1) -- (t.0k_ 2 1) (k-1 1) -- (0k_ -- 2)

and

2(k- 1) + (tok- + 2) Ik + t-0k.

These equations are obtained trivially from the fact that condition (2.4) must hold for
the given detailed profile A. Similarly, condition (2.5) must hold for A’ because it
holds for A.

Finally, proving (2.6) for A’ reduces to showing the inequality
13k-2+ >_ Ok-l"+" 2. It can be obtained from the assumption 13k-z :/: ok- and from
the fact that (2.6) holds for A.

COROLLARY 3.3. Let A <ao,[o>,..., <Oh,f3h > be the detailed profile of a
NVO 1-2 brother tree. If there exists an 0<1 <h, such that 3t >cot+l and
t- > tot then for all 1 ’, 0 <_ 1’ <_ 1 1, (D 0 must hold.

Proof. Let us assume that 13t > tot + and lit- > (o for an 1, 0 < 1 < h.
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We will show that cot, 0 must hold for all 1’, 0_< 1’_< 1-1, by induction on
1’. First the application of Lemma 3.2 for k 1 + yields cot-1 0 or 13t- cot
or 13t cot +1 Hence, our assumptions imply that cot----0 must hold. Next assume
that COk ----0 for all k, l’_< k _< 1-1. Using condition (2.6) this in particular implies
that It,- > cot’ 0 and It’ > cot’+ 0 must hold. Again applying Lemma 3.2 for
k 1 ’- yields tot,-1 0. I’1

This corollary in particular implies that a NVO 1-2 brother tree must be com-
plete binary up to level 1 (that is coo col cot 0), if cot tot-1 0.

PROPOSITION 3.4. Let T be a 1-2 brother tree with N+ 1 leaves and detailed
profile A <COO,O>,..., <coh,h > If h-2 coh-1 then N+
3h_2 q- 2coh_2

Proof. We have N+ 21h_ --t- coh-1 2h-1 -1- [h-2 However

so

Thus

2h 2 -- COh 2 [h -" COh h -" h 2,

h 2 "" coh 2 h 1"

N+ 2(h-2 + COh-2) + h-2 3[h-2 "+" 2COh-2" [-I

The next theorem constitutes one part of our result characterizing NVO 1-2
brother trees.

THEOREM 3.5. Let T be a 1-2 brother tree with N keys and minimal possible
height h [log2 (N+ 1) ], where 3" 2n -2 <_ N+ <_ 2n Then T is NVO if and only

if its detailed profile A <coo, lo>,...,<con,ln > satisfies

(i)
(ii)

k 2k COk ----0 for 0<k <h-2
[h- (N+ 1)--2h- and COh- (N+ 1).

Proof. Because NVCOST is a function of the (detailed) profile of 1-2 brother
trees it suffices to show the "only if" part. Let T be a NVO 1-2 brother tree with
detailed profile A. We claim first that con-2--0. If not, Lemma 3.2 tells us that
I]n-2 con-1 (since otherwise In- con 0, which is impossible).

By Proposition 3.4 we obtain

N+ 3[h_2 -F 2COh_2< 3"(2h-2 coh-2) -F 2coh_2< 3"2h-2

a contradiction.
We claim second that coh-3--0. If not we again find by Lemma 3.2 that

Ih-2 C0h-, since we now know that C0h-2 0. But then,

N+ 3h_2

2(2[h_ "b cob-3)
"< 3(2(2h-3 cob-3) q" COb-3)

< 3.2h-2 also a contradiction.

From COh-2 0 and COh-3 0 we obtain [h-3.> COh-2 and lib-4 > coh-3. Now
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Corollary 3.3 tells us that tot 0 for all 1 _< h-4. The theorem is thus complet
2h-2except for lib--1 and toh-1. Since h-2 we find

[h "" toh 2h 2 2h
and of course

2lh -- toh N+ 1.

These two equations form a linear system in 13h-1 and toh-1 which when solved gives
the results stated in the theorem. D

Before we prove the second half of our result characterizing NVO 1-2 brother
trees we show the following lemma:

LEMMA 3.6. Let T be a 1-2 brother tree with N keys and minimal possible
height h [log2(N+l)] >_.5 where 2h-! <N+I <3"2h-2. If T is NVO then T is

a complete binary tree up to level h-4.

Proof Let A <to0,10>,..., <toh,h > be the detailed profile of a NVO 1-2
brother tree T with height h, where h obeys the assumptions of the lemma.

CLAIM 1.(oh --4 0.

If not Lemma 3.2 tells us that h--4--" toh-3 or h-3 toh--2"
Case 1. h-4 toh-3 and h-a toh-2 (that is h-3 > toh-2).
We will show that there exists a 1-2 brother tree T’ representing the same

number of keys with detailed profile

A’ <toO,O>,..., <toh-5,h-5>, <toh-4-- 1,[h-4" 1>, <toh-3-l- 1,[h-3>

<toh_2-/-3, h_3--2>, <toh_ 2, [h_2-/- 1> ,<toh,h >

which has better NVCOST. Application of Lemma 3.2 for k h and the assump-
tions toh-3 [h-4 0 and Ih-3 toh-2 yield 13h-2---toh-1. This equation leads to
N+ 313h-2 + 2toh-2 by Proposition 3.4.

Because [h-2 >-- toh -2 the assumptions I]h-2 --< 3 and h >_. 5 lead to N+ 1 < 17, a
contradiction. Thus we know that all numbers occurring in A’ are nonnegative. It is
easy to show that A’ is the profile of a binary tree. Thus it remains to prove that A’ is
the detailed profile of a 1-2 brother tree. We need to show only that condition (2.6)
holds for A’. The only nontrivial case is the proof of [h-3 >" toh-3 -[" 3.

First we have

Ih-3 + toh-3 2h-3- tOh-4,
SO

h 2 @ toh 2 2[h -i- toh 2h
From Proposition 3.4 we infer

Thus we obtain

toh-4 -[- [h-3"

2
h-2 (N+ 1)-- "’toh-2"

2
--(N + 1) Ttoh -2 -" toh-2 2h -3 --toh-4 "" [h-3"

This is equivalent to
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so

[h-3 "" f-0h -2 "- 0)h-4 -" 2h-3"

On the other hand we have

Ih_3 -- fDh_3 2h_4 -t- f.0h_4

0)h-3 "" [h-4 ""
by the first assumption of Case 1. Hence

[h-3 [h-4 -- ft)h-4 "< 2h-4.
Now using the second assumption of Case we obtain 0h-2 < 2h-4. Then

203h 2 < 2h 3,

303h 2 < 2h .. f.0h 2,

(3.4)

From the last inequality and (3.4) we obtain

[h-3 >" O)h-2 "[- f-Oh-4 -[- 2 >_ O)h-2 "1" 3.

This completes Case 1.

Case 2. h-3 O)h-2

We will show that there exists a 1-2 brother tree T’ representing the same
number of keys with detailed profile

A’ .0.)0, 0. "0")h -5, h -5" <f’Oh -4-- 1, h --4+ >,

<O.)h -b 3, h-3--2, <0h-2-- 3, h-2"q-2>, <.0h 1W2, h-1-- 1>’, <O)h,h >

which has better NVCOST.
Clearly, [h-I > 0 and thus h-1 :/: Oh ( Oh 0 by convention). Furthermore,

the assumption I]h-3----0h-2 implies 0h-2 :/: 0. Thus, application of Lemma 3.2 for
k ---h yields h-2----Oh-. From this equation we obtain by Proposition 3.4

N+ 3h_2 + 20h_2.

In order to show that all numbers occurring in A’ are nonnegative it remains to
show that Ih 0h 2 >-- 3. We know

2h-3 -" 0)h-3 h-2 -" 0)h-2 [h-2 -" h-3,
SO

[h-2 [h-3 "- 0)h-3"
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Again using Proposition 3.4 the last equation and the assumption of Case 2 imply:

N+ 3h_2 + 2.0h_2

3([h 3 "- f’0h 3) " 2[h

5[h_ -I- 3t.0h_ 3.

On the other hand

so

[h " -0h -< 2h .0h -4,

(3.5)

so

Therefore

On the other hand

2lh_4 -I- ,0h_4 [h-3 -- -0h-3,

5
2[h-4 "[" -0h-4 > h-4 + "" 0h-4 " 0h-3"

3
h-4 > 0h-3 " "’0h-4"

Since COb-4 > 0 this implies [h-4 >" (-0h-3 " 2, completing the proof of Case 2 and of
our first claim tOh-4 0.

CLAIM 2. 0h_5 0.
If not, h > 5 must hold and Lemma 3.2 tells us that 3h-4 =Oh-3 (because

h-5 > 0h-4 0, by our first claim).
Again applying Lemma 3.2 for k h- we have

0h_3 0 or Ih_3 .0h_2 or Ih-2 0h-. (3.8)

Since (.0h_4 0 (by Claim 1) and (.0h_ > 0 (by assumption), Corollary 3.3 tells us
that tOh- 3 > 0.

We now argue that [h-2----0h- is true. If not, (3.8) tells us that Ih-3 0h-2.
Again applying Lemma 3.2 for k =h we can infer from Ih-3----tOh-2 that
h-2 0h-I a contradiction.

t-0h-3 "< 2h-3 (-0h-4 h-3" (3.6)

From (3.5) and (3.6) we obtain

N+ < 213h + 2h 2h 3 3t0h -4.

Using 2h <N -[" we obtain

3
2h-4 "k "’(.l)h_4 < h-3. (3.7)

Since we have assumed t0h-4 > 0 we know that 13h- 3 >-- 3.
It is easy to show that A’ is the detailed profile of a binary tree. Thus it remains

to prove that A’ is the detailed profile of a 1-2 brother tree. For this we need to show
only that condition (2.6) holds for A’. The only nontrivial case is the proof of
[h-4 -I- >_. .0h --3 -t" 3.

Clearly, 13h-4 + 0h-4 --< 2h-4. Using (3.7) we obtain

5
h-4 - "" ’0h-4 < Ih-3
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We will now show that there exists a 1-2 brother tree T’ representing the same
number of keys with detailed profile

A’ <(.00,10>,... <(.0h_6, h_6>, <(0h_5- 1, h_5"-[- 1>, <(.Oh-4,h-4" 1>,

<t0h -3 + 1,13h -3 -t- >, <t0h -2 "" 9, [h -2-6> <0)h -1-6,h -1 "[- 3 >, <t0h, 13h >

which has better NVCOST. First we conclude from 13h-2 t0h- that

3h-2 -+- 2t-0h-2 N+ 1, by Proposition 3.4

> 2h- by assumption,

SO

5h -2 > 2h -1 by (2.7)

2h_ . 6 because h > 5T
This shows that all numbers occurring in the detailed profile A’ are nonnegative. In
order to show that A’ is the detailed profile of a 1-.2 brother tree, it is sufficient to
prove [3h-3 + >_ o)h-_ + 9. We briefly recall what we know about the detailed pro-
file A’" t0h-5>0, (.0h-4-" 0, [h-4-" (-0h-3, [h-2 (-0h-l" As consequence we obtain
furthermore: 13h-3 Oh-3 13h-4, since 21h_4 q- t.0h_4 ]]h-3 + t.0h-3. In order to
get an upper bound for Oh-, the number of unary nodes on level h- 2, we first show
that there must be considerably more binary than unary nodes on level h-2:

[h-2 -" (’0h-2 21h-3 + (’Oh-3 31]h-4

21h-4 -- [h-3>" 2h_4 W t.0h_2, by (2.6)

so, [h-2 >" 2h-4 and tOh-_--< 13h-4. Let 13h-2 2t0h-2 + X, where x >_ 0. Then

N+ 3[h_2 -- 2t.0h- 2 8t.0h_ 2 -- 3Xthat isx- (N+l)--m_. Now

13 -_ + m- 2m_ + x + m_.

m_+ (N+ 1) 31-;

hence

t.0h_ 2 -[- 2h-1 < 9h-4
8(2h-4 (-0h-5) + [h-4

]]h-4 -[- 2h-l-- 8t-0h-5"

Since ]]h-4 [h-3 we obtain [h-3 > (.0h-2 -[- 8(-0h-5 :>" (0h-2 -[" 8. This concludes the
proof of our second claim.

Application of Corollary 3.3 yields the result stated in the lemma, t"l

We are now ready for the second half of our result characterizing NVO 1-2
brother trees.

THEOREM 3.7. Let T be a 1-2 brother tree with N keys and minimal possible
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h [log. (N+ 1)], where 2n-1 <N+ < 3"2n-2. Then T is NVO if andheight

only if its detailed profile A--- <Oo,[3o>,..., <on,ln > satisfies

(i)
(ii)

k 2k Ok 0 for 0 < k < h -4 and

h 2 t.Oh- 1.

Proof Let T be a NVO 1-2 brother tree with N keys and height
h= [log2(N+l)], where 2n-l<U+l<3.Zn-2. Clearly, (i)holds because of

Lemma 3.6. Application of Lemma 3.2 for k h yields
or [n-1= con. The last alternative is false, because on 0 by definition.

We show that [3n-2 on-1. If not, then on-2 0 must hold. Application of
Lemma 3.2 for k h- yields C0h_ "-0 or [h-3 0)h-2 or [h-2 C0h-l" Clearly,
the first alternative must hold, because [h-2 :#: 0)h by assumption and
h-3 :: (0h-2 0.

Thus we know that T must be complete binary up to level h-2. This implies
N+ >_ 3.2h-2 a contradiction. This completes the proof of (ii).

In order to show the "only if" part assume that T is a 1-2 brother tree with
minimal possible height h whose detailed profile A fulfills (i) and (ii). The equation

[h-2 (’0h-1 implies (cf. Proposition 3.4) (N-F 1)- 3h-2 -F 2t0h_2 and
13h 13h 2 + ton 2. Hence, we infer:

(0)h-2 "+" h-2) -- (f’0h-1 -" [h-1) ((l)h-2 -" h-2) "- ([h-2 -- h-2 "" (l)h-2)

3[h-2"F 2t.0h_ 2

=N+I.

Now we use the fact that T’s NVCOST depends only on T’s profile, that is on the
numbers Vk ----Ok -+" [k for k --0,...,h Thus, we obtain from (2.8):

h-1
NVCOST(T) h.vh , vk

k--0

n-4
h(N-+-l)-- 2k--[(tOh-3+h-3)+(tOh-2-k-h-E)’k’(t.Oh-1 q-h-1)]

k--0

h(N+ 1) (2h-3-1) (2h-3 -+- N -4-1)

(h 1)(N + 1) 2h --2

_
1.

This shows that the NVCOST of a 1-2 brother tree T with minimal possible height h
whose detailed profile fulfills (i) and (ii) depends only on the number of leaves N+ 1.
Now the "if" part of the theorem tells us that T must be NVO. El

3.1 An algorithm for constructing NVO 1-2 brother trees. Our characterization
of NVO 1-2 brother trees directly leads to a linear-time algorithm for constructing
such a tree T for a given sorted list of N keys. It should be clear that it suffices to
construct a detailed profile of a NVO 1-2 brother tree. The construction in linear
time of the skeleton of a brother tree from the given detailed profile is straightfor-
ward. The skeleton is then filled with the sorted list of N keys by traversing T in
inorder and depositing the next key whenever a binary node is visited.
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Procedure NVO-Profile

Input: Natural number N (of keys to be stored)
Output: The detailed profile of a NVO 1-2 brother tree with N binary nodes and

N+ leaves.
begin

h’= [log2(N+ 1)]
if N+ >_3"2-2

then A= <0,2>,...,<0,2n -2>,<2n --(N + 1),(N + 1)-- 2/-I>,<0,N+ >
else 2-<N+ <3.2n-2}
begin

determine i, 0_<i--<3, such that
(8 + i).2h-4-<(N+ 1)<(9+i)2h-4;
x.=(9+i).2-4--(N+l);
y --(8+i).2-4;
{note that(N+ 1) (8+i).x +(9+i).y
case of
0:A:= <0,2>,...,<0,2/ -4>,<2 -4,2h -4>,

<x,2x + 3y >,<2x + 3y,3x + 3y >,<O,N+ 1>;
I:A:-- <0,2>,...,<0,2h-4>,<x,x + 2y >,

<2y,3x +2y >,<3x +2y,3x +4y >,<0,N+ 1>
2:A:= <0,2>,...,<0,2-4>,<0,2-3>,

<2x +y,2x + 3y >,<2x + 3y,4x +4y >,<0,N+ >
3:A:= <0,2>,...,<0,2 -4>,<0,2h-3>,

<x,3x +4y >,<3x +4y,4x +4y >,<0,N+ 1>
end

end
end.

It is easy to check that the above algorithm generates optimal profiles of 1-2 brother
trees. These profiles are not necessarily unique.

4. Space optimal 1-2 brother trees. In this section we characterize those 1-2
brother trees which have minimum storage requirement among all 1-2 brother trees
with the same number of keys (or, equivalently, of leaves). It turns out that the trees
with the minimal number of nodes must have also minimal height, but not conversely.
All 1-2 brother trees with the same number of keys (or leaves) have the same number
of binary nodes. This means that a 1-2 brother tree has minimal SPACECOST if and
only if it has the minimal number of unary nodes.

Our first observation concerning SCO 1-2 brother trees is that the total number
of nodes strictly increases with the number of stored keys.

LEMMA 4.1. Let TN and Tv+l be two SCO 1-2 brother trees with N and N+
leaves respectively, (or, equivalently N-1 and N keys, respectively). Then the total
number of nodes in TN is strictly less than the total number of nodes in TN+ 1.

Proof Consider the SCO 1-2 brother tree Tv+l. Remove one of its keys (and
leaves) by performing the delete procedure of Ottmann and Wood [1981]. This pro-
cedure restructures the tree in order to retain the brother tree structure. Inspection of
this procedure shows that the total number of nodes (in Tv+l) is decreased. Let T
denote the resulting 1-2 brother tree with N leaves. Then we have:

SPACECOST(TN) -< SPACECOST(T) < SPACECOST(Tv+I)
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since we have removed (at least) one node from Tv+ .
Let a 1-2 brother tree Tv+l with N+ leaves, N >_ 0, be constructed with the

following profile:

Vh N+I, vi [Vi+l/2 ], O<_i<h,whereh [log2(N+l)]. (4.1)

We first prove that TN+I is SCO.
THEOREM 4.2. For all N >_ O, TN+I constructed with profile given by (4.1) is

SCO.
Proof Clearly T1 is SCO. Complete the proof by induction on the number of

leaves of TN+I. Assume Tk+l is SCO for all k, 0 _< k < N, for some N >_ 0. Con-
sider TN+ 1. If TN+I is not SCO, then there exists a T+I which is SCO, whose pro-
file is different from (4.1). Let v,...,v, denote the profile of T+I, where h’>_h.
Compare vh and V’h’,Vh-1 and v,-1, Let j >_ be the least integer such that

Vh--j Vh’-j.
If j > then we can replace the prefix of T+I of hight h’-j + with the

SCO tree with vh-+ leaves, by our inductive assumption. If j then
v,_ > vh 1, in which case SPACECOST(Tv,,,_) > SPACECOST(Tv,_), by Lemma
4.1, contradicting the optimality of T+I. Both cases lead to the conclusion that
Tv+l is SCO. Hence the result. U]

The following corollary follows easily from Theorem 4.2:
COROLLARY 4.3. A 1-2 brother tree is SCO if and only if it has at most one

unary node on each level (that is, if and only if its profile is given by (4.1)).
This also implies that a SCO 1-2 brother tree must be height-minimal. The con-

verse is not true, as can be seen from Fig. 1. Furthermore, SCO profiles are unique
for any value of N, although this is not true for NO profiles. Finally, we mention
that we can read off from the binary expansion of the number N on which levels the
unary nodes (if any) occur in SCO 1-2 brother trees. A value of 0 corresponds to a
unary level.

Example. An 8-key SCO 1-2 brother tree must have exactly one unary node on
levels 1, 2, 3. For 8--(1000)2. Thus, the tr may be as follows:

Level Binary
Expansion

0

) 0

0

0

As in 3 we simply generate the detailed profile of an SCO tree, from which a
corresponding skeletal brother tree T is easily generated. The N keys are sorted and
then T is filled in with an inorder traversal. In 5 we give an explicit SCO tree con-
struction algorithm.
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Procedure SCO Profile

Input: Natural number N (of keys to be stored).
Output: The detailed profile of an SCO 1-2 brother tree with N binary nodes and

N+ leaves.

begin

end.

h [log2(N+ 1)]
O)h:=O;h:=N+l; Vh :=N+I
for := h downto 0 do
begin 13i’= vi+l div 2;

mi := v+l rood 2
v:= m + 13i

end;
Let A <too, Io>, <mh,[h >

5. Comparison cost optimal 1-2 brother trees. We will characterize structurally
those 1-2 brother trees that have minimal comparison cost among all 1-2 brother trees
with a given number of leaves (or, equivalently, of keys). Our characterization uses
the close correspondence between brother trees and AVL trees (see Ottmann, Six and
Wood [1979]). Consider a brother tree T. Let contract(T) denote the tree obtained
by replacing each unary node p in T by its only son p. Then the resulting tree is
height-balanced, that is for each node p, the balance factor of p, that is the height
difference between the left and right subtree of p, is + 0, or-1 NVCOST and
COMPCOST are defined for AVL trees in analogy to the related cost measures of 1-2
brother trees. Clearly, the two cost measures coincide for AVL trees. Further, if T is
a 1-2 brother tree then COMPCOST(T)= NVCOST(contract(T)). Hence, charac-
terizing the CCO 1-2 brother trees amounts to characterizing the NVO AVL trees.

LEMMA 5.1. An AVL tree T is NVO (or, equivalently, CCO) if and only if all
leaves of T occur on (at most) two adjacent levels.

Proof Clearly, an AVL tree is NVO if and only if its internal path length is
minimal. Knuth [1973, 2.3.4.5] has shown that a binary tree has minimal internal
path length if and only if all its leaves occur on at most two adjacent levels.

Let T be a 1-2 brother tree. Then all leaves of contract(T) occur on (at most)
two adjacent levels if and only if every root to leaf path of T contains at most one
unary node. This yields the desired characterization of CC0 1-2 brother trees:

THEOREM 5.2. A 1-2 brother tree T is CCO if and only if every root-to-leaf
path of T contains at most one unary node.

Proof The stated condition is clearly sufficient by Lemma 5.1 and the preceding
remark. Now consider a 1-2 brother tree T which contains a path with more than one
unary node on it. Then contract(T) is an AVL tree in which not all leaves appear on
two adjacent levels; hence, contract(T) is not NVO and, therefore, T cannot be CCO.

NVCOST and COMPCOST are independent cost measures. For example, the
17-leaf NVO tree must have two unary nodes on some root-to-leaf path, hence cannot
be CCO. On the other hand, the 6-leaf tree Ta of Fig. is CCO but not NVO. In
particular, COMPCOST is not a function of a tree’s detailed profile. Fig. further
shows that COMPCOST optimality does not imply SPACECOST optimality. How-
ever, each SCO 1-2 brother tree can be transformed to a (profile equivalent SCO and)
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CCO tree. Rather than providng this directly we give an algorithm which constructs
an SCO 1-2 brother tree which is simultaneously CCO, using the binary expansion of
N.

Procedure SCO and CCO 1-2 Brother Tree.
Input: Natural number N (of keys to be stored).
Output: A 1-2 brother tree with N binary nodes which is simultaneously SCO and

CCO.

begin h [log2 (N + 1)

end.

if N--O then return else
if N--- then return else
begin Create a binary node p, say;

if the coefficient of 2h-2 in the binary expansion
of N is 0 then

begin insert unary node
a) Attach a unary node q as the right son of p

and attach a complete binary tree of height
h-2 as q’s only subtree.

b) Attach a subtree of N--2h-2 binary nodes,
as p’s left subtree, constructed recursively.

end else both sons are binary
Attach a subtree of (N-1) div 2 binary nodes
as p’s left subtree, and one of N-1-(N-1)div 2
binary nodes as p’s right subtree; both constructed
recursively.

end

6. A comparison of the cost-measures. The two cost measures NVCOST and
SPACECOST are distinct in the sense that there are N-key 1-2 brother trees which
are NVO but not SCO and 1-2 brother trees which are .SCO but not NVO. However,
the cost measures are not totally unrelated. We already know that NVO and SCO 1-2
brother trees both must have the minimal height h ]log2 (N+I)/, where N is
number of keys. Moreover NVO and SCO 1-2 brother trees are in one sense dual to
each other, since, for a given height, in NVO trees the number of nodes is maximized
while in SCO trees the number of nodes is minimized. Thus, for N 2h- the
complete binary tree of height h is both NVO and SCO. In general, the SPA-
CECOST of the NVO 1-2 brother tree exceeds the SPACECOST of the SCO tree
with the same number of keys; and the NVCOST of the SCO tree exceeds the
NVCOST of the NVO tree. But, by how much may they differ?

Recall that for each 1-2 brother tree T of height h with N keys the following
holds:

NVCOST(T) + SPACECOST(T) h.(N + 1) (6.1)

Let Tsco(N) denote the SCO 1-2 brother tree with N keys and height
h log2(N+l) [, and let TNvo(N) denote the corresponding NVO tree.

Summing up the numbers of nodes in profiles for TNVO(N) given in Theorems
3.5 and 3.7, we find
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SPACECOST(TNvo(N))
N+2h-2

2h-

if 2h-1 <N+ 1 < 3"2h-2

if 3" 2h 2 <N+ _< 2h.
(6.2)

From (6.1) we may then infer

NVCOST(TNvo(N))
h.(N+I)-N--2h-2

h.(N+l)-2h+l

if 2h-<N+ 1_<3"2h-2

if 3"2h-2<N+ <2h.
(6.3)

Corollary 4.3 and (6.1) also give us the results:

N _< SPACECOST(Tsco(N)) --< N + (h 1),

(h- 1)N + _< NVCOST(Tsco(N)) _< (h- 1)N + h.

(6.4)

(6.5)

Combining (6.2) with (6.4) we easily find

SPACECOST(TNvo(N)) 3
1_< < --.

SPACECOST(Tsco(N)) 2

Similarly using (6.3) and (6.5) we find that, for all N,

NVCOST(Tsco(N))
< (h 1)N + h

NVCOST(TNvo(N)) (h 1)N + h 2h-2

so for h >_ 3 we obtain, since N >_ 2h-,
NVCOST(Tsco(N)) 4

1_< <--.
NVCOST(TNvo(N)) 3

In fact this bound can also be shown to hold for h--1 or 2. Thus we have shown
that, for any value of N, the SPACECOSTs and NVCOSTs of optimal trees are
within a small constant factor of each other.

7. Optimal brother leaf search trees. Recall that a brother leaf search has all the
keys at the leaf level, while the internal binary nodes contain separating or routing
information. Hence to access a key stored in a brother leaf search tree, each node on
the path from the root to the appropriate leaf must be visited. Therefore, the node-
visit cost of a brother leaf search tree T can be defined by

NVCOST(T) (height(T) + 1). ( number of leaves of T ).

This implies that an N-key brother leaf search tree T, that is an N leaf tree, is NVO
if and only if T has the minimal possible height h / log2N l-

This definition of the NVCOST and the resulting" trivial c’haracterization of NVO
brother leaf search trees implicitly presupposes that separators are assigned to internal
nodes in such a way that a search for a key in the tree only visits nodes which lie on
the root to leaf path. This presupposition does not hold if we assign to each internal
node the maximum value of its sons, as in Ottmann and Six [1976], since this implies
the left sons of nodes on the search path are also visited. But if we assign to each
(internal) binary node p the maximum value in the left subtree of p as in Mehlhorn
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[1977], then the presupposition does indeed hold. This indicates that the definition of
NVCOST for brother leaf search trees is dependent on the routing scheme used, cf.
Kwong and Wood [1980].

The routing scheme is also crucial to the definition of COMPCOST for a brother
leaf search tree. This is because COMPCOST depends on the underlying search pro-
cedure. Consider, for example, the following two sample trees Ta and Tb, where
Ta has separators which are the maximum value in the left subtree, and Tb has
separators which are the maximum value in the right or only subtree. Note that by
the results of 3, 4, and 5 Ta and T are NVO, SCO, and CCO brother trees.

In order to retrieve a key x stored in the tree Ta we may perform
searcha (root ( Ta ), x) where searcha is the following procedure:

Procedure searcha (t9,x)

Case 1 [p is a leaf]

if value(p)=x then return (p) else nil;

Case 2 [p is unary, that is p has a single son p]

searcha(p ,x

Case 3 p is binary, that is p has a left son 2Lp and a right son pp

if x <_ value(p) thensearcha(,p,x) else
searcha(pp,x)

In order to access each key stored in Ta exactly once via searcha, a total
number of 17 comparisons is required. The routing scheme for T suggests retrieving
a key x by performing searcht,(root( Tt, ),x), where searcht, is obtained from searcha
by replacing Case 3 (where p is binary) by the following:

compare x and value(,p). (This comparison has one of three different possible out-
comes)

Case 3.1 [x value(,p)

if 2Lp is a leaf then return (p) else searcht,(,p,x);

Case 3.2 Ix < value(,p)]

if ,p is a leaf then nil else search, (,p,x);

Case 3.3 Ix > value(gp)]

searchb(pp x )
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This example shows why a uniform definition of COMPCOST is impossible for
brother leaf search trees. We must consider a definition of COMPCOST with respect
to a particular routing scheme (or a class of routing schemes). Furthermore even
when a particular routing scheme is chosen the COMPCOST may not even be charac-
terized by the detailed profile. For example, the following brother leaf search trees
T’ and T’ both have the same detailed profile, and the same routing scheme, but dif-
ferent COMPCOSTs:

T

COMPCOST (T’) 34

T!!

COMPCOST (T") 35

Fortunately no such difficulties arise when defining SPACECOST for brother
leaf search trees. Since the leaves are now used, a brother leaf search tree T with
profile r(T)= Vo,...,vh, h height(T), has space-cost

h
SPACECOST(T) ] vi.

i=0

Since the SPACECOST of an N-key brother leaf search tree is N+ + /__-o vi,
minimizing the SPACECOST amounts to minimizing the number of internal nodes.
Thus we obtain the same characterization of SCO brother leaf search trees as already
proved for 1-2 brother trees in 5.

8. Concluding remarks and history. We have characterized the 1-2 brother trees
which are optimal with respect to one of three cost measures, NVCOST, COMP-
COST and SPACECOST. In particular we have shown that SCO and CCO 1-2
brother trees having N binary nodes have the same detailed profile. Moreover an
NVO 1-2 brother tree with N binary nodes has a SPACECOST differing by at most
50% from the SPACECOST of an SCO 1-2 brother tree with N binary nodes. Simi-
larly the NVCOST of an SCO 1-2 brother tree differs by at most 33% from that of an
NVO 1-2 brother tree with the same number of binary nodes. Thus the optimal trees
according to one measure are nearly optimal with respect to the other measures.

We have also considered, albeit briefly, the optimality of brother leaf search
trees. Although SPACECOST is defined and characterized as for 1-2 brother trees,
we demonstrate that NVCOST and COMPCOST are both dependent upon the partic-
ular routing scheme that is used. Moreover we have shown that even when a routing
scheme is chosen it is possible that the CCO and NVO trees cannot be characterized
solely by detailed profiles.

This leads us to a number of open problems. First for the classical routing
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scheme (an internal binary node is assigned the maximum value in its left subtree)
characterize NVO and CCO brother leaf search trees. Second do this for the other
routing scheme mentioned here (an internal node is assigned the maximum value in its
subtrees). Third, investigate 1-2 brother trees which are simultaneously SCO and
NVO. Fourth, as in Rosenberg and Snyder [1981] consider the effects of insertions
(and, possibly, deletions) on an initially optimal 1-2 brother tree. Fifth, investigate
update schemes which maintain near optimality of 1-2 brother trees according to one
of the desired measures. Sixth, how close are "random" 1-2 brother trees to being
NVO, CCO and SCO? There are some preliminary results for some of these ques-
tions by one of us, namely H.W.Six.

Finally, in closing let us mention something of the history of the present paper.
In 1978 the authors, apart from D. Stott Parker, submitted a first draft of this paper
to SICOMP. However the results and proofs of 3, although correct, did not then
have their present precise combinatorial flavor, along the lines of Miller et al. [1978].
Fortunately the referee insisted through two further drafts that such an approach was
possible. Eventually, after we argued that it was impossible, he produced a detailed
proof outline of a new 3, which became, in essence, the present 3. This so changed
the orientation of the paper that we felt that the referee should be included as a co-
author. The referee was D. Stott Parker.
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TWO TAPES ARE BETTER THAN ONE FOR
NONDETERMINISTIC MACHINES*

PAVOL DRI AND ZVI GALIL?.

Abstract. It is known that k tapes are no better than two tapes for nondeterministic machines. We
show here that two tapes are better than one. In fact, we show that two pushdown stores are better than
one tape. Also, k tapes are no better than two for nondeterministic reversal-bounded machines; and we
show that even two reversal-bounded pushdown stores are better than one reversal-bounded tape. We
also show that for one-tape nondeterministic machines, unrestricted operation is better than reversal-
bounded operation.

Key words. Turing machines, k-tape, two-tape, one-tape, real-time, nondeterministic machines,
reversal-bounded, computational power

1. Introduction. This paper tries to complete our knowledge on the effect of the
number of tapes on the computational power of nondeterministic machines. Our
model of computation is a Turing machine with a one-way read-only input tape and
with several working tapes. The input string is followed by a special endmarker. This
is the model which is usually used when investigating the dependence of computational
power on the number of tapes. A machine is real-time if it reads a new input symbol
in every step, and the machine stops immediately after reading the endmarker.

The structure of the paper is the following: in the rest of this section we describe
the results; in 2 we give two basic lemmas; in 3 we give the proofs; and in 4,
the conclusion, we list some open problems and consider briefly other models of
Turing machines.

For deterministic Turing machines it is well known that by adding one more work
tape one increases the computational power of the machine. Rabin [7] first showed
that two tapes are better than one, and Aanderaa [1] showed that k tapes are better
than k- 1 tapes for k => 2. By better we mean that there are languages accepted in
real-time by the former but not by the latter. In fact, Aanderaa proved a slightly
stronger result: there are languages accepted in real-time by k pushdown stores but
not by k 1 tapes.

For nondeterministic machines the situation is completely different. Book and
Greibach I-2] proved that the hierarchy collapses very early, that the families of
languages accepted by the following four machine types are the same:

I. linear-time multi-tape Turing machines,
II. real-time multi-tape Turing machines,

III. real-time two-tape Turing machines (a stack and a pushdown store suffice),
IV. real-time Turing machines with three pushdown stores.
Consequently, the problems that have been left open for nondeterministic

machines are"

1. Are two tapes better than one?
2. Are two pushdown stores better than one tape?
3. Are three pushdown stores better than two?
One easily observes that the language used by Rabin to give an affirmative answer

to Question 1 in the deterministic case, and the language used by Valiev [8] to prove

.* Received by the editors March 19, 1982, and in final revised form February 15, 1983.

" Computer Center, Slovak Academy of Science, Bratislava, Czechoslovakia.
School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel and Computer Science
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a similar result, can be accepted by a real-time one-tape nondeterministic machine,
and thus cannot be used to answer Questions 1 to 3. Moreover, the language used
by Rabin and the languages Lk used by Aanderaa to show that k tapes are better
than k-1 can all be accepted by real-time nondeterministic (one!) pushdown
machines. The main result of this paper answers Questions 1 and 2 in the affirmative.
We still do not know the answer to Question 3.

Let L {x : x Ix {0, 1}*, Ix 2" for some m => 0}, where Ix denotes the length
of x, and {0, 1}* is the set of finite strings over the alphabet {0, 1}.

THEOREM 1. L is accepted by no real-time one-tape nondeterministic Turing
machine.

This settles Question 1 because L is accepted by a real-time two-tape machine.
(It suffices to show that it is accepted by a linear-time multi-tape machine.)

To settle Question 2, consider the language L, L ={x :xnlx {0, 1}*, Ixl 2"
for some m -> 0}, where xn is the reversal of x.

TnORZM 2. L’I is accepted by a real-time (deterministic) two-pushdown machine,
but by no real-time one-tape nondeterministic machine.

Next we consider nondeterministic reversal-bounded machines. These are
machines whose heads are allowed to make only a constant number of reversals. Our
first observation is that the families of languages accepted by the reversal-bounded
versions of the four machine types defined above are the same. The equality of the
language families corresponding to I, II and IV is shown in [3]. The equality to the
language family corresponding to III follows immediately from the observation that
the proof in [2] for the unrestricted (not necessarily reversal-bounded) case yields a
reversal-bounded simulation if the simulated machines are reversal-bounded. The fact
that the four families of languages are the same raises Questions 1 to 3 about
reversal-bounded machines.

One can show that L can be accepted by a real-time two-tape reversal-bounded
nondeterministic machine. (Again, it suffices to show that it is accepted by a linear-time
multi-tape machine.) So, Question 1 is answered in the affirmative.

The following theorem answers in the affirmative Question 2 for reversal-bounded
machines.

THOZM 3. L’x can be accepted by a real-time nondeterministic two-pushdown
reversal-bounded machine.

It is still an open problem whether real-time nondeterministic Turing machines
are better than similar reversal-bounded Turing machines. (For deterministic machines
the answer is positive [4].) For one-tape machines there is a similar problem, which
we settle as follows:

Fork >0, letL k ={wa 4 w W2 :: W ’’" Wr : Wffll <=r<=k, w 6 {0, 1}* for
1, , r} and let L2 LIka L k, the marked Kleene closure of the set of center-marked
palindromes. Note that Lz is accepted even by a real-time one-pushdown deterministic
machine. Thus the following theorem affirmatively answers our question.

THEOREM 4. L2 is accepted by no real-time one-tape reversal-bounded nondeter-
ministic machine.

As was noted above, it is known that real-time deterministic machines are better
than similar machines which are reversal-bounded. The proof given in [4] does not,
however, yield a specific language over a two-symbol alphabet that cannot be accepted
by the latter. An alternative proof follows from Theorem 5.

THEOREM 5. L2 is accepted by no real-time deterministic reversal-bounded
machine.
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The proofs of Theorems 4 and 5 actually show that Lk/l cannot be accepted by
a machine which makes only k turns. Thus, they actually establish a hierarchy which
corresponds to the number of reversals. The proofs of Theorems 1 and 4 use a
refinement of the bottleneck method introduced by Rabin [7].

2. Two basic lemmas. There are two well-known tricks that use a crossing
sequence argument for one-tape (deterministic or nondeterministic) Turing machines,
in which the input tape is the same as the working tape [5, Lemmas 10.1 and 10.2].

Trick 1 (cut and paste). Assume there are two accepting computations by machine
M on inputs x xlx2 and y yly2 with identical crossing sequences at the boundaries
between Xl and x2 and between Yl and Y2. Then M also accepts xlY2 (and ylX2).

Trick 2 (cut out). Assume there is an accepting computation by machine M on
x X1XEX3 with two identical crossing sequences at the boundaries between Xl and x2
and between x2 and x3. Then M also accepts xlx3.

The two basic lemmas of this section are just the analogous tricks for real-time
one (working) tape (deterministic or nondeterministic) Turing machines. Recall that
we consider here a Turing machine with a separate input tape. We now consider
crossing sequences on the working tape. (At each step the input head reads one symbol
and moves right.) Note that any crossing sequence at a given boundary on the working
tape defines a partition of the input string x into segments x xl. "xs. Each time
this boundary is crossed, a new segment is determined. Similarly, a pair of crossing
sequences defines a partition of the input string x into segments x --Xlyl "XsYsXs+l,
where the y’s are the segments of the input that correspond to the time intervals,
during which the machine scans the part of the working tape between the two
boundaries.

LEMMA 1 (cut and paste). Assume there are two accepting computations by a
real-time one-tape machine M on inputs x--XIX2’’" Xk and y =yly2""" yk with two
identical crossing sequences, and that the k segments of x and y are defined by each
crossing sequence. Then M also accepts x 1YEX3Y4 (and y lxEy3x4"" ").

LEMMA 2 (cut Out). Assume there is an accepting computation by a real-time
one-tape machineMon input x x lY XsYsXs+ with tWO identical crossing sequences,
where these crossing sequences define the partition of x. Then M also accepts x’=
xjlx2 xk+l, where/’1," ",/’k+l is a permutation of {1, 2," ", k + 1}.

Remark. The permutation in Lemma 2 is j 1, ]k + k + 1 and for >_- 1, x2 /1 (x2,)
is the part of the input that starts when M crosses the first (second) boundary from
right to left (left to right) for the th time and ends when M crosses this boundary
back to the part of the working tape between the two boundaries. In Fig. 1, x-
XlYl X5Y5X6 and x’ x1x3x2x5x4x6.

The proofs of both of the lemmas are immediate. Rabin [7] used the first lemma
to show that two tapes are better than one in the deterministic case. We do not know
whether the second lemma has ever been used before. However, it is actually a special
case of the first lemma with x y.

In the next section we consider nondeterministic machines. For every input
accepted by such a machine, we arbitrarily fix an accepting computation and refer to
it as the accepting computation that corresponds to that input.

3. The proofs. We first sketch the proof of Theorem 1. Assume, to the contrary,
that M is a one-tape nondeterministic Turing machine that accepts LI in real-time.
Take m 2 for some n and consider the strings in L of size 2m / 1. A simple
counting argument shows that for at least one of these strings, call it y, the size of
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Yl
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FIG.

the working tape used must be at least m/(2 log r), where r is the size of the working
tape alphabet of M. We now concentrate on the accepting computation ofM on input
y. We fix a parameter and consider blocks of the working tape of size l. Another
counting argument shows that there is a block Aio on the working tape that is not
scanned much during the accepting computation ofM on y. A third counting argument
implies ,that there must be two boundaries in Aio that have the same crossing sequences
(see Fig. 2). Lemma 2 implies that Maccepts a shorter input. A contradiction follows
from the fact that the length of that input cannot be 2.2k + 1 for any k.

1 m/(2 Iog2r)

A,

Fm m7

FIG. 2. The working tape ofM.

Proof of Theorem 1. Assume to the contrary that L1 is recognized by a real-time
one-tape nondeterministic machine M with a set of internal states Q and with a
working tape alphabet of size r, r 2s. For a sufficiently large m, where m 2", let
S {x x ]x : x e L1 and Ix m }. For every string y in S, we consider the time when
M scans the in the accepting computation of M on y, and denote the string on the
working tape by w (y).

FACT 1. There is a string y in S with ]w(y)l--> m/(2 log r).
Proof. A configuration of M is a triple (w, i, q), where w is the contents of the

working tape, is the position of the head on the working tape and q is the internal
state. We consider in the accepting computation ofM on a string in 5’ the configuration
of M when it scans . For two strings in S, x 4 x and x2 : x2, the corresponding
configurations ofM must be distinct. (Otherwise it would accept x 4 x2). The number

All logarithms in this paper are base 2.
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of such configurations with Iwl <m/(2 log r)is at most r m/(21gr)+l (m/(2 log r)).
2" for large enough m. The number of strings in S is exactly 2". Consequently, there
is y ins with Iw(y)l>-m/(21ogr).

From now on we consider the accepting computation of M on y. Let

(1) 2[Qlalg+l+2,
and divide the part of the working tape used by M into blocks of size l" A a, A2,
If the last segment is shorter than l, it is not a block.

FACT 2. There is a block A such that the number of steps in which A is scanned
is at most 5l log r.

Proof. By the choice of y, the final length of the working tape of M is at least
m/(2 log r). Consequently, the numberp of blocks thatM scans is at least m/(2/log r)-
1. But M spends on y exactly 2m + 1 steps. So there is a block A such that the
number of steps that it is scanned is at most (2m + 1)/p. For a sufficiently large m,
this number is at most 51 log r.

The number of the crossing boundaries in A with crossing sequences of length
of at most 10 log r is at least l/2, because the sum of the lengths of all crossing
sequences for boundaries in A is at most 51 log r. Since the number of all crossing
sequences of length at most 10 log r is at most [Q[aOog+a <l/2 (by (1)), there are (in
Ao) two crossing boundaries with the same crossing sequence (of length at most
10 log r). By Lemma 2 the string can be written in the form y XyxXzy2 xsysxs+,
and M also accepts y’= x...x+, where (]1,""", L+I) is a permutation of (1,. ,
s+ 1). The.y’s are segments of the input read when M scans A (between the two
boundaries). By the choice of Ao, 0<= y]51 logr. But for a large enough m,
m

2"+1 + 1 Il> I’ Il- I1 2"+1 + 1 5l log r > 2" + 1.
i=1

So, y’ Lla contradiction.
Proof of Theorem 2. The proof of Theorem 1 with some minor modifications

shows that L also is not accepted by a real-time one-tape nondeterministic Turing
machine. L is accepted by a real-time deterministic machine M with two pushdown
stores (pds’s) as follows: For input x # y, M uses its two pushdown stores to check
whether ]x[ 2" and simultaneously to store x in a special way. For 0, let x be
the prefix of x of length 2 i, and assume X+l xyi. M works in phases. In phase 0 it
reads Xo (the first symbol of x) and stores it in pds 1. Inductively, at the end of phase
M has completed reading xi and it has stored it in a shued way in one of its pds’s.
We denote this string shuf (xi). Initially, shuf (Xo)= Xo. Reading Yi one symbol at a
time, popping out one symbol of shuf (x) at a time and storing both symbols at the
other pds, M generates shuf (x+). Formally, if shuf (x) azi- a and Yi 1 2i,

then shuf (Xi+l)=alla22 a2i2. (We use the convention that the rightmost
symbol is the top symbol of the pds.) The test [xl 2" is immediate: [xl 2" if M scans
the # at the end of a phase (when one of its pds’s is empty). To check whether y x,
M reads y one symbol at a time popping out two symbols from the pds comparing
the first to the symbol of y and sorting the second in the second pds. Each time the
first pds becomes empty, M changes the roles of the two pds’s.

Remark. The machine we use in the proof of Theorem 2 (and the one in the
proof of Theorem 3) reads an input symbol every two steps. Using a larger alphabet
in the pds (pairs of input symbols), it can be simulated by a machine that reads an
input symbol every step.
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Proof of Theorem 3. We describe a real-time nondeterministic two-pushdown
one-reversal machine M that accepts L. On input x 4 y, M pushes x into its first
pds. Simultaneously, it nondeterministically pushes, on a second track of pds 1 and
on pds 2, a collection of blocks Ar, At-l,""", A 1, Ao. (See Fig. 3.) After reading the, M simultaneously checks (i)if y =x R, and (ii)if ]Aol- ]AI- and IA/+I[- 2[al
(comparing ]Ai/l] in pds 1 with IAI in pds 2). Note that (ii)implies that Ixl 2 r. [3

FIG. 3. The two pds’s ofM.

We now sketch the proof of Theorem 4. Assume, to the contrary, that M is a
one-tape Turing machine that accepts L2 in real-time and makes at most k reversals.
We restrict attention to a subset of Lk/ with ]wil n for all i. We choose an n large
enough so that the counting arguments mentioned below are valid. The first counting
argument implies that for a large subset $ of the subset mentioned above all strings

Rin S agree on wi for # i0 and during reading Wio : Wio there is no head reversal. We
now assume that the head of the working tape does not move during a certain number
N of steps. An easy counting argument shows that a pumping can be applied to yield

Ra contradiction. Consequently, when M accepts a string in S, the largest prefix of w io

during which the head of the working tape does not move is bounded above by N.
A counting argument that uses the size of S, the number of such prefixes and the fact
that M makes at most k reversals implies that there are two strings in S with identical

Rprefixes but different suffices (or w io), such that the two crossing sequences defined
by the times immediately after M reads the entire prefix are the same. Lemma 1
implies that M must accept another string not in La. This contradiction completes
the proof.

Proofof Theorem 4. We assume, to the contrary, that L2 is accepted by a real-time
one-tape reversal-bounded nondeterministic machine M with a set of internal states
Q, with a working tape alphabet of size r and with at most k reversals. Choose a
sufficiently large n, so that

(2) 2"/(k+1)>=211+1. k. IOIk+l+l,

and let ={wl#w $.. "$w+l#w+llwe{0,1}" for 1,..., k +1}.
FACT 3. There is a subset S of and 1 <-_ io <= k + 1 such that"
(a) IS]->211+1" k. IOI+1+1;
(b) for all w, w’ in S, w= w # w$... $ w+ # w+ and w’=

’ ’for 1 < < k + l and # io"W == wR $ $ W+I == Wk+l, W W
R(c) for all strings in S, there is no head reversal when M reads wio 4 w io in the

corresponding accepting computations.
Proof. There are 2+1)" strings in . For each one of them there is 1 -<i _-<k + 1

such that there is no head reversal when M reads wi 4 w. Therefore, there are
l<-io<=k and a subset Sa of , of size _->2+1)"/(k + 1) such that there is no head
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R for all strings in S1o There are 2kn possible k-tuplesreversal when M reads Wio
(Wl," ", W-l, w+l," , Wk/I) with wi{0, 1}". Hence, there is a subset S of S1 of
size >(2(k/l)"/(k+1))/2k" that satisfies (b) and (c). It also satisfies (a) because of
(2). D

RWe choose x =ww$.. "$Wio-q-Wio-1 $ (x =e, the empty string, if i0 1)
R

Y $ Wio+l #- W io+1 $" $ Wk +1 W+1 (Y e if i0 k + 1). Hence, each string in S is
Rof the form XWio #- w ioY (with the same x and y).

FACT 4. For all strings in S, during the rlQI / 1 steps after reading Wio4, the working
head of M must move (left or right) at least once. (This count includes the step that
follows reading the #-.)

RProof. Otherwise there is XWio w ioY in S such that the working head of M does
not move for rlQl+l steps after reading Wio. Using a pumping technique (M
eventually repeats a state with the same symbol scanned by the working head, also

Rn> rlQl+l by (2)), wio =vlv2v3, v2 e, and M also accepts xwvlv2 03y for all
m > 0ha contradiction.

Hence, every string in S can be written in the form XVlV2vvRly, where
v, v2 e {0, 1}", < rlQI, and after reading the # the head of M moves for the first
time immediately after it completes reading #v. (Possibly v2

R e.) This head move-
ment defines a boundary on the working tape of M, a crossing sequence at that
boundary, and 1 <-p =< k which denotes the pth crossing of this boundary.

The number of different crossing sequences of M is at most Iol and the
number of possible v’s is 2rll/l. Hence by (a) of Fact 3, there are two strings in

R R 2R vRS’W--X0102:C’O201Y and w -xoo2 ::o Ol y with 92=/32, O 701, with the same
crossing sequences at the corresponding boundaries and the same p. By (c) of Fact

R(3), M crosses the corresponding boundary exactly once while reading Wio # w io for
both w and w’. By Lemma 1, M also accepts two mixed versions of w and w’. One
is of the form VLV2 #- vv ’R" ,R

Y and one is of the form v 19 # v 2 v 1R7. Both strings are
not in L2na contradiction. 71

Proof of Theorem 5. We show that L k/l
cannot be accepted by a real-time

deterministic reversal-bounded machine which makes no more than k reversals.
Assume, to the contrary, that Lk/ is accepted by such a machine with tapes, a
working tape alphabet size r and a set of internal states Q. Choose a large enough n
such that

(3) 2"/(k + 1)> IQIr’(2n+ 1)’+ 1

and consider as in the proof of Theorem 4. As in Fact 3, there is a subset
and 1-< i0 -< k + 1 such that"

(a) ISl>-IQIr’(2n / 1)’+ 1, with (b) and (c) as in Fact 3.
R RNote that the strings in S are of the form XWio #- w ioY, and M accepts XWio # w io.

R tRBy (a) there are two strings in S, XWio w ioY and xw io w io Y, such that M scans the
same t-tuple of symbols at the same positions on the working tapes and is in the same
state when it reads the : that follows Wio and the one that follows W lo. (Note that
after reading x in both computations M is in the same configuration, and during
reading Wio or Wio each of its heads can move at most n positions.) Since the heads
of M do not change direction when it reads Wio w R (and w’ ,R

io io 4 w io ), M must also
tRaccept XWio W,.o a contradiction.

Note that we have used the fact that M is deterministic when we derived an
Raccepting computation on XWio w io from (an initial segment of) an accepting computa-

Rtion on XWio :- w ioY.
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4. Conclusion. We now list some open problems. We have solved Questions 1
and 2 for unrestricted and reversal-bounded machines. We still do not know the answer
to Question 3" Are three (reversal-bounded) pushdown stores better than two? We
have shown that one-tape nondeterministic machines are better than one-tape non-
deterministic reversal-bounded machines. We still cannot prove a similar result for
multi-tape machines.

We have considered only real-time computations. Again, each one of Questions
4 to 7 below has two versions (one for the unrestricted case and one for the reversal-
bounded case), and all machines are nondeterministic.

4. Are linear-time one-tape machines better than real-time one-tape machines?
5. Are linear-time two-tape machines better than linear-time one-tape machines?
6. Are linear-time two-pushdown machines better than linear-time one-tape

machines?
7. Are linear-time three-pushdown machines better than linear-time two-push-

down machines?
Finally, we consider briefly two other models of Turing machines. Recall that in

the model we used, the machine has a one-way read-only input. In the two other
models the machine has (i) a two-way read-only input, and (ii) an input tape which
is also a working tape.

First, consider the model with a two-way read-only input. Note that for real-time
machines two-way is no better than one-way simply because the input head has no
time to go to the left. It is easy to see that the four families of languages in the
introduction are the same in this model too. Consequently, Questions 1 to 3 arise,
and our answers to Questions 1 and 2 also apply to this model. Two-way access to
the input seems to make a difference for linear-time computations. It is easy to see
that L1 can be accepted by a deterministic (!) linear-time one-tape machine, and that
L2 can be accepted by such a machine which is also reversal-bounded. So both versions
of Questions 4 are answered in the affirmative in this model.

Now, consider machines which are allowed to use their input tape as a working
tape. For this model the questions about pushdown stores are meaningless. We also
do not consider here reversal-bounded machines. It is well-known [5, Thm. 10.7] that
such machines with one tape are very weak: the language L-{x xRIx {0, 1}*}
requires cn 2 time on a nondeterministic one-tape machine. On the other hand, even
a deterministic one-tape machine accepts L in real-time in any one of the previous
models. Note that for real-time machines, the ability to write on the input tape is
useless, and, for all k, k + 1 tapes in this model are equivalent to k tapes in the other
models. Consequently, for any k, k tapes are no better than three, three tapes are
better than two, and two tapes are better than one (real-time one-tape machines
accept only regular sets). The ability to write on the input tape seems useful in
linear-time computations. It was observed in [6] that in this model any k-tape
nondeterministic linear-time machine can be simulated by a two-tape linear-time
machine. Consequently, Questions 4 and 5 are obviously answered affirmatively.

Note added in proof. We have recently twice improved Theorem 1. In [9] (together
with W. J. Paul and R. Reischuk) we showed that any one-tape on-line nondeterministic
Turing machine that accepts L1 requires l)(n log log n) time. More recently we
improved this lower bound to l)(n log n). Note that L1 can easily be accepted by a
deterministic one-tape on-line Turing machine in time O(n log n).
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COMPUTATION OF MATRIX CHAIN PRODUCTS. PART II*

T. C. HUt AND M. T. SHING+

Abstract. This paper considers the computation of matrix chain products of the form M1 M2 "
Mn-1. If the matrices are of different dimensions, the order in which the matrices are computed affects
the number of operations. An optimum order is an order which minimizes the total number of operations.
Some theorems about an optimum order of computing the matrices have been presented in Part [SIAM
J. Comput., 11 (1982), pp. 362-373]. Based on those theorems, an O(n log n) algorithm for finding the
optimum order is presented here.

1. Introduction. In Part I of this paper [6], we have transformed the matrix chain
product problem into the optimum partitioning problem and have stated several
theorems about the optimum partitions of an n-sided convex polygon. Some theorems
in Part I can be strengthened and are stated here (the detailed proofs are in [7]).

THEOREM 1. For every choice of V1, VE, (as prescribed in Part I), if the weights
of the vertices of the n-gon satisfy the following condition,

W1-" W2 Wk ( Wk+l " Wn

for some k, 3 <-k _<-_ n, then every optimum partition of the n-gon contains the k-gon
V1- VE Vk. Furthermore, if k 2 in the above condition, i.e. w wE < w3 <=
w4 <-’’’ <-_wn, then ever optimum partition of the n-gon must contain a triangle
V1 VE V, for some vertex V, with weight equal to w3.

Note that if Wl w. < w3 < w4 -<" -< wn, then every optimum partition must
contain the triangle V1 V2 V3 since there is a unique choice of V3.

Now, whenever we have three or more vertices with weights equal to W in the
n-gon, we can decompose the n-gon into subpolygons by forming the k-gon in the
first part of Theorem 1. The partition of the k-gon can be arbitrary, since all vertices
of the k-gon are of equal weight. For any subpolygon with two vertices of weights
equal to w l, we can always apply the second part of Theorem 1 and decompose the
subpolygon into smaller subpolygons. Hence, we have only to consider the polygons
with a unique choice of V1; i.e., each polygon has only one vertex with weight equal
to Wl.

Because of the above theorem, Theorems 1 and 3 of Part I can be generalized
as follows.

THEOREM 2. For every choice of V1, V2, (as prescribed in Part I), if the weights
of the vertices satisfy the condition

WI < W2 W3" Wn,

then V1- V2 and V1- V3 exist in every optimum partition of the n-gon.
THEOREM 3. Let Vx and Vz be two arbitrary vertices which are not adfacent in a

polygon, and Vw be the smallest vertex from Vx to Vz in the clockwise manner Vw
Vx, Vw Vz), and Vy be the smallest vertex from Vz to Vx in the clockwise manner
Vy V, Vy V). This is shown in Fig. 1. Assume that V < Vz and Vy < Vw. The

necessary condition for V V to exist as an h-arc in any optimum partition is

Wy < Wx <- Wz < Ww.

* Received by the editors August 4, 1981, and in final revised form February 7, 1983. This research
was supported in part by the National Science Foundation under grant MCS-77-23738 and in part by the
U.S. Army Research Office under grant DAAG29-80-C-0029.

5 University of California at San Diego, La Jolla, California 92093.
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FIG.

We shall use "the/-optimum partition" to mean "the lexicographically smallest
optimum partition." Based on these theorems, we now present algorithms for finding
the unique/-optimum partition.

Using the same notation as in Part I of this paper [6], we can assume that we
have uniquely labelled all vertices of the n-gon. A partition is called a fan it is consists
of only v-arcs joining the smallest vertex to all other vertices in the polygon. We shall
denote the fan of a polygon V- Vb- V V by Fan (W[Wb, Wc,’’’, W). The
smallest vertex V1 is called the center of the fan.

We define a vertex as a local maximum vertex if it is larger than its two neighbors
and define a vertex as a local minimum vertex if it is smaller than its two neighbors.
A polygon is called a monotone polygon if there exist only one local maximum and
one local minimum vertex. We shall first give an O(n) algorithm for finding the
/-optimum partition of a monotone polygon and then give an O(n log n) algorithm
for finding the/-optimum partition of a general convex polygon.

2. Monotone basic polygon. In this section, let us consider the optimum partition
of a monotone polygon, i.e. a polygon with only one local minimum vertex and one
local maximum vertex. It follows from Theorems 1 and 2 that we can consider a
monotone basic polygon only. (A polygon having V1 adjacent to V. and V3 by sides
is called a basic polygon.) The understanding of this special case is necessary in finding
the optimum partition of a general convex polygon.

Consider a monotone basic n-gon V1- V2- Vc V3, the fan of the polygon
is denoted by

Fan (WllW2, Wc,"’, W3)

where the smallest vertex V1 is the center of the fan.
The definition of a fan can also be applied to subpolygons as well. For example,

if V., V3 are connected in the basic n-gon and V2 becomes the smallest vertex in the
(n- 1)-sided subpolygon, the partition formed by connecting V2 to all vertices in the
(n 1)-gon is denoted by

Fan (w2[Wc,"’, w3).
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LEMMA 1. If none of the potential h-arcs appears in the 1-optimum partition of the
n-gon, the l-optimum partition must be the fan of the n-gon.

Proof. Omitted. See [7] for details.
A potential h-arc will dissect a polygon into two parts, and the subpolygon which

contains the larger vertices is called the upper subpolygon. Let Vi- V. and Vp- Vq be
two potential h-arcs of any n-gon. We say that Vp -Pq is above (or higher than Vi V.
(and V/- V. is below, or lower than, V V) if the upper subpolygon of V/- V. contains
the upper subpolygon of Vp- Vq.

Let P be the set of all potential h-arcs in a monotone basic n-gon. P can have
at most n- 3 arcs.

LEMMA 2. For any two arcs in P, say V- V. and Vp- Vq, we must have either
Vi- V. above Vo Vo or Vo- Vq above Vi- V..

Proof. See [7] for details.
We can actually show this ordering of potential h-arcs pictorially by drawing a

monotone basic polygon in such a way that the local maximum vertex is always at
the top and the local minimum vertex is at the bottom. Then a potential h-arc Vp- Vo
is physically above another potential h-arc V- V. if the upper subpolygon of V- V.
contains the upper subpolygon of V V,. From the definition of the upper subpolygon
and the monotone property, we can see that max (w, w)< min (Wp, Wq) if Vp- Vq is
above Vi- V..

Consider the monotone basic n-gon which is shown symbolically in Fig. 2. V, is
the local maximum vertex and V- V., Vo- V, are potential h-arcs of the monotone
basic n-gon. The subpolygon V Vo-Vo V. which is formed by two
potential h-arcs V, Vq and Vi V and the sides of the n-gon from Vi to Vp and from
Vo to V. in the clockwise direction is said to be bounded above by the potential h-arc
V, Vq and bounded below by the potential h-arc V/- V., or simply as the subpolygon
between Vi- . and Vp- Vq for brevity.

FIG. 2
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LEMMA 3. Any subpolygon which is bounded by two potential h-arcs of the
monotone basic n-gon is itself a monotone polygon.

Proof. See [7] for details.
LEMMA 4. Any potential h-arc of a subpolygon bounded above and below by two

potential h-arcs of the monotone basic n-gon is also a potential h-arc of the monotone
basic n-gon.

Proof. See [7] for details.
We can now summarize what we have discussed. If there is no h-arc in the

/-optimum partition of a monotone basic n-gon, the/-optimum partition must be a
fan. Otherwise, the h-arcs in the /-optimum partition are all layered, one above
another. If we consider the local maximum vertex V, and the local minimum vertex
V1 as two degenerated h-arcs, then the /-optimum partition of a monotone basic
n-gon will contain one or more monotone subpolygons, each bounded above and
below by two h-arcs and the/-optimum partition of each of these monotone subpoly-
gons is a fan. Then, in finding the/-optimum partition of a monotone basic polygon,
we have only to consider those partitions which contain one or more potential h-arcs
and each of the subpolygons between two potential h-arcs is partitioned by a fan.

Since there are at most n-3 nondegenerated potential h-arcs in a monotone
basic n-gon, there will be at most 2"-3 such partitions and we can divide all these
partitions into (n-2) classes by the number of nondegenerated potential h-arcs a
partition contains. These classes are denoted by Ho, H1, , H,-3 where the subscript
indicates the number of nondegenerated potential h-arcs in each partition of that class.

There .is no potential h-arc in the partitions in the class Ho. Hence the class
consists of only one partition, namely the fan

Fan (WIIW2) W3).

In the class HI, each partition has one nondegenerated potential h-arc. Once the
potential h-arc is known, the rest of the arcs must all be vertical arcs forming two
fans, one in each subpolygon.

Two typical partitions in H1 of a monotone basic polygon are shown in Fig. 3.
In Fig. 3a, there is one nondegenerated potential h-arc, V- Vi( V < Vi)o The upper

FIG. 3. Two typical partitions in H1 of a monotone O-gon.



232 T.C. HU AND M. T. SHING

subpolygon is a fan

Fan (WclWa, wi)

and the lower subpolygon is a fan

Fan (w[w2, w, wi, w3).

In Fig. 3b, there is one potential h-arc, V2- V3, and the upper subpolygon is a fan

Fan (w21Wc,"’, w3)

and the lower subpolygon is a degenerated fan, a triangle.
The cost of the partition in Fig. 3b is

(1)
W1W2W3 "[- W2(WcWd -[- WdWe 3_ WeWf + WfWg 3_ WgWh 3r. WhWi _[_ WiW3

W1W2W3-t- W2(Wc" W3),

where we" w3 is the shorthand notation of the sum of adjacent products from Wc to
w3 in the clockwise direction.

Note that the cost of H0 of the polygon shown in Fig. 3 is

(2) Fan (WllW2, w3)= Wl(W2" w3).

The condition for (1) to be less than (2) is

w’(w’w3)
(W2"W3)-- W2" W3

Similarly, the condition for the partition in Fig. 3a to be less than H0 is

w "(w’w)
(3)

(we" wi)- Wc wi
< w1.

We say that a partition is said to be l-optimal among the partitions in a certain
class (or several classes) if it is the lexicographically smallest partition among all the
partitions with minimum cost in that class (or several classes). Hence, the/-optimum
partition is/-optimal among all partitions in the classes Ho, H1," , and Hn-3.

Now, assume that the /-optimal partition among all the partitions in
Ha, H, , Hn-3 contains only one potential h-arc Vi Vk, as shown in Fig. 4. (Note
that V Vk will exist in this partition as an h-arc.) This partition will be the/-optimum
partition of the monotone basic n-gon if it costs less than that of the fan in H0. The
condition that the partition with Vi- V as the single h-arc costs less than Ho is

w. (w" w,)
(Wi" Wk) Wi Wk

<wl ifwi=<wk

or

Wk "(Wi’Wg)
(Wi" Wk) Wi Wk

< w if Wk < Wi.

Combining the two inequalities above, we have

C(w,...,w)
(4)

(wi" Wk)-- wi Wk
< W1

where C(wi,..., wk) denotes the cost of the optimum partition of the subpolygon
w- w. wg-w and is equal to the cost of the fan in this case.
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FIG. 4. A monotone polygon with a single h-arc.

An h-arc Vi Vk which divides a polygon into two subpolygons is called a positive
arc with respect to the polygon if condition (4) is satisfied; i.e., the partition with the
arc as the only h-arc and a fan in each of the two subpolygons costs less than the fan
in the same polygon. Otherwise, it is called a negative arc with respect to the polygon.

When an n-gon is divided into subpolygons, an h-arc is defined as positive in a
subpolygon if the cost of partition of the subpolygon with the h-arc as the only h-arc
is less than the fan in the subpolygon.

Let us consider a partition with two h-arcs as shown in Fig. 5, and assume that
this partition is/-optimal among all partitions in the classes H2, H3,’’’, Hn-3.

FIG. 5. A monotone 8-gon with two h-arcs.

If V- Vk is positive with respect to the subpolygon V1- Vi- Vp- Vq- Vk, then
the condition analogous to (4) is

C(wi, Wp, Wq, Wk)
W1.(5a)

{(wi" w,)-[(wp wq)- Wp" Wq]}- wi Wk
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If V- Vk is positive with respect to the whole polygon V1- Vi Vn Vk,
then the condition is

(5b)
C(wi, wo, w, w,, w, Wq, wg)

< w.
(w,: w) w w

Note that condition (5b) implies (5a).
The condition for the arc V- Vo to be positive with respect to the subpolygon

Vi- Vp- Vr- Vn- Vs- Vcl- Vk is

(6a)
C(wo, w, w,,, w, w,) < min (wi, wg).
(w,, w. w,," w.

If the arc Vp Vq is positive with respect to the whole polygon V1- Vi Vp Vr
Vn- Vs- Vq- Vk, it must satisfy

(6b) C(wo, Wr, Wn, Ws, Wq) < W1.
(w,,: w.)- w. w.

Since W1 < min (wi, Wk), condition (6b) implies (6a).
Here, the presence of Vi Vk will divide the original polygon into two subpolygons

where Vo V appears in the upper subpolygon. If Vp V, is a positive arc with respect
to the original polygon, then Vo-V is certainly positive in the upper subpolygon.
But if Vp- V is positive in the subpolygon, the arc Vo- Vq may become negative if
V Vk is removed; i.e., V V, becomes negative with respect to the original polygon.

Similarly, if the arc V Vk is positive with respect to a subpolygon, the arc Vg Vk
may become negative if the arc Vo- V is removed.

The preceding discussions can be summarized as"

THEOREM 4. If an h-arc is positive with respect to a polygon then the arc is positive
with respect to any subpolygon containing that arc. If an h-arc is positive with respect
to a subpolygon, it may or may not be positive with respect to a larger polygon which
contains the subpolygon.

There are two intuitive approaches to finding the /-optimum partition of a
monotone basic polygon. The first approach is to put in the potential h-arcs one by
one. Each additional potential h-arc will improve the cost until the correct number
of h-arcs is reached. Any further increase in the number of h-arcs will increase the
cost. To introduce an h-arc into the polygon, we can test each potential h-arc (at most
n- 3) to see if it is positive with respect to the whole polygon. If yes, that positive
arc must exist in the/-optimum partition, and the polygon will be divided into two
subpolygons, each being a monotone polygon. We can repeat the whole process of
testing positiveness of the h-arcs. The trouble is that all these arcs may be negative
individually with respect to the whole polygon and yet H0 may not be the optimum.
For example, two arcs V- V. and Vo- V, may be negative individually with respect
to the whole polygon, but the partition with both Vi- V., Vp- Vo present at the same
time may cost less than H0, as shown in Fig. 6a. This shows that we cannot guarantee
an optimum partition simply because no more potential h-arcs can be added one at
a time.

The second approach is to put all the potential h-arcs in first, and then take out
the potential h-arcs one by one, where each deletion will decrease the cost until the
correct number of h-arcs is reached. Any further deletions will increase the cost.
Unfortunately, even if all h-arcs are positive with respect to their subpolygon, the
partition may not be optimum. In Fig. 6b, each h-arc is positive with respect to its
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FIG. 6. Counterexamples for the intuitive approaches.

local subpolygon, but the partition is not optimum. (Note that positiveness of an h-arc
in a quadrilateral is the same as stability. But the idea of stability applies to vertical
arcs as well.) This means that we cannot guarantee an optimum partition simply
because no h-arc can be deleted one at a time.

Let us outline the idea of an O(n) algorithm for finding the/-optimum partition
of a monotone basic polygon. First, we get all the potential h-arcs by the one-sweep
algorithm. Then, we start from the highest potential h-arc and process each potential
h-arc from the highest to the lowest. For each potential h-arc, we try to get the
/-optimum partition of the upper subpolygon above that arc. The/-optimum partition
in the subpolygon is obtained by comparing the cost of the/-optimal partition among
the partitions of the upper subpolygon which contain one or more potential h-arcs
with that of the fan in the upper subpolygon.

If we use the dynamic programming approach to find the/-optimum partition in
the upper subpolygon of each potential h-arc, we need O(n 3) operations to find the
/-optimum partition of the whole monotone basic n-gon. Fortunately, there are some
dependence relationships among these potential h-arcs. Hence, certain subsets of the
potential h-arcs will either all exist or all disappear in the/-optimum partition of the
monotone polygon. We shall be dealing with potential h-arcs most of the time, so we
shall use "arcs" instead of "potential h-arcs" when there is no ambiguity.

Consider the monotone basic polygon shown symbolically in Fig. 7. There are
three potential h-arcs, denoted by hg, hi and hg. For any arc h, we shall use w, w’
to denote the weights associated with the end vertices of the arc h. V, is the local
maximum vertex and V1 is the local minimum vertex. Without loss of generality, we
can assume w <_- w’ for a i,/" and k. Since we shall deal with subpolygons bounded
by two potential h-arcs, let us use h, for V and hi for VI (i.e., we consider these
vertices as degenerated arcs). From Lemmas 1 and 3, the/-optimum partitions of the
subpolygons bounded by two potential h-arcs (i.e. the white area of the polygon in
Fig. 7) are all fans.

Assume (i) hk is positive in the subpolygon bounded by h, and hi, but hk is negative
in the subpolygon bounded by h, and h;

(ii) hi is positive in the subpolygon bounded by h and hg, but hi is negative in
the subpolygon bounded by h and hi;
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FIG. 7. An octagon with three potential h-arcs.

(iii) hi is positive in the subpolygon bounded by hi and h only.
Then either the three arcs hk, hi, hi all exist or no h-arcs exists in the optimum partition.

This shows that the existence of an h-arc depends on the existence of another h-arc.
In Fig. 7, the condition for hk to be positive with respect to the whole polygon

is (compare with the condition (5a))

C(w, w., w’)
(7)

(Wk" W’k)-- Wk Wtk
The left-hand side of (7) is denoted by

S(h\h,)

and is called the supporting weight of the arc h with respect to the upper subpolygon
bounded above by h,.

The supporting weight of an arc h is an indicator of the existence of h in a
subpolygon. To specify the subpolygon, we have to specify the arc above hk, e.g. h
in this case, and an arc below h. Once the upper subpolygon of h is specified, we
can calculate the supporting weight of h since the left-hand side of (7) depends only
on weights of vertices in the upper subpolygon. To find the arc below h which is the
lower boundary of the subpolygon, we can use the supporting weight of hk to test
each arc hi below h. (The hi has two vertices with weights wi and

If S(h\h,) min (wi, w) then h will exist in the subpolygon between hi and h,.
Otherwise, h cannot exist in the subpolygon.

Let hi, hi and hk be three potential h-arcs where hi lies below h and above hi. Let
a c

S(hi\h)=- and S(hi\h)=-.
Then it follows from the definition of supporting weight that

a-bc
(8) S(hg\h)

b+d"
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If S(hi\hj)<S(hi\hk), we have S(hi\hj)<S(hi\hk)<S(hi\h). On the other hand, if
S(hi\hi)> S(hi\hk), we have S(hi\hi)> S(hi\hk)> S(hi\h).

In terms of the supporting weights, we can rewrite the previous conditions (i),
(ii) and (iii) as follows:

(i) wi < S(h\h. < wi
(ii) w < S(hi\h) < wi;

(iii) S(hi\hi)< wl.
Note that if S(hi\h)<=S(h\h,), then it follows from (7) and (8) that S(hi\h)<=

S(h\h,)S(hk\h,).
Because of conditions (i) and (ii), the /-optimum partition of the subpolygon

bounded by hi and h, must either be a fan or consist of both hi and h as h-arcs.
Hence, in order that both h and hk exist in the/-optimum partition of the subpolygon
bounded by hi and h,, S(hi\h) must be less than wi. Suppose S(hi\h,)wi and
S(hi\hj) Wl. Then all three arcs hi, hi and h will exist in the/-optimum partition of
the whole polygon if S(hi\h,) Wl. If S(h\h,)>=w, then the/-optimum partition will
consist of a fan instead.

Define S(h,\h,) to be zero. We say that an arc h is the ceiling of another arc hi
if either condition (i) or conditions (iia), (iib), and (iic) are satisfied:

(i) h h, if hi h,, i.e., h, is its own ceiling;
or

(ii) a) hk is above hi,
b) S(hi\hk) > S(hk\hk’S ceiling),
c) hk is the lowest arc which satisfied (iia) and (iib). ("Lowest" means closest

to the minimum vertex.)
The ceiling of an arc hi is the lowest arc (above hi) which may exist in an optimum

partition even though hi does not exist.
We say that an arc hi is a son of another arc hi if the following conditions are

satisfied:
(i) hi is above hi (the son is above its father);

(ii) S(hi\hi’s ceiling)<min (wi, w)where wi, w are the weights associated to the
end vertices of

(iii) S(hi\hi)<-S(hi\hi’s ceiling); i.e., hi is not a ceiling of hi;
(iv) hi is the highest arc which satisfies (i), (ii) and (iii). ("Highest" means closest

to the maximum vertex.)
We shall prove in Theorem 6 that"
(i) if the father of any arc hj exists in the /-optimum partition, then the arc hj

will also exist in the same partition;
(ii) if the father of h does not exist in the/-optimum partition, then the arc h

also does not exist in the same partition.
From the definitions of the ceiling and the father-son relationship, we have the

following observations:
(i) Every arc can have at most one father but an arc can have many sons. Also,

the ancestor-descendant relationship is a transitive relationship. (Note that
the ancestor-descendant relationship applies to arcs which are positive with
respect to the whole monotone polygon as well.)

(ii) Every arc can have at most one ceiling but an arc can be the ceiling of many
arcs.

(iii) All the h-arcs in the/-optimum partition of the subpolygon bounded by an
arc hi and its ceiling are descendants of h.

(iv) The ceiling of h cannot lie below any of the ceilings of hj’s descendants.
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In other words, the subpolygon between hi and its ceiling is nested completely
inside the subpolygon bounded by hi’s father and the ceiling of hi’s father. If we treat
each subpolygon bounded by an arc hi and its ceiling as a block, then the ancestor-
descendant relationship imposes a "nested block structure." For example, if hk’s father
is hi and hi’s father is hi, then

hk and its ceiling form the innermost block,
hi and its ceiling form the middle block, and
hi and its ceiling form the outermost block.
We shall show that the h-arcs in the/-optimum partition of an inner block exist

in the /-optimum partition of the monotone polygon if and only if their ancestors;
i.e., the h-arcs, forming the bottoms of the outerblocks, exist.

THEOREM 5. Let h be a potential h-arc. If h is present in the l-optimum partition
of a monotone polygon, its ceiling h will also be present in the l-optimum partition.

Proof (by contradiction). Suppose there exists an h-arc hi in the /-optimum
partition while its ceiling h does not exist in the/-optimum partition. Without loss
of generality, we can assume hi to be the highest arc among those potential h-arcs
which are present in the /-optimum partition and violate the theorem. From the
definition of supporting weight, i.e. the left-hand side of inequality (7), we have
S(hi\h) < min (wi, w). Let hc be the lowest h-arc above hi in the/-optimum partition.
The ceiling of hc must be present in the/-optimum partition and we have S(h\h’s
ceiling) < min (wi, w ). Since there is no other h-arc between h and h in the/-optimum
partition, the fan is /-optimum in the subpolygon between hi and h. We have the
following two cases.

Case 1. If h is the ceiling of h, we have S(hk \hc) < S(hi\hk) < min (wi, w ). Hence,
the partition with hk and its descendants as h-arcs costs less than the fan in the
subpolygon between hi and ho and we have a contradiction.

Case 2. If he is not the ceiling of hk, we have the following two subcases.
Case 2a. Suppose hc has a father which lies between hi and h. It follows from

the definition of the father-son relationship that S(h’s father\he) =< S(h \h’s ceiling) <
min (wi, w). Hence, the partition with h’s father and its descendants costs less than
the fan in the subpolygon bounded by hi and h, and we have a contradiction.

Case 2b. Now hc is not the ceiling of hk and has no ancestor between hi and h.
Then among the potential h-arcs which lie between h and h, there exists a set of
arcs ha, he, hr, h, such that

h is the ceiling of ha,

ha is the ceiling of he,

hr is the ceiling of hg,

hk is the ceiling of hi,

and none of these arcs exists in the/-optimum partition. It follows from the definition
of a ceiling that

S(hd\h)<S(he\hd)<" <S(hk\hf)<S(hi\h)<min (wi, w).
Now, the partition with hd and all its descendants as h-arcs costs less than the fan in
the subpolygon bounded by hi and he, and we have a contradiction. In fact, using the
same argument,we can show that the arcs hal, he,"’, hf, hg and all the descendants
of these arcs should be in the/-optimum partition of the monotone polygon. [3
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THFOREM 6. The sons of an arc hi will exist in the l-optimum partition o] a
monotone polygon if and only i) h is present in the l-optimum partition.

Proo). (i) Instead of proving the "only if" part of the theorem directly, we will
prove, by contradiction, that the existence of any son of h implies the existence of hi
in the/-optimum partition.

Among all the potential h-arcs in the monotone polygon, let hi be the highest
arc which is not present in the/-optimum partition of the polygon even though it has
one or more sons present in the/-optimum partition. Among all the sons of hi, let hk
be the lowest son which is present in the/-optimum partition. Finally, among all the
potential h-arcs below hi, let hi be the highest h-arc which is present in the/-optimum
partition. Hence, the /-optimum partition in the subpolygon bounded by hi and hk
must be a fan. It follows from Theorem 5 that h’s ceiling also exists in the/-optimum
partition and we have S(h\hk’s ceiling)<min (wi, w). Otherwise, the /-optimum
partition in the subpolygon bounded by hi and hk’s ceiling should be a fan and h as
well as its descendants cannot be present in the/-optimum partition. From the definition
of the father-son relationship, we know that S (hi\h,) <= S(h\h ’s ceiling) < min (Wi, W
This means that in the subpolygon bounded by hi and hk, the partition consisting of
hi and its descendants as h-arcs costs less than the fan. This contradicts our assumption
that the fan is/-optimum in the subpolygon bounded by hi and h.

(ii) We shall prove the "if" part of the theorem directly by contradiction. Among
all the potential h-arcs in the monotone polygon, let h be the highest arc which is
not present in the /-optimum partition of the polygon even though its father hi is
present in the /-optimum partition. Among all the potential h-arcs present in the
/-optimum partition, let h be the lowest h-arc above h and let h be the highest h-arc
below h in the/-optimum partition as shown in Fig. 8. Hence, the/-optimum partition
in the subpolygon bounded by h and h must be a fan. Note that h must be a ceiling
of hk because h is the highest arc not satisfying the necessary condition of the theorem.
Otherwise, h is a descendant of h, and by part (i) of this proof, h will exist in the
/-optimum partition of the polygon. The arc hb must either be hi itself or lie above
hi. Hence, we have min (w, w b) => min (w., w.). By the definition of the father-son

FIG. 8
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relationship, we have S(hk\hc)<min (wi, w)<--min (wb, W’b). This means that in the
subpolygon bounded by hb and hc, the partition consisting of hk and its descendants
is cheaper than the fan. This contradicts our assumption that the fan is/-optimum in
the subpolygon bounded by hb and h.

COROLLARY 1. The descendants of any arc hi will exist in the l-optimum partition
of a monotone polygon if and only if h exists in the l-optimum partitions.

Proof. The corollary follows from Theorem 6.
It follows from Corollary 1 that if a potential h-arc hi is present in the/-optimum

partition of a monotone polygon, all its descendants, all its ancestors and all potential
h-arcs which have some ancestors common to those of h will be present in the
/-optimum partition.

THEOREM 7. Let hi and hi be two potential h-arcs such that hi is above h and the
l-optimum partition in the subpolygon bounded by h and hi is a ]’an. If S(hi\hi’s
ceiling)>-min (w, w), then h and all its descendants cannot exist in the 1-optimum
partition of any subpolygon bounded above by h, and below by any potential h-arc not
higher than h.

Proof (by contradiction). Assume that there exist such two potential h-arcs but
that hi is present in the /-optimum partition of a subpolygon bounded above by h,
and below by a potential h-arc lower than h. Without loss of generality, let h be the
lowest arc among all the potential h-arcs which are present in the/-optimum partition
and which satisfy the assumption. Hence, none of the potential h-arcs between hi and
h. can exist in the/-optimum partition. Let hb be the highest potential h-arc below hi
in the/-optimum partition. Since hb can either be hi itself or a potential h-arc below
hi, we have min (Wb, w)_<-min (w, w)<=S(hi\hi’s ceiling). The partition with hi and
all its descendants costs more than the fan in the subpolygon bounded by hb and h.’s
ceiling and we have a contradiction.

Using Theorem 6, we can start from an innermost block and work our way out.
Suppose we have located the ceiling of a potential h-arc h. Then we can treat h and
all the sons (and descendants) of h as a unit; i.e., all h’s sons are condensed into h.
Let hb be the potential h-arc immediately below h in the monotone polygon. The
/-optimum partition in the subpolygon bounded by hb and the ceiling of h must consist
of either h and all its descendants as h-arcs or of a fan, depending on whether S(hi\hi’s
ceiling) < min (Wb, Wtb) or S(hi\hi’s ceiling) _->min (Wb, Wtb). If the fan is cheaper, we can
delete hi and all its descendants since none of these arcs can appear as h-arcs in the
/-optimum partition of the polygon (Theorem 7).

Now, what we have to do is to find an innermost block to start our computations.
After obtaining the list of potential h-arcs of the monotone polygon using the one-
sweep algorithm, we know that the degenerated arc hn is the ceiling of the highest
potential h-arc in the list, and this potential h-arc does not have any descendants. So,
we should start from the highest potential h-arc and work our way down the list of
potential h-arcs.

We now give two examples to illustrate the concepts, notation and algorithm.
Then a formal description of the algorithm will be given.

Consider a monotone basic polygon with five potential h-arcs, h6, hs,’", h2
where h6 is the highest arc as shown symbolically in Fig. 9. Let wi -< w for 2, 3, .
The maximum vertex, which lies above h6, has the weight w7 and the minimum vertex,
which lies below h2, has the weight Wl. We can regard w7 (and Wl) as a degenerated
arc and use h7 to represent w7 (and hi to represent wl).

Example 1. There are two possible candidates for the/-optimum partition in the
subpolygon bounded by h5 and h7. We shall use C(h__5, h6, h7) to denote the cost
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FIG. 9. A 12-gon with 5 h-arcs.

of the partition with h6, and Ho(h._As, h7) to denote the cost of the fan in the
subpolygon. Similarly, we shall use C(h_z, hs, h6, hv) to denote the cost of the
partition with h5 and h6 as the only 2 h-arcs in the subpolygon bounded by h2 and
h7. Note that there is a bar underneath the h-arc which forms the bottom of the
subpolygon and a bar above the h-arc which forms the top of the subpolygon.

The necessary computations and results of the comparisons are shown in Table 1.
If ’(hz\h7) < wl, the partition with he, h3, h4, h5 and h6 as h-arcs will be/-optimum

in the polygon. Otherwise, the fan Ho(h_t, h7) will be/-optimum.
Now, let us consider a more complicated example.
Example 2. Consider the 6 potential h-arcs shown in Fig. 9. Assume that we

have the computations and results shown in Table 2.
If ’(h2\h7)< wl, the partition with he, h5 and h6 as h-arcs is/-optimum. Otherwise,

the fan Ho(h_l, h7) will be/-optimum.
Let us give the algorithm for finding the/-optimum partition of a monotone basic

polygon.

ALGORITHM M
(I) Get all the potential h-arcs of the polygon by the one-sweep algorithm [6].

(All these arcs form a vertical list, with the highest arc closest to the maximum vertex
Vn and the lowest arc closest to the minimum vertex V1.)

(II) Process the potential h-arcs one by one, from the top to the bottom. Let hi
be the potential h-arc being processed, let hk be the potential h-arc immediately above
hi, and let hi be the potential h-arc immediately below hi in the monotone polygon.
(If hi is the highest potential h-arc in the polygon, hk will be the degenerate arc hn;
if hi is the lowest potential h-arc in the polygon, hi will be the degenerated arc hi.)
Note that by the time we start processing hi, we have already obtained the/-optimum
partition of the subpolygon between hi and h,. We have also located the ceilings of
every h-arc in the /-optimum partition of this subpolygon. When we process hi, we



TABI.E

Computations

1. S(h6\h7)

2. S(hs\h6)

3. S(hs\h7)

4. S(h4\hs)

5. S(h4\h7)

6. ’(h3\h4)

7. S(h3\h7)

8. S(h2\h3)

9. S(h2\hT)

Observations

w4<S(h6\hT)<W5

w3<S(hs\h6)<w4

w3 <( S(hs\h7) < w4

wa <S(h4\hs)’( w3

w2 <S(h4\h7)<,. w3

Wl < S(h3\h4) < w2

Wl<S(h3\h7)<w2

S(h2\h3)<Wl

Remarks

h7 is the ceiling of h6:
S(h6\h7) < w5 : C(h, h6, h7)< H0(.h_5, h7)

S(hs\h6)<S(h6\hT)h6 is a son of
condense h6 into h-s and calculate S(hs\h7)

h7 is the ceiling of h-s’
’(hs\h7) < w4 :z C (h__a, hs, h6, h7)< Ho(_h_4, h7).

S(h4\h-s)<S(h-s\h7)h-s is a son of h4"
condense h5 into h4 and calculate S(h4\h7)

h7 is the ceiling of h4’
S(h4\h7) < w3 ff C(h_3, h4, h-s, h6, h7)< Ho(h__3, h7)

,(h3\h4)<,(h4\h7):::’h4 is a son of h3"
condense h4 into h3 and calculate S(h3\h7)

h7 is the ceiling of h3"
S(h3\h7) w2C(_h2, h3, h4, h-s, h6, h7)< Ho(h2, h7)

S(h2\h3)<S(h3\h7)h3 is a son of h2;
condense h3 into h2 and calculate S(h2\h7)

TABLE 2

Computations

1. S(h6\h7)

2. S(hs\h6)

3. S(h4khs)

4. S(h3\h4)

5. S(h3\hs)

6. S(h2\h-s)

7. S(h2\h6)

8. ’(h2\h7)

Observations

Wl<S(h6\hT)<W2

S(h6\hv)<S(hs\h6)< W2

w2<S(h4\hs)<W3

Wl<S(h3\h4)<w2

w2<S(h3\h5)<w3

S(h2\h-s)< wl

S(h2\h6)<Wl

Remarks

h7 is the ceiling of h6;
’(h6\h7) < w5 :: C(_h_5, h6, hT)< Ho(_h__5, hT)

S(hs\h6) > S(h6\h7)h6 is the ceiling of h-s"
’(hs\h6) < w4 =), C(h4, hs, h6)< no(h4, h6)

S(h4\hs) > S(hs\h6):::’ h5 is the ceiling of h4;
S(hn\hs) < w3 ::)’ C(h__3, h4, hs) < Ho(h3, hs)

S(h3\h4)<,(h4\hs):::X,,h4 is a son of h3"
condense h4 into h3 and calculate ’(h3\hs)

S(h3\hs) 3> S(hs\h6): h5 is the ceiling of h3;
S(h3\hs) > w2 ::), C (h_h_2, h3, h4, hs)2> Ho(h__2, hs)’
both h3 and h4 cannot exist in the/-optimum partition and
should be deleted from the list of potential h-arcs; we
should then check to see if the fan is cheaper in the subpoly-
gon bounded by h2 and h6;
S(hskh6) < 1422 C(h__2, h.s, h6)< Ho(h_2, h6)

S(h2\h-s)<S(h-s\h6)h-s is a son of h2;
we should condense h-s into h2 and calculate S(h2\h6)

S(h2\h6)<,(h6\h7)z:,h6 is a son of h2;
we should condense h6 into h2 and calculate S(h2\h7).
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first locate the ceiling of hi and condense all hi’s descendants into hi. Then we obtain
the/-optimum partition of the subpolygon between hi and h, by deleting those blocks
of arcs which cannot exist in the/-optimum partition of the subpolygon between hi
and hn.

While (hi the degenerated arc h 1) do
Begin
1. [To locate the ceiling of hi].

While S(hi\hk) <=S(hk\h’s ceiling) do
Begin

a. Comment: Now, hg is a son of hi.
b. We will combine h and all its descendants into hi and calculate the combined

supporting weight S(hi\h’s ceiling).
c. Replace hk by hg’s ceiling; i.e., hg is always used to denote the lowest h-arc

above hi which is not yet combined into hi.
End.

2. [To delete those blocks of arcs which cannot exist in the/-optimum partition
of the subpolygon between hi and hn].

While C(hi, hi and hi’s descendants, hi’s ceiling) Ho(hi, hi’s ceiling);
i.e., S(hi\hi’s ceiling) =>min (wi, wl). Do
Begin

a. Delete hi and all its descendants from the list of potential h-arcs.
b. Replace hi by the ceiling of hi; i.e., hi is always used to denote the arc

immediately above hi in the subpolygon between hi and h,.
End.

3. [Prepare to process next arc].
Replace hk by hi, hi by hi and hi by the arc immediately below hi in the list of

potential h-arcs.
End.

(III) Output the/-optimum partition consisting of the arcs which remain in the
list of potential h-arcs after Step II as h-arcs.
Then stop.

THEOREM 8. The partition produced by Algorithm M is l-optimum.
Proof. We have shown in Part I of this paper [6] that all h-arcs present in the

/-optimum partition of the polygon are potential h-arcs, and all potential h-arcs are
included in the list obtained by the one-sweep algorithm. We claim that (i) whenever
Algorithm M finishes Step II.1, the ceiling of hi is correctly located, (ii) whenever
Algorithm M finishes Step 11.2, the arcs which have been deleted by Algorithm M
cannot exist in the/-optimum partition of the subpolygon bounded above by hn and
below by an arc lower than hi, and (iii) the partition consisting of all the potential
h-arcs remaining above hi as h-arcs is/-optimum in the subpolygon bounded by hi
and hn after Step 11.2. (If the claim is true, the partition output by Algorithm M will
be/-optimum in the monotone polygon.)

We shall prove the claim by induction on the number of h-arcs above an arc hi.
It is easy to see that the claim is true when hi the highest arc in the list of

potential h-arcs.
Suppose the claim is true for all potential h-arcs above some arc hi. Let hi be the

arc immediately below hi in the list of potential h-arcs. Just before Algorithm M starts
processing hi, all the potential h-arcs which remain above hi exist as h-arcs in the
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/-optimum partition of the subpolygon between hi and h,. We can divide these arcs
into two groups" (i) those which are descendants of some other arcs in the subpolygon,
and (ii) those which have no ancestor in the subpolygon.

It follows from the definition of the father-son relationship that only arcs in
group (ii) can be sons of h Let the set of arcs in group (ii) be
ht, ht-1, hp, hp-1, hi+2, hi+l such that h, is above h, h is above ht-1, hp
is above hp-1,""", hi+2 is above hj/l and hi+l is above hi. Note that there exists no
other h-arc between hi+l and hi in the/-optimum partition of the subpolygon. Since
none of these arcs has an ancestor in the subpolygon, we must have

h. as the ceiling of ht,

h as the ceiling of h_,

h as the ceiling of h_,

hi/ as the ceiling of hi/.
It follows from the definition of the ceiling that

S(hi+l\hi+:2) >" > S(ht,-l\ht,) >" > S(ht-l\ht) > S(ht\h,.,).

Since hi+l is the lowest h-arc in the/-optimum partition of the subpolygon bounded
by hi and h,, we have

min (wi, w)>S(hi+l\hi+2)>. >S(ht\h,).

Now, if S(hi\hi+l ’(hi+l\hi+2) all four conditions of the father-son relationship are
satisfied and Algorithm M will correctly condense hi+l and its descendants into hi.
Using the same argument repeatedly, we conclude that Algorithm M correctly locates
the ceiling of hi at the end of Step II.1. Whenever the potential h-arc hi and its
descendants are removed in Step II.2, the conditions in Theorem 7 are satisfied. Hence
hi and its descendants cannot exist in the /-optimum partition of any subpolygon
bounded above by h, and below by a potential h-arc lower than hi. Now, at the end
of Step II.2, we can again divide the potential h-arcs remaining above hi into two
groups:

(i) those which are descendants of some other arcs in the subpolygon, and
(ii) those which have no ancestor in the subpolygon.

Let hi be the h-arc immediately above hi after Step II.2. The arc hi must be the lowest
arc in group (ii). It follows from the definition of ceiling that for any arc hk above hi
in group (ii), we have

’s ceiling)min (wi, w i) > S(hi\hi s ceiling) > S(hk\hk.

From Theorem 6, if any of the arcs in group (ii) does not exist in the /-optimum
partition, all its descendants in group (i) will not exist in the /-optimum partition.
Suppose the partition consisting of all the potential h-arcs remaining above hi as h-arcs
is not/-optimum in the subpolygon between hi and h,. Then some of these potential
h-arcs in group (ii) and their descendants should not exist in the/-optimum partition.
Assume that hg is the highest potential h-arc remaining above hi after Step II.2, but
h should not exist in the/-optimum partition. Let hb be the highest h-arc below hk
in the /-optimum partition. Hence, the fan should be /-optimum in the subpolygon

’s ceiling) < min (wi, w i) < min (Wb, W b) thebetween hb and hk’s ceiling. Since S(hk\h,
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partition with hk and its descendants as h-arcs in the subpolygon bounded by hb and
hk’s ceiling is always cheaper than the fan, and we have a contradiction.

Hence, the claim is true, and the partition output by Algorithm M is/-optimum.
In order for Algorithm M to run efficiently, we need a data structure which

enables us to calculate the supporting weights, to keep track of the ceiling of each
potential h-arc and to update the list of potential h-arcs easily. One way to implement
Algorithm M is to place all potential h-arcs obtained in Step I in a linear linked list,
with the highest arc at the head of the list and the lowest arc at the tail of the list.
Each of these potential h-arcs, say hi, is associated with a record variable with the
following fields"

(i) the label of the end vertex which is closer to V1 in the clockwise direction;
(ii) the label of the other end vertex;

(iii) the ceiling of hi;
(iv) the list of sons of
(v) the cost of the /-optimum partition in the subpolygon between hi and its

ceiling, i.e. the numerator of S(hi\hi’s ceiling);
(vi) the quantity (wi" wj + wj wi + w}" w i)- We W where Wi, W are- weights of

the end vertices of the potential h-arc hi and wi, w are the weights of the
end vertices of hi’s ceiling, i.e. the denominator of S(hi\hi’s ceiling) (it is
obtained by subtracting the product wi’wl from the sum of the adjacent
products from wi to w around the subpolygon wi w Wi W );
and

(vii) the supporting weight S(hi\hi’s ceiling).
Note that only the first three fields of each potential h-arc are defined at the end

of Step I, the other four fields of each potential h-arc are set to the correct value
when the potential h-arc is being processed in Step II. Since the sums of adjacent
products of the form wi: wi are used repeatedly in calculating the cost of the fan
between two adjacent potential h-arcs and the denominators of the supporting weights,
we can eliminate a lot of repeated calculations by initializing the elements of an
array CP to

CP[1]=O and CP[i]=w:wi for2_<-i_-<n.

Then the sum of the adjacent products Wi: W can be obtained from CP[f]-CP[i].
As we process the arcs in the list of potential h-arcs one by one from the top to

the bottom, we shall remove a potential h-arc from the list if (i) the arc is found to
be a son of another potential h-arc in Step II.1, or (ii) the partition with the arc and
all its descendants is not/-optimum in some subpolygon in Step 11.2. Let h be an
arc which is removed from the list in Step II.1 and let hi be its father. After h is
removed from the list of potential h-arcs, it will be added to the list of hi’s sons, i.e.
the fourth field of hi. Then, we have to calculate the supporting weight S(hi\h’s
ceiling). The numerator of S(hi\hk’S ceiling) can be obtained by adding the numerator
of S(hk\hk’s ceiling) in the fifth field of h to the numerator of S(hi\hi). Similarly, the
denominator of S(hi\hk’s ceiling) can be obtained by adding the denominator of
S(hk\hk’S ceiling) in the sixth field of h to the denominator of S(hi\h). Hence, we
can calculate S(hi\hk’S ceiling) in a constant amount of time. Note that whenever
Algorithm M finishes Step 11.2, only those potential h-arcs which are present in the
/-optimum partition of the subpolygon between hi and h, and yet have no ancestors
above hi remain above hi in the list of potential h-arcs.

THEOREM 9. Algorithm M runs in O(n time.
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Proof. It takes O(n) time to sweep around the monotone polygon twice, once to
obtain all potential h-arcs in Step I and once to initialize the array CP. There are two
while loops in Step II, and it only takes a constant amount of time to execute either
while loop once. Whenever the while loop in Step II.1 is executed once, a potential
h-arc is removed from the list and condensed into its father. Whenever the while loop
in Step 11.2 is executed once, a potential h-arc is deleted from the list. Once an arc
is removed or deleted from the list, it will never be considered again. Since there are
at most n- 3 arcs in the list obtained in Step I, Algorithm M can execute both while
loops at most n- 3 times. So is takes O(n) time to process all the potential h-arcs in
Step II and to output the/-optimum partition in Step III. Hence, Algorithm M runs
in O(n)time. El

3. The convex polygon. In this section we shall extend the results in 2 to the
case of a general convex polygon.

There may be several local maximum vertices in a general convex polygon. Let
us still draw the polygon in such a way that the global minimum vertex is at the
bottom. From Theorem 4 of Part I, we know that all potential h-arcs are still compatible
in a general convex polygon. However, unlike those in a monotone polygon, the
potential h-arcs no longer form a linear list. Instead, they form a tree, called an
arc-tree. In Fig. 10a, there is a 12-gon with 6 potential h-arcs, and they are labelled
as h2, h3, h4, hs, h6 and hT. (Note that we also obtain V4- V3, VT- V6 and V6- V8
from the one-sweep algorithm. In order to have a simpler example, let us assume that
all three of these arcs are unstable and hence are not shown in Fig. 10a.) To get a
better feeling of the arc-tree, we can redraw the 12-gon as shown in Fig. 10b. By
regarding V1 as a degenerated arc hi, VI. as a degenerated arc h8, and Vll as a
degenerated arc h9, we have h as the root of the arc tree and the arcs h8 and h9 as
the leaves.

An arc hi is above another arc hi (and hi is below hi) if hi is in one of the subtrees
of hi. We shall be dealing with subpolygons, each bounded below by a potential h-arc
and above by a set of potential h-arcs. We can define the supporting weights of the
potential h-arcs in a similar way. For example, the supporting weight of the arc h2

(b)

FIG. 10. A general 12-gon.
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with respect to the subpolygon bounded above by {h4, h6} in Fig. 10b equals
C(W2, W4, W6, W5, W3)

[W2:W3--(W4:W6--W4" W6)--(W6:W5--W6" W5)]--W2" W3

and is denoted by S’(h2\{h4, h6}). Again, for any leaf node h,, we define S(h,,\{h,}) to
be zero.

We say that a set of potential h-arcs Ui is the ceiling of another potential h-arc
hi (or simply hi’s ceiling for short) if either condition (i) or conditions (iia), (iib), (iic)
and (iid) are satisfied:

(i) Ui {hi} if hi is a leaf node;
or

(ii) for all hk E Ui,
a) hk is above hi;
b) S(hi\Ui)>(hk\hk’S ceiling);
c) for all hi E Ui such that hi hk, neither hi is above hk nor hk is above hi; and
d) conditions (iia), (iib) or (iic) will be violated if hk is replaced by any arc

below hk in the subpolygon between hi and
We say that an arc hi is a son of another arc hi if the following conditions are

satisfied:
(i) h is above hi (the son is above its father);
(ii) S(hi\hi’s ceiling)<min (wi, w) where We, wl are weights associated to the

end vertices of
(iii) h is not in the ceiling of hi; and
(iv) hi is the highest arc which satisfies (i), (ii) and (iii).

It is easy to see that all the previous discussions on the ceilings and the ancestor-
descendant relationships in 2 still hold under the new definition of ceilings and
father-son relationships. Using arguments similar to those used in the proofs of
Theorems 5, 6 and 7, we can generalize Theorems 5, 6, 7 and Corollary 1 as follows"

THEOREM 10. If a potential h-arc h exists in the l-optimum partition of a convex
polygon, all potential h-arcs in its ceiling will also exist in the l-optimum partition.

Proof. Omitted.
THEOREM 11. The sons of an arc hi will exist in the l-optimum partition of a

convex polygon if and only if h is present in the l-optimum partition.
Proof. Omitted.
COROLLARY 2. The descendants of an arc h will exist in the l-optimum partition

of a convex polygon if and only if h exists in the l-optimum partition.
Proof. The corollary follows from Theorem 11.
THEOREM 12. Let X be a set of potential h-arcs above another potential h-arc

such that (i) ]:or any two arcs hi, hk X, neither hi is above hk nor hk is above hi if hi # hk,
and (ii) the l-optimum partition in the subpolygon between hi and the arcs in X is a fan.
Let h be a potential h-arc in X such that for any hk X, S(hi\hi’s ceiling)>--_S(hk\hk’S
ceiling), ff S(hi\hi’s ceiling)>-min (wi, wl) where wi, wl are the weights associated with
the end vertices of hi, then h and all its descendants cannot exist in the l-optimum
partition of any upper subpolygon bounded below by a potential h-arc no higher than hi.

Using the facts in Theorems 10, 11, 12 and Corollary 2, we can again start from
the potential h-arcs which lie immediately below the leaf nodes and work our way
down. The leaf nodes are the ceiling of these arcs. Before we can locate the ceiling
of any arc which does not lie immediately below the leaf nodes, we must first process
all the arcs above it, i.e. the arcs in its subtrees. Hence, we can do a postorder traversal
through the arc tree. When we process a potential h-arc, we first find the/-optimum
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partition of the subpolygon bounded below by the arc and above by the leaf nodes
in its subtrees; then we will locate the ceiling of the potential h-arc. Let us consider
the following example.

Example 3. Consider the 12-gon with six potential h-arcs as shown in Figs. 10a
and 10b. The necessary computations and the results of comparisons are shown in
Table 3.

TABLE 3

Computations

1. S(hs\(h8})

Observations

2. S(h4\{hs})

3. S(hT\{h9})

4. S(h6\(h7})

5. S(h3\{h4, h6})

6. S(h3\{hs, h6})

7. S(h3\{hs, hT})

8. S(h2\{h5, h9})

9. S(h2\{h8, h9})

wl <S(hs\{hs}) < W2

W3 < S(h4\{hs}) < W4

W2 < S(hv\{h9}) < w3

w3<S(h6\{h7})
<S(h4\{h5})<w4

wa<S(h3\{h4, h6})
<S(h6\{h7})
<S(h4\{hs})

wa<S(h3\{hs, h6})
<S(h6\{hT})

S(hs\(hs})
<w2<S(h7\{h9})
< S(h3\{hs, h7}) < w3

S(h2\{hs, h9})<Wl

Remarks

The fan is /-optimum in the subpolygon between h5 and
hs’ {hs} is the ceiling of h5
ha is the next arc to be processed.

S(hs\{h8})< w4:: C(h_h__4, hs, h8)< Ho(h__4, h8)
S(h4\{hs}) > S(hs\{hs})z{hs} is the ceiling of h4
Before we can process h3, we have to process h7 first

The fan is/-optimum in the subpolygon between h7 and h9
{h9} is the ceiling of h7
h6 is the next arc to be processed

S(h7\{h9}) < wsz C(_h_6, h7, h9)< Ho(h__6, h9)
S(h6\{h7}) > S(h7\{h9})zz{h7} is the ceiling of h6
h3 is the next arc to be processed

S(h6\(hT}) < S(h4\{hs}) < W4
z:), C(h__3, h4, h6, hs, h7) < Ho(_h_a, hs, hT)

Both ha and h6 may be sons of h3 since S(h4\{hs})>
S(h6\{h7}), test h first to see if h4 is a son of h
S(h3\{h4, h6})<S(h4\{hs})=h4 is a son of h

Condense h4 into h3 and calculate S(h3\{hs, h6})

S(h3\(hs, h6}) < S(h6 ::{h7})\h6 is a son of h3
Condense h6 into h3 and calculate
S(h3\{hs, hT}).

S(h3\{h5, h7}) > S(hT\(h9}) > S(hs\{h8})
=),{h5, h7} is the ceiling of h3

ha is the next arc to be processed.

S(h3\{hs, hT})>wa
:::)’ C(h__2, h3, h4, h6, hs, h7) > Ho(h_h_2, hs, h7)

h3, ha and h6 cannot exist in the/-optimum partition and
should be deleted from the arc tree
Now, hs, h7 are the two arcs immediately above h2 since
S(hT\{h9})>S(hs\{hs}), test h7 first to see if h7 can be
deleted from the arc tree
S(h7\{h9})>wa

:::)’ C(_h_2, hT, hs, h9)> no(_ha, hs, h9)
h7 should be deleted from the arc tree
S(hs\{h8})<w2

:: C(h2, hs, hs, h9) < no(h__2, hs, h9)
S(h2\{hs, h9}) < S(hs\{h8})=> h6 is a son of h2
Condense h5 into he and calculate S(h2\{hs, h9})
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If S(h2\{h8, h9})< Wa, the partition with h2 and h5 as h-arcs is/-optimum. Other-
wise, the fan Ho(hl, h8, h9) will be/-optimum.

From the above example, we have the following observations. Let hi be the arc
being processed and let X be the set of arcs immediately above hi in the arc tree. By
the time we process hi, we have already obtained (i) the/-optimum partitions of the
subpolygons between the leaf nodes and the arcs in X and (ii) the ceilings of all the
arcs in X. For any arc hk in X, the/-optimum partition in the subpolygon bounded
below by hi and above by the arcs in X-{h,}t.3 h’s ceiling must either be a fan or
consist of h and its descendants as h-arcs depending on whether S(hk\hk’S ceiling)_-->
min (w., w or S(hk \hk’s ceiling) < min (w., w; ), where w., w are the weights associated
with the end vertices of hi. If the fan is cheaper, hg and hk’S descendants will be
removed from the arc tree and the set X becomes X-{hk}h’s ceiling. We can
repeat the above process until the /-optimum partition in the subpolygon bounded
below by h and above by the leaf nodes in the subtrees of h is obtained. Since
maxhxS(hk\hk’S ceiling)<min(w.,w) implies (/hkX)(S(hk\hg’s ceiling)<
min (wi, w)), the arc with maximum supporting weight in X should be chosen and
tested for possible deletion. Similarly, since maxh,xS(ht,\hk’s ceiling)<S(hi\X)
implies (/hkX)(S(hk\hk’S ceiling)<S(hi\X)), the arc with maximum supporting
weight should also be chosen and tested for possible condensation.

Now, let us give the algorithm for finding the /-optimum partition of a general
convex polygon.

ALGORITHM P
(I) Get all the potential h-arcs of the polygon by the one-sweep algorithm [6].

(All these arcs form a tree.)

(II) Append the degenerated arcs to the arc tree obtained in Step I and label
all leaf nodes as "processed."

(III) Process the potential h-arcs, one by one, from the leaves to the root. (We
cannot process a potential h-arc until all the potential h-arcs in its subtrees have been
processed.) Let h be the arc to be processed, h be the arc immediately below h in
the arc tree, X be the set of potential h-arcs immediately above hi in the arc tree,
and h,, be an arc in X such that

S (h, \h,’s ceiling) max S(hk \hk ’S ceiling).
hX

Repeat
Begin

1. [To delete those blocks of arcs which cannot exist in the/-optimum partition
of the subpolygon between h. and the leaf nodes in its subtrees.]
While S(h,,\h,,’s ceiling)-> min (w., w) do

Begin
a. Delete hm and its descendants from the arc tree.
b. Replace X by X-{h,} U h,’s ceiling and then update h,n accordingly.

End.
2. [To locate the ceiling of h..]

If h. h
then
While S( hi\X) <- S( hm\h’s ceiling) do

Begin
a. Comment" h,, is a son of hi.
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bo Combine h,. and all its descendants into hi and calculate the combined
supporting weight

S(hi\X {h,,} U h,,’s ceiling).

c. Replace X by X-{h,} LI h,’s ceiling and then update h, accordingly.
End.

3. [Prepare to process next arc.]
If hihl
then

If h has a subtree which has not been processed then pick a subtree of h
which has not been processed and apply Step II to this subtree recursively

else
Begin

Replace X by the arcs immediately above he in the arc tree, hi by h and
h by the arc immediately below h in the arc tree.

End.
End.

Until (h. h ).

(IV) Output the/-optimum partition consisting of the arcs which remain in the
arc tree after Step II as h arcs. Then stop.

Using arguments similar to those in the proof of Theorem 8, we have the following
theorem.

Theorem 13. The partition produced by Algorithm P is l-optimum.
Proof. Omitted.
One way to implement Algorithm P is to place all the potential h-arcs obtained

in Step I in a linked tree. Each potential h-arc in the arc tree is again associated with
a record variable similar to those described in 2. We shall also initialize the ith
element of the array CP to the quantity Wl:Wi for 2_-< _-< n and set CP[1] to zero.
Hence, from our discussions in 2, we know that we can calculate the supporting
weights in a constant amount of time. Since we always test the arc with the largest
supporting weight for possible deletion or condensation among all the arcs in X in
Step II of the algorithm, we should keep track of the arcs in X and in each ceiling
by means of the priority queues. When an arc h, in X is deleted from the arc tree,
we remove h,, from X, then we merge X and the ceiling of h,, into one priority queue.
Similarly, when an arc h,, in X is condensed into hi, we remove h,, from X and add
it to the list of hi’s sons, then we merge X and the ceiling of h, into one priority
queue and set the ceiling of h,, i.e. the third field of h,, to NIL. Hence, it takes
O(log n) time for each update of X to X-{hm} hm’s ceiling in both Step II.1 and
Step II.2.

THEOREM 9’. Algorithm P runs in O(n log n) time.

Proof. It takes O(n) time to sweep around the monotone polygon twice, once to
obtain all potential h-arcs in Step I and once to initialize the array CP. It also takes
O(n) time to append the degenerated arcs in the arc tree. There are two while loops
in Step III, and it takes O(log n) time to execute either while loop once. Whenever
the while loop in Step III.1 is executed once, a potential h-arc is deleted from the
arc tree. Whenever the while loop in Step III.2 is executed once, a potential h-arc is
removed from the arc tree and condensed to its father. Once an arc is removed or
deleted from the list, it will never be considered again. Since there are at most n- 3
arcs in the arc tree, Algorithm P can execute both while loops at most n- 3 times.
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So, it takes O(n log n) time to process all the potential h-arcs in Step III. Finally, it
takes O(n) time to output the/-optimum partition in Step IV. Hence, Algorithm P
runs in O(n log n) time. [3

4. Conclusions. In this paper, we have presented an O(n log n) algorithm to find
the unique lexicographical smallest optimum partition of a general convex polygon.
Both Algorithm M and Algorithm P have been implemented in Pascal [7]. We have
also compared Algorithm P with the O(n 3) dynamic programming algorithm and
found that Algorithm P runs faster than the dynamic programming algorithm when
n is greater than or equal to 7.
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N BY N CHECKERS IS EXPTIME COMPLETE*

J. M. ROBSON?

Abstract. The game of Checkers can easily be generalized to be played on an N by N board and the
complexity of deciding questions about positions regarded as a function of N. This paper considers mainly
the question of whether a particular player can force a win from a given position and also the question of
what is the best move in a given position. Each of these problems is shown to be complete in exponential
time. This means that any algorithm to solve them must take time which rises exponentially with respect
to some power of N and moreover that they are amongst the hardest problems with such a time bound.
For instance if there are any problems solvable in exponential time but not in polynomial space, then these
two problems are amongst them.

Key words, checkers, two person game, exponential time complete

1. Introduction.
1..1. N by N Checkers. This paper considers the complexity of algorithms to

solve certain problems concerning the game of Checkers generalized to an N by N
board. It is assumed that the reader is familiar with the rules of 8 by 8 Checkers. The
generalization to an N by N board is fairly obvious except for the initial disposition
of the pieces which does not concern us. In case the generalization is not obvious, [1]
discusses the interesting points fully. It is assumed here that there is no rule which
will cause a game to be declared a draw when, apart from this rule, one player could
eventually force a win.

The forced capture rule will be of vital importance in the analysis and so it is
repeated here: a player who has any capture move available on his/her turn must
make one of the available capture moves and such a move is not complete until the
capturing piece reaches a square from which no further capture is possible for it. Thus
a player may be obliged to capture an indefinite number of pieces on a single move
but if several captures are available, there is no obligation to choose the one which
captures the most pieces.

1.2. Exptilne completeness. The terminology of this paper is taken from [6]
which contains a discussion of many related topics as well as the foundations of our
arguments. The relevant definitions are"

A language is in exponential time (abbreviated Exptime) if it is recognized by a
deterministic Turing machine with running time bounded by O(c p(n) for some c and
p a polynomial where n is the length of the input string.

A language is log-complete in exponential time (abbreviated exponential time com-
plete or Exptime complete) if it is in Exptime and every other language in Exptime
is reducible to it by a Turing machine using O(log (n)) workspace on inputs of length
n. Since some languages are already known to be Exptime complete, to show that a
language L is also Exptime complete, it suffices to show that L is in Exptime and that
there is a reduction to L from some known Exptime complete language.

If a language L is shown to be Exptime complete, the principal conclusion which
follows is that any deterministic algorithm to recognize L must take time f(c nk) for
some c > 1 and k > 0 since it is known that there are some languages in Exptime with
this property. Moreover if it were shown, as most researchers would suspect, that

* Received by the editors August 25, 1981, and in revised form August 20, 1982.

" Department of Computer Science, Australian National University, Canberra, ACT 2600, Australia.
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there are languages in Exptime which are not recognizable in polynomial space, then
the same would be true of L.

1.3. Results. The main result which will be proved is that the set of all N by N
Checkers positions from which White (say) can force a win is Exptime complete. This
appears to be a considerable strengthening of the result of [1] that recognizing this
set is P space hard.

Since the number of possible positions at N by N Checkers is easily seen to be
<5N-, the proof that the language is in Exptime is simple and is omitted. Thus the
bulk of the paper is devoted to the description of a reduction from a known Exptime
complete language to Checkers positions. Finally 8 and 9 will justify the claim that
the reduction is logspace computable and draw some conclusions.

Similar Exptime completeness results are already known for Chess [2] and various
artificial games [3], [6]. A proof of the same result for GO is currently in preparation,
again strengthening a previous P space hardness result [4].

2. A global view o the Checkers positions. The overall form of the Checkers
positions which will be of interest is illustrated in Fig. 1. In the centre a group A
consisting of IA] pieces is arranged in a configuration to be described in detail later
so that moves there constitute a simulation of a game already known to be Exptime
complete. Surrounding A and very distant from it is a spiral whose arms consist of
parallel rows of Black and White kings four squares apart. The form of the spiral is
shown in more detail in Fig. 2. (Squares denote kings and circles denote single pieces
in most of the figures.) The number of circuits of the spiral and the distance from A
to the inside of the spiral are O(IA 1) and O([A [2) respectively. The inside of each arm
of the spiral is four squares from the outside of the previous one and each arm has
an even number of pieces of each color.

Consider what would happen if one player (Black say) was suddenly left with a
large number of possible capture moves in A. White could capture all the Black pieces
in the spiral in a small number of moves (independent of the length of the spiral) by

Spiral

FIG.
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FIG. 2. The start o]: the spiral.

taking advantage of Black’s being bound by the forced capture rule. Figure 3 illustrates
one way in which White could do this. Having set up the pattern shown, White moves
from A to B and then on his next move, whether or not Black captures the piece at
B, White starts capturing along the path marked by Ds. This captures all the Black
pieces in the spiral apart from one or two of those marked C which can then be
mopped up in three or four more moves.

Thus White will have obtained a massive material advantage which we claim will
be enough to enable him to force a win. Of course in general no material advantage
guarantees a win if the pieces are badly placed but [1] showed that if a group of pieces
like A is surrounded by O(IA[) "picket lines" that is rectangles like those shown in
Fig. 4 with at least four squares between them, then White can force a win whatever
the details of A. Since converting White’s spiral to a set of O(IAI) picket lines involves
moving O([A[) pieces, White can complete this process by moving pieces from the
outer arms of the spiral in O(IAI moves before any Black pieces from A can approach
and interfere with the process.

Of course Black will realize that, if he is left with a number of forced captures,
White can force a win in this way. Accordingly Black may try to frustrate the plan
by making moves in the spiral. But even if Black makes up to two moves in the spiral,
White can still capture all Black’s pieces in the spiral in a certain finite number of
moves. This is because Black’s moves merely split his spiral into three vulnerable
sections each of which can be attacked and destroyed as in Fig. 3 and the bounded
number of Black pieces remaining can then be mopped up individually. Instead of
trying to determine the minimum number of moves which White may ever need after
any pair of moves by Black, we simply call it X, and conclude that White can force
a win provided, by play in A, he can force Black to make a sequence of X captures
in A (with no White captures forced in A) before Black is able to make more than
two noncapture moves outside A. In exactly the same way, Black can force a win if
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FIG. 3. Attacking the spiral.

White is forced to make the X captures in A. The structure of A will be such that
there is no other way of forcing a win.

3. A known Exptime complete game. The reduction to Checkers starts from the
game G3 shown in [6] to have an Exptime complete decision problem. The notation
of that paper has been changed so that the names are more meaningful in the context
of Checkers.

G3 is played by changing values of boolean variables W1 to W, and B1 to
Player W (or B) moves by changing the value of exactly one of the W (B) variables.
Moves alternate between the two players and the result of a game is decided by two
boolean expressions WWIN and BWIN in DNF over the variables. W wins immedi-
ately if his expression WWIN is ever true when B has just moved (and vice versa).

The aim of the reduction is to produce, given an instance of G3, a configuration
to put at A in Fig. 1, which models the structure of the instance of G3 and is such
that certain moves (called "normal play") simulate the playing of G3 and, if W wins
at G3, then White can force X Black captures in A (and vice versa).

However, there is a complication in that a player may choose to "cheat" by
making a legitimate Checkers move either in A or in the spiral which is not a normal
simulation move. The solution to this is to modify the expressions WWIN and BWIN
so that a player who "cheats" by not changing one of his variables on his move loses
at once. In other words we must ensure than a normal W move always leaves WWIN
true and a normal B move always leaves BWIN true. It is not obvious that this can
be done for arbitrary WWIN and BWIN without increasing their length (when
expressed in DNF) exponentially.

Fortunately, for the particular instances of G3 reached by the reduction to G3
in [6], this modification can be done. Their expressions WWIN and BWIN use a
number of subexpressions a over W1 to W. and b over B1 to B. which change
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FIG. 4. Picket lines.

cyclically; that is as long as no player makes a stupid move which loses at once, every
move by W sets exactly one a true, the following move by B sets b true (for the
same i) and all other b’ false, and the following move by W sets ai/l true et cetera
(all subscripts being taken modulo 2m +2). Hence after W(B) moves WGONE
(BGONE) is always true where

2m+2 2m+2

WGONE= / (a’/+1 ^hi), BGONE= / (ai^bi)
i=1 i=1

and moreover no move by W(B) leaves BGONE (WGONE) true. Hence, if we play
G3 on the expressions WWlN v WGONE and BWIN v BGONE, the outcome will be
the same as the original game but any attempt to cheat by not moving at G3 means
that the offending player has lost.

The reduction to Checkers will be from these particular modified instances of
G3 with the further trivial restriction that every disjunct in WWIN (BWIN) contains
at least two W(B) variables. Even with these restrictions the reduction will prove the
Exptime completeness of Checkers.

4. The simulation of G3. This section gives a general description of the Checkers
configuration to be placed at A in Fig. 1 to model an instance of G3 and describes
the sequence of moves known as "normal play" which first simulates the game of G3
and then allows the winner of this game to force his opponent to make a sequence
of X captures allowing the G3 winner to make his winning X moves in the Checkers
spiral. Subsequent sections will describe certain parts of the configuration and play
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in greater detail and examine the effect of deviation from normal play. We describe
the position from the point of view of White who is assumed to play from the bottom
of the board; the description from Black’s point of view is obtained by interchanging
"Black" with "White" and "B" with "W" and rotating all figures through 180 degrees.

Corresponding to each variable Wi is a "boolean controller" where White can
move a king between two squares called T (representing true) and F (false). In normal
play White and Black simply make moves in their respective boolean controllers
representing W and B’s moves at G3 until the simulated game of G3 is over.

Corresponding to each disjunct of WWIN is an "attack zone" providing the
mechanism by which White can force the sequence of X captures by Black provided
the disjunct is true. The W variables in the disjunct are called the "attack variables";
provided they all have the value required for the disjunct to be true, White can mount
an "attack" in the zone. The B variables in the disjunct are called the "defence
variables"; Black can successfully defend against White’s attack provided any defence
variable does not have the value required for the disjunct to be true. Thus the condition
that White can mount an attack and Black can not defend against it is precisely the
truth of the disjunct.

The connection between boolean controllers and attack zones is provided by a
mechanism called "firing" the controller (or the variable). Firing a controller is a move
within the controller by the "owner" of the variable which initiates a sequence of
forced captures which will eventually affect an attack zone. Which attack zone is
affected, is determined firstly by the value of the simulated variable when the controller
is fired and then by choices made by the owner of the variable. The detailed structure
of the expressions WWIN and BWIN is reflected in the possible paths provided from
controllers to attack zones.

When White (about to move) has one of his WWIN disjuncts true, he fires the
variables Wi occurring in it in order of increasing and directs the capture sequences
to the attack zone corresponding to the disjunct. Each capture sequence except the
penultimate leaves White to make the next move and so able to fire the next variable.
Eventually after the penultimate is fired, Black has a nonforced move. Now if Black
had a defence variable with the right value, he could fire it and when the capture
sequence reached the boolean controller, because of the changes produced by White’s
attack, Black could use it to produce X forced captures by White. Since Black has
no such defence variable, he can only make delaying moves after which White fires
his last attack variable, setting up X forced captures by Black and winning.

Figure 5 illustrates the geometry of the position for a trivial instance of G3. The
diagonal lines represent paths of possible capture sequences and the places where two
such paths cross or diverge are the "crossovers" and "forks" described later. The
picture is slightly more complex than has been described above so as to give White
a multiplicity of winning methods ensuring that he can still win even if Black "cheats";
there are two attack zones for each disjunct and the last attack variable has two
possible capture paths to each of these attack zones; to allow for these four possible
capture paths, the boolean controller has up to four exits which may be taken on
firing it for each value of the variable.

The case illustrated is

where

BWIN B1 ^ B2 A W ^ W2, WWIN C V C2,

C1 W1 A W2 A B 1, C2 W1 A W2 A "’B2.



258 J.M. ROBSON

White boolean controllers

White
attack

White Black
attack defe

paths paths

Black boolean controllers

FIG. 5. The simulation of G3.

5. Capture sequences. This section starts the detailed description of the configur-
ation outlined in 4. The discussion continues to be given from White’s point of view,
so it describes only the White boolean controllers and attack zones and the potential
capture paths shown in the top and left parts of Fig. 5 running from White boolean
controllers to attack zones of both colors. The form of these potential capture paths
is in general like that shown in Fig. 6. Any length of one of these paths can be traversed

A

A

A
o o o

A A, A
o o o

A

FIG. 6. Potential capture path.

A
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(along the "A"s) in a single move by a Black king or by a single Black piece as long
as the direction remains downwards. These simple paths are interrupted by a variety
of "gadgets" within boolean controllers and attack zones and where they cross and
fork. These gadgets are now described in detail.

5.1. Adjusting a capture sequence. Before a capture sequence can behave in the
required way in a gadget, it may be necessary to change the color of the piece making
the capture. Figure 7a shows how a capture by a Black piece or king, entering the
figure at D and coming to rest at C can force a recapture by the White king at B
which will leave the figure at ,4 and can then enter a gadget.

It may also be necessary to "shift" a capture sequence to obtain the correct spatial
relationship between two sequences. Figure 7b shows a capture by White, entering
along the line of Es which forces a recapture by the Black king at I after which White
must start a new capture with the king at F which leaves the diagram along the line
of Gs. This new sequence is displaced one square diagonally from the line of the
original. A combination of up to two of these shifts with the more obvious zigzags of
Fig. 6 can cause whatever displacement of a capture path is required.

D E
A o

C E o

E
G G G H

n
G

()
Color Shift
change

FIG. 7

These two "components", color changes and shifts, are to be added before gadgets
as necessary to enable capture sequences to enter gadgets on the correct squares and
with the correct color capturing. The reverse color change may also be necessary
but the shift shown in Fig. 7b is the only one to be used on paths from White boolean
controllers. (If the corresponding component to shift a Black capture sequence were
used here, Black could take one of the "side turnings" to H or J nullifying the effect
White wants from firing his controller. It is never to White’s advantage to take these
side turnings in normal play; the appendix points out why they are necessary.)

5.2. Crossovers and forks. Figure 8a shows how two potential captures from
A to a and from B to b can cross each other without permitting the player making
the capture to svitch from one path to the other. The fact that after one of the captures
has been made the other is impossible, is not significant in normal play.

Figure 8b shows a simple fork where a White king entering at C can choose
between two possible exit routes D and E.
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Figure 8c shows a more complex fork to be used only in White boolean controllers.
A single Black piece enters the fork by F and stops at G; now a White piece can go
to either H or I and force a continuation in either of two directions leaving by J or
K. Of course White also has the option of not moving to H or I and halting this
capture sequence.

5.3. Enablers and delays. Figure 9 shows how one capture (crossing the figure
diagonally from A) makes it possible for a later one to proceed (from B). This gadget
will be used in attack zones.

Figures 10a and 10b show how a capture by Black may leave behind a forced
capture by White or Black respectively. In each case, Black captures down the line
of "A"s and this leaves a piece (B or C) able to capture by jumping into a newly
vacant square. These will be called respectively White and Black "delays" and lines
of X of them will be used in boolean controllers and attack zones. Such a line of X

FIG. 9. Enabler.
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delays will be represented in diagrams by MBD (Multiple Black Delay) or MWD
(Multiple White Delay).

6. Boolean controllers and attack zones. Figure 11 illustrates a White boolean
controller and the symbolism used for it in Fig. 5. The lines in the middle part of the
figure represent lines of White pieces able to be captured in a single move, broken
only by forks of the type shown in Fig. 8c. A White king is at either T or F.
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o

false [o o
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1o o o
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o
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o
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D

D

true exits
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FIG. 11. White boolean controller.

false exits

In normal play White moves his king between T and F to simulate changes in
the corresponding G3 variable between true and false. To fire the controller when
the king is at T, White moves the piece at A in the "true trigger." This allows (forces)
Black to capture down the path marked t, through White delays, the king at T and
Black delays before coming to rest at the first fork in the true side of the controller.
Now White and Black are forced to spend their next X moves making the captures
in their respective delays after which White makes his moves in the forks forcing a
Black capture move to emerge from the controller at whichever of the true exits
White chooses. The process of firing the controller when the king is at F is similar
but uses the false trigger to produce a capture emerging from one of the false exits.

Once a Black capture energes from the controller, a sequence of forced captures
continues through forks and crossovers until eventually it reaches an attack zone.
Since White makes the choices at all the forks, he can choose to direct the capture
sequence to any of the attack zones to which a path exists.
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From the true exits of the controller for Wi, there will be paths to all attack zones
for disjuncts in WWIN which contain Wi (in nonnegated form) and to zones for
disjuncts in BWIN containing Wi. Conversely from false exits there will be paths
to WWIN disjuncts containing W and BWIN disjuncts containing W.

Figure 12 illustrates the form of an attack zone for a WWIN disjunct with three
attack variables and two defence variables. The figure incorporates several enablers

MD

M

FIG. 12

as discussed in 5.3. All capture sequences reaching an attack zone cause a White
king to enter the zone along one of the lines of Black pieces. The delays in this zone,
being astride lines of Black pieces are those obtained by reversing colors and directions
from those of Fig. 10.

We recall from 4 that the attack is supposed to succeed if every attack variable
has the correct value to fire at the zone and no defence variable has the correct value.
Thus the attack zone is constructed so that all attack variables must fire for the attack’s
success but any defence variable firing is sufficient to prevent it. The way in which
the illustrated zone achieves this is as follows.

Each attack variable, except the last two, traverses a path like that marked "1"
enabling its successor and terminating in a simple Black delay. The penultimate attack
variable traverses a path like that marked "2" enabling all the defence variables and
the last attack variable before terminating leaving Black to move. Now if Black had
defence variable able to fire at this zone, he could fire it and win by activating one
of the Multiple White Delays. Otherwise White will win by firing his last attack variable
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and causing a Multiple Black Delay" Black cannot use his free move to sabotage the
path of this last attack variable because we have provided White with two separate
paths.

7. Abnormal play. From now on it is assumed that W has a forced win at G3.
It should be clear from the above discussion that, as long as Black plays moves which
simulate G3 moves by B, White will eventually have some attack zone where he is

read to fire all his attack variables and Black has no defence variable ready to fire.
Thus White will win unless Black finds some "unexpected" move which either disrupts
the simulation of G3 or sabotages the attack in the attack zone. This section will rule
out that possibility, completing the proof of the correctness of the reduction.

Moves by Black other than those simulating G3 moves will be classified as either
"irrelevant" moves which White can ignore since they do not hinder his winning
strategy, or "catastrophic" moves which enable White to win immediately by forcing
X Black captures, or the majority of "cheating" moves which can be regarded as not
altering a G3 variable and so enable White to win by using the disjunct of WGONE
which was true after his move.

7.1. Irrelevant moves. These are the very small number of possible moves which,
after a sequence of forced captures by each side, leave Black again with the next
nonforced move so that he can resume the G3 simulation. They consist of firing a
Black boolean controller with the variable having the correct value (e.g. using the
true trigger with the king at T) followed by either halting the captures in the forks
of the controller or allowing capture sequences to reach Black attack zones in the
correct enabling orders but not as far as the penultimate attack variable in any zone.

These moves in no way interfere with White’s ability eventually to mount a
successful attack. They merely prevent Black from later altering the values of the
affected G3 variables, an effect which cannot be to Black’s advantage.

7.2. Catastrophic moves. These are two types of move by Black which are
punished by the immediate activation of a Multiple Black Delay.

The first type is for Black to fire a boolean controller using the "wrong" trigger;
for instance to use the true trigger with his king at F. The resulting capture by White
goes through a Multiple Black Delay but stops before T and so does not activate the
compensating Multiple White Delay. (Note that these delays are essential to the whole
argument; if they were not there, Black could now move his king from F to T.)

The second type of catastrophic move may occur if Black fires attack variables
in the correct enabling order so that eventually the penultimate attack variable enters
some attack zone and enables the last attack variable. Now by the assumption that
W has a winning strategy at G3 (and that White has been simulating it), either White
has a defence variable ready to fire or Black does not have his last attack variable
ready. In the first case, Black’s move has been catastrophic and White will fire his
defence variable and activate a Multiple Black Delay. In the other case, Black’s last
move has simply wasted time and White treats it as a "cheating" move of the type
discussed below.

7.3. Cheating moves. This category covers all other Black moves. That is, all
moves in the spiral, in boolean controllers, attack zones and other gadgets or in the
capture paths connecting them except for (i) normal simulation of G3 moves and (ii)
the irrelevant and catastrophic moves described above. In all these cases White
responds by mounting an attack in an attack zone whose disjunct was true before
Black’s move.



264 J.M. aOSO

The fact that White can always do this depends on three properties of moves in
the various gadgets etc., which can only be verified by tedious checking of many cases"

(1) Any cheating move loses a tempo. That is although it may result in a sequence
of forced captures, after this sequence White is the first player to have a nonforced
move. (This may depend on White making the correct choice when forced to choose
between two possible captures.)

(2) Any such move, together with its following forced captures, causes at most
localized damage to the configurations enabling White to mount an attack. To be
more precise, although it may destroy one potential capture path outside a boolean
controller, it cannot

(a) prevent White from firing a boolean controller and choosing which exit is
taken,

or

or
(b) prevent a Black delay from working,

(c) damage two potential capture paths from White boolean controllers (except
at a fork where the two diverge).

Properties (1) and (2) are sufficient to ensure that after any cheating move by
Black, White can still choose an undamaged attack zone corresponding to his true
disjunct, which has all the capture paths to it also undamaged. Thus White can fire
the attack variables for that attack zone at least up to the penultimate. Then Black
has one last opportunity to stave off defeat. Property (1) may now no longer hold;
Black may be able to make a move close to his original cheating move which forces
a White capture after which Black has a free move and may repeat this process.
Calling such a sequence of moves a "supplementary sequence" we now state the last
required property"

(3) One cheating move by Black together with a supplementary sequence cannot
(a) prevent White from firing a boolean controller and choosing which exit is

taken,
or

or

or

(b) damage more than two potential capture paths, from White boolean con-
trollers,

(c) regain the lost tempo by causing two forced White captures,

(d) affect the type of Black delay occurring in White boolean controllers.
Since White has two potential capture paths to his chosen attack zone for his last

attack variable, this ensures that he can eventually activate one of the Multiple Black
Delays and win.

The apparent over-complexity of many of the gadgets stems from the need to
ensure that (1), (2) and (3) hold. Most of the checking of these properties has been
done by a program which did detect one error in an earlier version of Fig. 10b. The
appendix points out a few ways in which simpler gadgets are inadequate.

Two points should be mentioned here since they concern the general structure
of the attack zone rather than the details of the gadgets within the zone’ to ensure
that 3(c) holds, the path of a defence variable within attack zones passes through two
enablers each of which is opened by an attack variable; otherwise Black could win
by moving the piece at C of Fig. 9 (in the enabler for one of his defence variables)
as his initial cheating move and later firing that defence variable as his supplementary
sequence. Secondly the orientation of the enablers within the attack zone ensures that



N BY N CHECKERS IS EXPTIME COMPLETE 265

either player firing a variable which has not yet been enabled loses a tempo as required
by property (1) and the Black pieces marked "A" in Fig. 12 prevent a tricky play by
White to try to regain that tempo.

$. Summary. Apart from some minor details concerning the exact placement of
the gadgets on the Checkers board and the necessary gaps between various gadgets
and the spiral, the Checkers position corresponding to a G3 position has been fully
described. Moreover it has been shown that the first player to deviate, except in a
few insignificant ways, from the moves simulating G3 loses at Checkers and that, if
the simulated game of G3 ends, the winner of that game wins at Checkers. This
completes the demonstration of the reduction from G3 to N by N Checkers.

If the length of the description of the instance of G3 is n, then both the number
of variables and the number of disjuncts in WWIN and BWIN are O(n). Hence the
area A in which the G3 simulation takes place can be enclosed in a square of side
O(n) containing O(n :z) pieces. Hence from the discussion in 2, the whole Checkers
position can certainly be placed on a board of side O(n4).

The regular way in which the placement of pieces on the board depends on the
disjuncts of WWIN and BWIN means that the Checkers position could be output by
a RAM program using O(1) variables each restricted to a range of O(n 4) values.
Finally any reasonable Turing machine simulation of this RAM program will yield
the required O(log n) bound on the workspace complexity of the reduction.

9. Conclusions and some open questions. This completes the proof of the main
result that the set of positions at N by N Checkers from which White can force a
win is Exptime complete. Thus any algorithm to recognize these positions must have
running time l)(c Nk) for some c > 1 and k > 0. This conclusion unfortunately reveals
nothing about the difficulty of such a recognition algorithm for the 8 by 8 case; an 8
by 8 board would not even hold one boolean controller. This lack of information on
particular finite cases is of course common to such lower bound complexity results.

Two other conclusions follow. Firstly any algorithm to decide an optimal move
must also require exponential time (by a fairly obvious argument given in [5]). Secondly
by following the chain of reductions to Checkers from an arbitrary exponential time
Turing machine computation [6], it follows that the number of moves needed to
force a win against optimal delaying defensive play also rises exponentially with N.
Thus a conventional minimax algorithm has exponential space complexity; of course
that does not of itself preclude the possibility of a polynomial space algorithm.

Having shown that Checkers has intractable decision problems despite its sim-
plicity in each player having only two types of piece, one naturally wonders whether
the problems would remain intractable if only one type of piece existed. For a game
with only kings, it seems likely that a reduction similar to the one given here, but
with different gadgets, would prove the same results. On the other hand, in a game
played only with single pieces which, if they reached the far end of the board, were
not promoted to kings and so became immobile, the length of a game would be
bounded by a polynomial in the board size giving decision problems solvable in
polynomial space. Another interesting question is whether the forced capture rule,
which has been used so heavily, is in fact essential to the conclusion; the methods
used in this paper do not appear to throw much light on that question.

Appendix. This appendix discusses how the complexity of some of the gadgets
used in the reduction is related to the need for them to satisfy properties (1), (2) and
(3) of 7. In fact they were designed to satisfy a slightly stronger version of (3b),
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namely that no cheating move followed by any supplementary sequence within a
gadget, should cause any repercussions outside the gadget. This "locality" property
makes the checking of properties (1) to (3) much easier whether it is done by hand
or by machine. No claim is made that the gadgets used are the simplest possible with
the required properties. However four examples will be given of how apparently
superfluous pieces within gadgets prevent breaches of the properties. This explanation
is not part of the proof of the results of the paper but it may make 7 clearer.

The first example is in Fig. 13 which shows a shift modified by removing one of
the side turnings of the original. Now Black can move from A to B removing the
second side turning and later as a supplementary move, move from C to D. The
resulting capture by the White king at E will cause a capture sequence which may
pass through several crossovers certainly invalidating property (3b) and possibly (3c).

Shift

FIG. 13

The remaining three examples are all contained in Fig. 14 which shows the
delays slightly modified. The White delay has had two White pieces removed from A
and B. The removal of the piece from A enables White to move from C to A forcing
a capture by the Black piece D, invalidating property (1). Of course White would not
do this in a White delay in a White boolean controller but if White can do it there,
then Black can make a similar move in all the Black delays in White attack zones.

Returning to the White delay, Black can move from D to E (cheating) and then
E to F (supplementary). The absence of the White piece at B now forces White to
capture with G invalidating property (3a).

Finally in the Black delay, Fig. 14 has dropped a White piece from H. The need
for this piece at H was discovered by computer testing which found that this Black
delay violated the locality property. White can make cheating and supplementary
moves which cause nonlocal effects as follows:

(i) move from I to J,
(ii) move out from K forcing Black to capture from L to K and ! leaving White

still able to move,
(iii) move from M to N forcing Black to capture from I to M,
(iv) move from P to H forcing Black to capture from M to P,
(v) move from Q to R forcing Blacl to capture from P to Q, et cetera.
In fact it appears that this last modification does not invalidate the reduction.

However, it seems easier to design gadgets which satisfy the locality property than to
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justify the claim that it is irrelevant by arguments about how one gadget may affect
its neighbors.

10, Acknowledgment. I would like to thank the anonymous referee of an earlier
version of this paper for many helpful comments, particularly for the suggestion of a
simplified version of the boolean controller.

Note added in proof. The Exptime completeness result for GO referred to in 1.3
has been presented at the 1983 IFIP World Computer Congress.
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PARALLEL SOLUTION OF CERTAIN TOEPLITZ LINEAR SYSTEMS*

DARIO BINIt

Abstract. Using the concept of approximate algorithm it is shown that 6 log n + 6 parallel steps and
2n processors suffice to approximate, with any precision, the solution of a linear system with an n n
triangular Toeplitz matrix A. Moreover, 7 log n + 7 steps are sufficient for an exact computation, whereas
the number of processors is increased to ()n2. If A is also banded and k is its bandwidth, the number
of processors is reduced to ()n (k + 1). Two applications are shown. It is proved that if B is any matrix
belonging to the algebra generated over the complex field by a given n n matrix, then the system Bx b
can be solved with no more than 9 log n + 4 steps with O(n 2) processors. It is proved that, given a Toeplitz
matrix A =(ai.) such that ai,.=0 if i-]>k or ]-i>h, ak.l#O, then 131ogn+O(log k) steps and
max (()n (k +h), n(n + 1)/2) processors are sufficient to solve the system Ax =b. Such algorithms work
under the sole condition det A # 0.

Key words, parallel matrix inversion, Toeplitz matrices, approximate algorithms, band matrices

1. Introduction. The evaluation of the complexity of n n parallel matrix inver-
sion is as hard to solve as it is well known. The algorithm shown by Csanky [10] yields
an O(log2 n) complexity by using O(r/4) processors, but it is mainly of theoretic interest
and so far the best lower bound known is O(log n) steps. Even for triangular matrices
the best known algorithm employs O(log2 n) parallel steps with O(n 3) processors [14],
[15], [6], [8]. Stronger structures such as that of Toeplitz (a Toeplitz matrix A (ag,.)
is defined by ai,. ai-.) reduce the number of processors but not the number of steps
[7]. Furthermore there are few classes of matrices for which there is an algorithm for
parallel inversion in O(log n) steps.

Great progress has been made, after about a 9-year lull, in the analysis of the
complexity of matrix multiplication and matrix inversion for sequential algorithms
[4], [16], [18], [9], by introducing approximate algorithms [5]. Approximation can
effectively reduce complexity and approximate algorithms can be turned into exact
algorithms by the interpolation technique [2], slightly increasing the overall complexity.
This technique seems to be ideal for parallel processing as it involves solving a set of
k problems, which differ only in the values that a parameter can assume, and taking
linear combinations of the "wrong" solutions in order to find the right one.

This paper deals with the problem of the parallel inversion of a triangular Toeplitz
matrix by using approximate algorithms. It develops a result given in [1], concerning
the optimal approximation of certain Toeplitz bilinear forms. We introduce the algebra, made by simultaneously diagonalizable matrices, which approximates with any
precision the algebra o of triangular Toeplitz matrices ( 2). We show, in 3, that
the computation of the inverse of an n n matrix belonging to -, as well as the
approximation of the inverse of a triangular Toeplitz matrix, can be accomplished in
6 log n +3 parallel steps using 2n processors. Here and throughout the paper we
assume log n [log2 n ].

Furthermore, the complexity of the resolution of the associated linear system
increases to 6 log n +6 parallel steps while the number of processors remains
unchanged. Using an interpolation technique we convert these approximate algorithms
into exact ones, leaving unchanged the asymptotic complexity but increasing the
number of processors. We prove the following result. If A (aid) is an upper triangular
Toeplitz matrix such that ai,. 0 if/’ > k and ak,1 0 (band matrix with bandwidth

* Received by the editors June 2, 1982, and in revised form January 25, 1983.

" Dipartimento di Matematica, Universit di Pisa, 56100 Pisa, Italy.
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k + 1), then 6 log n +log (k + 1)+4 steps suffice to compute exactly A -1 by using
-n (k + 1) processors, while 6 log n +log (k + 1)+ 7 steps are sufficient to solve the
system Ax b. Where k n- 1 then 7 log n + 4 steps and -n 2 processors suffice to
invert a n n triangular Toeplitz matrix versus the log2 n + 2 log n 1 steps and n2/4
processors required by the best algorithm to date [7]. The time complexity is drastically
reduced by increasing the number of processors of a multiplicative factor. The threshold
value no, for which this algorithm is better than the known one if n > no, is quite
small, namely no 32.

Two applications of this result are shown in 4. In the first, which is mainly
theoretical, we widen the class of matrices whose algorithms are known for parallel
matrix inversion running in O(log n) time. We show that any matrix belonging to the
algebra generated over the complex field by any given matrix can be inverted in
O(log n) steps by using O(n 2) processors. In the second application we show how to
use the results of 3, together with the bordering technique [3], to construct fast
algorithms for the parallel solution of linear systems with an unbalanced band Toeplitz
matrix. If A (aid) is a nonsingular Toeplitz matrix such that ai,j =0 if j-i> k or

-/" > h, k _-< h and ak,1 7 0 then the system Ax b can be solved in 13 log n + O(log2 k)
parallel steps by using -n(h + k) processors or in 8 log n + O(log2 k) parallel steps by
using max (-n(h/ k), n(n+ 1)/2) processors. In particular, for a Toeplitz matrix
in Hessenberg form we have 9 log n + 7 steps and 3n 2 processors. Where h k, that
is, when the band is balanced, this algorithm can be compared to the algorithms shown
by Grcar and Sameh in [13]. This algorithm works without any restrictive conditions,
whereas each of the three algorithms in [13] requires the positive definiteness or the
nonsingularity of the leading principal submatrices. Furthermore, this algorithm is
faster than the second and third algorithm in [13] while the number of processors is
slightly increased.

2. Preliminaries. Consider the following n n matrix"

H=(h () () I1 if/’=i+l,
i.), hi.. e ifi=n,/’=l,

0 elsewhere,

and set - for the algebra generated over the real field R by the matrix H. Then -o
is the class of upper triangular Toeplitz matrices, while -1 is the class of circulant
matrices [12]. The following is a matrix representing the class in the case n 4.

al a2 a3 a4

a4 al a2 a3

ea3 ea4 al a2

[_Ea2 Ea3 Ea4 al

The matrices belonging to -, used in [1] to evaluate the approximate complexity
of certain sets of bilinear forms, have a common set of n independent eigenvectors
which are strongly related to the eigenvectors of -1. This will be proved in Proposition
2.1 and will require some properties of circulant matrices.

Let f=(toi,.) be the Fourier matrix of order n defined by toa=
(i-1)(j-

to 1)//-, (l <- i, f <- n ), where to is a primitive nth root of unity, e.g. to=

exp (27ri/n) (i is the imaginary unit). Then D, is a unitary matrix, that is, ff/4 =I
(here 1" is the transpose conjugate of D,). Moreover the following result holds.

THEOREM 1 [14]. Let A ffl be a matrix whose first row is a 7"’, we then have
HA Diag (dl, d2, d, ), where d (di is given by d x/-fa.
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Now consider the matrix D Diag (1, 6, 6 2,
to check the following relations:

.., 6"-1), where 6 ="4e. It is easy

(2.1) H 6DHID- H’ 6DH]D-

Since is the algebra generated by H over R, if A is the matrix whose
first row is a r= (ai) then

n-1

A= Z ai+lHi
i=0

Therefore, setting for B ffl the matrix whose first row is b T, from (2.1) we have

(2.2) A DBD-1, b Da.

PROPOSITION 2.1. Let A T be a matrix whose first row is a 7-. Then we have
fHD-iADf Diag (dl, d2, , dn), where d (di) is given by d =x/-Da.

Proof. The proposition holds from Theorem 1 in the light of (2.2).
It is worth pointing out that the matrices belonging to -0 do not have a common

set of n eigenvectors; in other words, they cannot be simultaneously diagonalized by
a similarity transformation. However they can be approximated, with any precision,
by the matrices belonging to , e # 0, which, for Proposition 2.1, have a common
set of eigenvectors. This fact will be used in the next section for computational
purposes. First it is necessary to state the following result.

PROPOSITION 2.2 [17]. The matrix-vector product fx, as well as Hx, where x is
a complex n-vector, can be computed by using 3 log n parallel steps with 2n processors.

COROLLARY 2.1. Let x, y be two real vectors; then the pairs ofproducts (x, fy),
as well as (Hx, fUy) and (fx, fny ), can be computed by using 3 log n + 3 steps with
2n processors.

Proof. Let z x +iy, Z fiz, X fix, Y fiy; since f is symmetric and unitary
and P ,-2 is the permutation matrix such that Pi.i 1 if i-] 1 mod n, we have
X f(z * + z )/2 (I)2f/-tz * + fz)/2 (PZ* /Z)/2, where z* is the complex conju-
gate of z. Analogously we get Y (PZ* Z)/(2i). We can thus proceed in the following
stages:

steps processors

1) compute z x + iy, 2n
2) compute 1/2flz, 3 log n 2n
3) compute X P,* +,,, 2n
4) compute y p7*-, 2n

The overall computational cost is given by 3 log n / 3 steps, 2n processors.
Analogously we proceed in the other cases since fy -(fy)*.

3. Main results. A first computational result, concerning the resolution of a linear
system with a Toeplitz matrix of a certain form, can be obtained from Propositions
2.1 and 2.2. In the analysis of the parallel complexity we do not count the cost of the
evaluation of toi.i, 6 -1 and x/d; i-1, 1 _-< i,/" <_-n, since these constants do not depend
on the input variables of the problem.

PROPOSITION 3.1. The system AX b, where A , e R, e # 0, detA 0,
can be solved by using 6 log n + 6 parallel steps with 2n processors.
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Proof. Let a T be the first row of A. From Proposition 2.1 we have A-=
D,fD-afHD-1, D Diag (dl, d2," d,), d =(di), d 4-lDa. Therefore x
A b can be computed in the following stages:

steps processors

1) compute ul)=D-lb, v =x/nDa, 1 2n
2) compute u t2 =flnu, d =fly tl, 3 logn +3 2n
3) compute u3 D-u, n

4) compute u t4 flu t3, 3 log n 2n
5) compute x Du4, n

The evaluation of the number of steps and processors at stages 2 and 4 was attained
by using Corollary 2.1 and Proposition 2.2 respectively. The overall computational
cost is given by 6 log n + 6 steps, 2n processors.

Observe that, in order to computeA, it is sufficient to solve the system Ax b,
where b T (0, 0, ’, 0, 1). In fact the last column of A generates all the elements
of the matrix. Now the vector u2 fDb, has constant elements, not depending on
the input variables of the problem, and can be assumed as a given vector. Therefore
stage 2 requires only a discrete Fourier transform of a real vector. In this case the
algorithm has a slightly lower computational cost.

COROLLARY 3.1. The matrix A s Sr, e #0, detA 0, can be inverted in
6 log n + 3 steps with 2n processors.

Proposition 3.1 yields an interesting result in which the class of approximate
algorithms, introduced in [5] for sequential computations, can also be used successfully
in the parallel computations. We have in fact the following"

PROPOSITION 3.2. The solution of the linear system Ax b, A o, det A : 0,
can be approximated with any precision by using 6 log n +6 steps and 2n processors.
The inverse of A can be approximated with any precision by 6 log n + 3 steps and 2n
processors.

Proof. Since the determinant is a continuous function of the elements of the
matrix, and since det A 0, there exists a real positive number e0 such that if le[ < eo
then det A, 0, where A - is the matrix whose first row is the first row of A.
Since lim_.oA? =A-1, the proposition holds in the light of Proposition 3.1 and
Corollary 3.1.

The approximate computation described in the above proposition can be turned
into an exact one by means of the interpolation technique used in [2] in the sequential
case. For parallel algorithms, when switching from the approximate to the exact
computation, we must increase the number of processors only, leaving the number
of steps constant; in the sequential case, however, this transformation brings about a
slight increase in the number of operations.

LetA - be such thatA (ai,.), a, 0 if/’ > k, detA 0. Since the inverse
matrix of A is given by A =(adj A)/detA, the elements of A are rational
functions of e; that is, p,i(e)/q(e), where q(e), p,i(e) are polynomials of degree at
most k. Furthermore the solution x of the system Ax b, given by x =A-ab, has
components which are rational functions of e; namely, r,i(e)/q(e), where r,i(e) has
degree at most k.

Now let us choose Co, e 1, ek, such that ei # ei if /" and q(e) O,
0, 1,. , k, in such a way that the (k + 1) (k + 1) Vandermonde matrix V (vi.i), v,i
i-1e _1, be nonsingular and the system

(3.1) vT(Diag(q(eo),q(el), ,q(ek)))-XC =e 1),
has a solution c (ci); here et is the first column of the identity matrix of order k + 1.
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From (3.1) we have that, for any polynomial p of degree less than k + 1, the
following relation holds

t p(ei)Z c+ =p(0),
i=0 q(ei)

and in particular, if det A o 0

(3.2)

-1 -1 /det Ao,Ao Ci+lAe

X Z Ci+lXei /detA0,
i=0

where x A-lb.
Relations (3.2) allow us to solve the system Aox b or to compute exactly the

inverse matrix A in a small number of parallel steps. We have in fact the following
PROPOSITION 3.3. The solution of the linear system Ax b, A :Yo, A (ai.i),

aia 0 if] > k, det A O, can be computed exactly in 6 log n + log (k + 1) + 7 parallel
steps with n (k + 1) processors.

Proof. Let a be the diagonal element of A. Then, from (3.2) we have x
k

(Y,i=o C/lX,)/a Therefore we can proceed in the following stages"
1) compute (ei)=detA,/detA and solve A,x, =b, =0, 1,..., k,
2) compute (? c/det (A), where c is the solution of (3.1),
3) compute y, ik__o (?+lX,/det A.

Now, from Proposition 2.1 the determinant of A e 3- is given by 1-L.= di; therefore,
from Proposition 3.1, stage 1 needs 6 log n +6 steps and n(k + 1) processors. This
can be accomplished by following the 5 stages of the algorithm shown in Proposition
3.1, the difference being that at stage 2 of this algorithm we also compute det A a 7,
at stage 4 we also have to compute 1-Ii=l d.; this requires n/2 more processors for
each i, which leads to n(k + 1) processors; at stage 5 we also compute 4(ei). The
computational cost of stage 2 does not depend on n, but would be given by O(log2 k)
steps and O(k 4) processors if we solve it every time it is required.

Since the matrix V, as well as the vector e (1), do not depend either on the elements
of A or on the elements of b, we can rephrase (3.1) in the following way"
(Ci/l/det (A))= (q(ei)/det (A))oi+I, where v (vi) is the first row of V-1 and can be
assumed as a given vector. Therefore stage 2 costs only 1 step and n processors.
Stage 3 needs 1 + log (k + 1) steps and n (k + 1) processors. The overall cost, therefore,
is given by 6 log n + log (k + 1) + 7 steps and -n (k + 1) processors.

Observe that 6 log n +log (k + 1)+4 steps are sufficient for inverting A. From
Proposition 3.3 we have that the parallel complexity of the inversion of a Toeplitz
triangular matrix is reduced from O(log2 n) to O(log n), leaving unchanged the order
of the number of processors. In fact the best algorithm to date required log2n +
2 log n- 1 steps and n2/4 processors, whereas this algorithm requires 7 log n +4
steps and n 2 processors. Table 1 shows the number of steps of these two algorithms.

Note that the threshold value no, for which if n > no the new algorithm is faster
than the known one, is quite low, i.e. no 32.

It is worth pointing out that, if the matrix A belongs to the algebra 3-,(C)
generated byH over C, the system Ax b can be solved by using 6 log n + 3 parallel
steps with 4n processors. In fact the vectors u(1) and v(1), at stage 1 of Proposition
3.1, are complex vectors, therefore 3 log n steps and 4n processors are needed for
stage 2. Analogously it is possible to extend Corollary 3.1 (6 log n +3 steps, 2n
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TABLE

n log n + 2 log n 7 log n + 4

17-32 34 39
33-64 47 46
65-128 62 53
129-256 79 60
257-1,024 98 67

1,025-2,048 119 74
2,049-4,096 142 81

processors), Proposition 3.2 (6 log n +3 steps, 4n processors) and Proposition 3.3
(6 log n +log (k + 1)+4 steps, 4n(k + 3/2) processors) to the complex case. Moreover
choosing ei to k /1 in Proposition 3.3, where tok +1 is a primitive (k + 1)st root of unity,
implies c =d and reduces the number of steps to 6 log n + log (k + 1) + 3.

Let us observe also that, if F is any field containing a primitive nth root of unity,
then the system Ax b, A (F) can be solved by using 6 log n + 3 parallel steps.
In fact Theorem 1, Proposition 2.1 as well as Proposition 2.2 still hold when the
ground field is F.

4. Further results. This section shows some applications of Proposition 3.2 of
theoretical or computational interest. The first result is mainly theoretical and involves
linear algebras generated by any n n matrix A. It will be shown that a linear system
with an associated matrix belonging to such a class can be solved in O(log n) parallel
steps. The second result concerns the solution of systems with an unbalanced band
Toeplitz matrix such as, for example, a Hessenberg matrix. In this case the complexity
is given by 8 log n + O(1) with no restrictive conditions.

Let A be an n n matrix and 1 the algebra generated by A over C. Suppose
that the distinct eigenvalues of A are A 1, A 2, , A and set pi rank (A AiI) for the
geometric multiplicity of Ai. Consider the Jordan canonical form of A,

A S Diag (J1,1, Jl,2, Jl,pl, J2,1, J2,2, J2,p2: Jk,1, Jk,2," Jk,pk )s-l"

where Ji,, of dimension ni,. ni,. is a Jordan block, i.e.

A 1

and ni,1 >: tli,i, and g max t/i,1.
If B s then we can represent B in the following way"

(4.1)
B S diag (T1,1, T1,2,""", TI,p,, T2,1, T2,2,""", T2,p2,"’, Tk,1, Tk,2,’’’, Tk,Pk )S-1

where T,. is an upper triangular Toeplitz matrix such that Ti,j is a principal submatrix
of Ti,1, f 2, 3, , pi, 1, 2, .., k. Therefore the linear system Bx b is equivalent
to
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(4.2) Ty C, C S-lb, y S-ix,
where T is the block diagonal matrix in (4.1).

The parallel solution of (4.2) can be accomplished in the following stages:
1) compute c $-1b,
2) solve Ty =c,
3) compute x Sy.
Stages 1 and 3 require log n steps and n 2 processors, unless the matrix $ has

some specific structure. In stage 2 we have to solve pl+p2 +" "+pk linear systems
whose associated matrix is a triangular Toeplitz matrix. From Proposition 3.3, 7 log r +

n27 parallel steps and -Yi,j i,j processors would be needed if the blocks T,i had
real elements. Since, in general, T,j has elements belonging to the complex field, we
obtain 7 log t + 4 steps and 4 Y,j n,(n, +1/2) processors. We may conclude with the
following:

PROI’OSrrION 4.1. The solution ofthe system Bx b, where B 1, can be computed
in 2 log n + 7 log r + 4 parallel steps by using max (n 2, 4 Y,i.i ng,j(ni,i + 1/2)) processors.

A second result of computational interest can be obtained from Proposition 3.3.
Consider the system

(4.3) Ax =b,

in which the Toeplitz n n matrix A is such that aid 0 if i--/" > k, or if f-i > h.
Moreover, suppose that k <-h and ak,1 a 0. Let B be the (n + k) (n + k) upper
triangular Toeplitz matrix whose A is a submatrix. The following shows the relation
between A and B where n 4, k 2, h 3.

al a2 a3 a4 a5 a6

al a2 a3 a4 a5

al a2 a3 a4B--
0 al a2 a3

al a2

al

Note that x is a solution of (4.3) if, and only if, there exists a k-vector y such
that the system

has a solution in which z 0; in fact, in this case we have w x.
Let us now solve (4.3) by solving (4.4). We must first clarify the relation between

y and z.
Since a 0 we have det B 0 and

where B-1 is still an upper triangular Toeplitz matrix (-0 is an algebra). Relation
(4.5) can be rewritten as
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in which R, S, T and U are Toeplitz matrices and R is a square matrix of dimension
k. It is easy to check that if det A 0 then det R 0; furthermore, from (4.6) we can
clarify the relation between z and y; in fact, we have

(4.7) z Sb + Ry.
From (4.7) we have that the solution of (4.4) fulfills the condition z 0 if and

only if

(4.8) R -Sb.

Since det R 0 the solution of (4.8) exists.
We can compute the solution of (4.3) in the following stages:

steps processors

1) .compute S and R by inverting R,
2) compute-Sb
3) solve the system Ry =-Sb

4) compute B-1 [b],Y

6 log (n + k) +log (h + k)+4, -n(h +k),
+ log n, nk,

O(log k), O(k 4),

6 log (2n 1)+4 4n -2.

Stage 4 is equivalent to multiplying an n n triangular Toeplitz matrix by a vector.
This is accomplished by bordering the matrix so that we obtain a circulant matrix of
order 2n- 1 and applying Theorem 1 together with Corollary 2.1. Note that stage 4
can be carried out by using 1 +log n steps and n (n + 1)/2 processors. The overall
complexity is resumed by the following

PROPOSITION 4.2. The solution of the system Ax b, in which A is a n n Toeplitz
matrix such that ai.i 0 if i- > k or j-i > h and ak.1 O, can be computed by using
13 log n + O(log2 k) steps and n (h + k) processors, or by using 8 log n + O(log2 k) steps
and max (n(n + 1)/2, n(h +k)) processors.

We should point out that, in the case of a Hessenberg matrix, i.e., h n 1, k 1,
if n 2", 2" 1 then the cost becomes 9 log n + 7 steps, n z processors.

Furthermore, if h k, in which case the band is balanced, we can make a
comparison with the algorithms shown by Grcar and Sameh in [13]. These three
algorithms function under certain restrictive conditions (mainly positive definiteness
or nonsingularity of the leading principal submatrices). The computational cost of
such algorithms is shown below, together with the cost of the algorithm shown above
(new algorithm).

steps processors

Algorithm 6 log n + O(k log k), 4n,
Algorithm 2 3k log n + O(log k log n), 4kn,
Algorithm 3 (10+6 log k) log n + O(k), kn,
New algorithm 13 log n + O(log k), 5kn.

Note that the new algorithm functions without any restrictions, and, if k << n, the
number of steps is quite unaffected by band-width, while the number of processors
is slightly higher.

Remarks. The bordering technique used to reduce the solution of a banded
Toeplitz system to a triangular Toeplitz system can also be used for certain banded
matrices, even without a Toeplitz structure. In fact the five stages of the algorithm
resumed in (4.9) still hold valid, the difference being that the inversion of B at stage
1 costs O(log (h/ k) log n) steps with O((h/ k)2n) processors [15], [8].
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SELF-ORGANIZING HEURISTICS FOR IMPLICIT DATA STRUCTURES*

GREG N. FREDERICKSONI

Abstract. Self-organizing heuristics are presented for data structures containing elements with different
weights (access probabilities). The structures use just a constant number of locations in addition to those
required for the values of the elements, and support average access times that are within a constant
multiplicative factor of optimal. Data structures and corresponding heuristics with essentially optimal
average unsuccessful search times are also given for the case in which there are probabilities of access
associated with the intervals between consecutive element values.

Key words, binary search tree, implicit data structure, probabilities of access, searching, self-organizing
heuristics, unsuccessful search

1. Introduction. Additional space, beyond the minimum required to store key
values, appears useful in the implementation of various data structures. Consider a
data structure to hold a static set of n elements that are to be searched. The elements
will be accessed independently according to weights (access probabilities) pl,""", p,,
and the n + 1 intervening intervals will be accessed according to weights qo,""", q,.
If 2n + 1 pointers are available, then the elements can be stored in an optimal binary
search tree [K1], [K2] or nearly optimal binary search tree [Ba], [Fm], [GW], [HT],
[Me 1 l, [Me2]. But without that much additional space, how well can one do? In this
paper, we continue an examination of this question initiated in [Fs3]. Our answers
yield insight into such issues as the difficulty of handling unsuccessful search as opposed
to successful search and the amenability of certain data structures to self-organizing
techniques.

We consider primarily data structures that have only a constant number of
additional locations. We shall assume that the values are stored in the first n locations
of a one-dimensional array. Such data structures have been termed implicit data
structures [MS], [Fsl]. Suppose that we know the probabilities of access a priori. In
an earlier paper [Fs3], we presented implicit data structures and associated search
strategies that were considerable improvements over the obvious choice of ordering
values by decreasing weight and using sequential search [K2].

Suppose that the elements will be accessed according to fixed probabilities, but
these probabilities will not be known in advance. Thus, any structure that will have
search times sensitive to the probabilities of access must be self-organizing. That is,
the structure should arrange itself according to some function of its access history.
The most accurate method is to maintain a count of the number of times each element
is accessed, and arrange the elements based on these counts. Unfortunately, this
requires substantial additional space.

Self-organizing heuristics for sequential search have been studied in [Bi], [GMS],
[HI, [K2], [Me], [R]. The best of these heuristics realize (R)(min {1/pi, n}) time on
average for a successful search. In this paper, we consider using self-organizing
heuristics to approximate one of the implicit structures in [Fs3]. We show that two
self-organizing heuristics may be used to approximate this structure and realize average
successful search times of O(log min {1/p., rt}).

* Received by the editors June 23, 1982, and in revised form March 30, 1983. This research was
supported in part by the National Science Foundation under grants MCS-7909259 and MCS-8201083.

i- Department of Computer Science, The Pennsylvania State University, University Park, Pennsylvania
16802. Current address: Department of Computer Sciences, Purdue University, West Lafayette, Indiana
479O7.

All logarithms are to the base 2. When O(log x) is used, we shall mean O(max {1, log x}).
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We also settle a question left open in [Fs2]. Specifically, we construct an implicit
structure that is self-organizing and also handles unsuccessful search well. Since this
structure and its self-organizing heuristic are somewhat complicated, we also present
several structures in which a limited amount of additional space is allowed. Self-
organizing heuristics for binary search trees, in which unsuccessful search can be
handled, have been presented in [AM], [Bi]. We present a compressed version of a
binary search tree, using n + 1 pointers, and another structure that requires O(n 1/2)
pointers. Finally, we give our fully implicit self-organizing structure, with average
unsuccessful search times of O(log min {1/qj, n}).

A preliminary version of this paper appeared as a portion of [Fs2].

2. Self-organizing heuristics for successful search. We first review an implicit
structure from [Fs3] that realizes fast access times for successful search, given that
the probabilities of access are known. The elements are partitioned into groups Ai,
=0, 1,. ,s, on the basis of their weights. Let group Ai, <s, be of size h(i), and

group As be of size at most h (s), where h(i)= 2’- 1. The elements are partitioned
among groups so that the weight of any element in group Ai is no smaller than the
weight of any element in group Ai+l, for =0, 1,..., s- 1. The elements are then
arranged in sequential memory by increasing group number, and within group by
increasing value. We shall call this structure L Note that the failure probabilities have
not been used in building this structure.

To search for an element in structure I, examine each group in order, starting
with group Ao, until the element is found or the groups are exhausted. Within each
group a binary search is performed. Individual values of h (i) need not be stored, since
they may be computed as needed during the search. By the choice of h (.), the search
time in the ith group will be approximately equal to the sum of the search times in
the previous groups.

Since we do not know the probabilities of access, we consider implicit structure
/, which will be an approximation to our structure L As in structure/, the elements
will be partitioned into groups, with values in each group arranged in increasing order.
Our heuristics will rearrange elements to have the expected position of an element
be close to its optimal position. We shall present two heuristics, and show that each
performs quite well.

The first heuristic is an adaptation of the move-to-the-front heuristic [Mc] used
in conjunction with sequential search. The move-to-the-first-group heuristic is as
follows. When an elemont that is not in the first group is referenced, it is moved up
to the first group. An element from each intervening group is chosen at random and
moved down one group. The second heuristic is an adaptation of the transposition
heuristic [Mc] also used in conjunction with sequential search. The move-up-one-group
heuristic is as follows. When an element that is not in the first group is referenced, it
is moved up one group, and an element at random in the group is moved down one
group.

The effect of the heuristics is illustrated in Fig. 1. Suppose the current state of the
structure is illustrated in Fig. l a, and the value 13 is accessed. Figure lb shows the
result of a move-to-the-first-group reorganization, where the values 18 and 35 have
been chosen at random to be moved down. Figure lc shows the result if a move-up-one-
group reorganization is used instead. To help in discussing the analysis, we make the
following distinctions. The word search will indicate only the activity of looking for
a desired element. The word access will indicate both searching for an element and
performing the portion of a self-organizing move that immediately follows the search.
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7 22 35 518 6 9 11 13 21 26 28 31 39

(a)

7 18 22 513 6 9 11 21 26 28 31 35 39

18 7 13 35 5 6 9 11 21 22 26 28 31 39

FIG. 1. Implicit structure/: a) before a self-organizing move, b) after a move-to-the-first-group rearrange-
ment, c) after a move-up-one-group rearrangement.

We shall show that, under an appropriate implementation, both heuristics realize
expected access times that are O(log min {1/pj, n}) for a successful search.

The data rearrangement required by these heuristics can be considerable. In worst
case f(n) elements would have to be moved in a self-organizing move. If a self-
organizing move were performed after every search, the access times would be
degraded significantly, since search times are only O(log n) in worst case. Instead, a
self-organizing move should be initiated only every so often, with the work distributed
over succeeding accesses. A self-organizing move will be initiated every n time steps,
where a time step will correspond to an element comparison in a search. A self-
organizing move may always be completed during this interval.

Since a self-organizing move cannot in general be completed in one turn, the
structure must be left in a state that is as close as possible to that already described.
All but two groups should be in completely sorted order, and these two groups should
be completely sorted except for one element. We discuss the implementation of the
move-to-the-first-group heuristic in greater detail below.

The following procedure ensures that the conditions specified above will hold.
Let x be the value that is being moved forward. While x is not in group Ao, do the
following. Choose an element z at random from the next group up. Swap x and z.
Now restore the order of the group that has received z, by a sequence of swaps. When
x is in group A0, restore the order of this group by a sequence of swaps. An example
of a self-organizing move that is under way is shown in Fig. 2, which is intermediate

18 7 22 13 5 6 9 11 21 35 26 28 31 39

x z

FIG. 2. Implicit structure with a move-to-the-1’irst-group rearrangement under way.
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between Figs. la and lb. Values x 13 and z 35 have been swapped, and 35
is currently in the process of being swapped into the correct position in group A2.
The search may still be performed efficiently in the partially reorganized structure.

It is possible to speed up convergence by storing the elements of each group in
a recursively rotated list structure of [Fs 1]. The time for an exchange in such a structure
is (9(2"/21gn(log n)3/2), which is a considerable improvement over the (R)(n) work
necessary in worst case to exchange elements in a sorted list. Since exchanges may
be implemented using only a constant number of pointers (see [Fsl]), the current
state of the reorganization can be described implicitly.

3. Analysis of self-organizing heuristics for successful search. In this section, we
analyze the move-to-the-first-group and the move-up-one-group heuristics, under the
second implementation. We shall perform the analysis in two stages. First, we establish
an upper bound on the asymptotic probability that the/’th element is in some group
AL with L >_-i, given that a self-organizing move is performed after each access. From
these probabilities, we determine the expected search time for element ], under the
same assumption. We then shift to the assumption that a self-organizing move is
performed after every nth comparison, and apply the previous results to show that
the expected access times are O(log 1/pj).

We first consider the performance of the move-to-the-first-group heuristic, under
the assumption that a self-organizing move is performed after every search. Let Pji
be the asymptotic probability that the/’th element is in some group AL, for L => i. To
find an upper bound on Pi, >0, we model our structure by a two-state Markov
chain, shown in Fig. 3. The first state will roughly approximate the condition that the
/’th element is in one of the groups Ao,’’ ", Ai-1, and the second state will roughly
approximate the complementary condition. A transition from state 2 to state 1 will
occur with probability pi, and a transition from state 1 to state 2 will occur with

h(i-1) PJ

1-p 1-p

FIG. 3. The Markov chain used to analyze the performance of the move-to-the-first-group heuristic.

probability (1 -pi )/h (i- 1 ). Note that the latter probability overestimates the probabil-
ity that an element will be transferred from some group At with L < to some group
A, with L’=> i, since it assumes that the element is in group Ai-1 and that an access
to an element in some group A, L-> i, has been made. Let M.i be the asymptotic
probability that the Markov process is in state 2. It can be seen from the previous
discussion that Pi =< M.i. We use this bound to give the following result.

THEOREM 1. Let the move-to-the-first-group heuristic be applied to implicit structure
L with a sel[-organizing move per]ormed a)ter every search. Then,

a. For i> flog log 1/pi],
2z’t-he)asympttic probability that the jth element is in

[-JSL=i AL is less than (1/pj)(1/
b. The expected search time for the jth element is O(log 1/pj).
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Proof. From elementary probability theory, we have that

(1-p)/h(i-1)
m]i (1 -pi)/h(i- 1)+p."

Let r be the largest value of such that M.q is greater than 1/2. It follows that
r [log log 1/pj]. For > r, we have M.i < 22r- The first result then follows.

Let Cj be the expected cost to search for the/’th element. From the given conditions,
r >_- 0. Thus

C _-< Pi log (h(i)+ 1) < log (h(i)+ 1)+ M.i log (h(i)+ 1)
=0 =0 =r+l

< 2+ 1 +1/22+ + Y 22r-2’-+i.
=r+2

This expression assumes its largest value for r O. Thus

Ci < 10.13.2r-1 < 10.13 log 1/pi.

The second result now follows.
We now analyze the move-up-one-group heuristic, again under the assumption

that a self-organizing move is performed after every search. Let Pi be the asymptotic
probability that the/’th element is in group AL, L =>i, under this heuristic. We again
use a Markov chain, but this time one with s + 1 states, 0, 1,..., s, as shown in
Fig. 4. Only the transitions between different states are shown. State will roughly
approximate the condition that element/" is in group Ai of structure [. A transition
from state to i- 1, for >0, will occur with probability p.. A transition from state
si to + 1, for i<s, will occur with probability (1-pi)/h (i). Note that the latter
probability overestimates the probability that an element will be moved down one
group, since it assumes that an element in the next group down was accessed. Let tii

1-pj 1-pj 1-pj
h(O) h(1) h(s-1)

FIG. 4. The Markov chain used to analyze the performance of the move-up-one-group heuristic.

be the asymptotic probability that the Markov chain is in state i. Let T. be the
asymptotic probability that the Markov chain is in some state L ->_ i. From the previous
discussion, it can be seen that Pi =< T/. We use this bound to derive the following result.

THEOREM 2. Let the move-up-one-group heuristic be applied to implicit structure
[, with a self-organizing move performed after every search. Then

a. For > [log log 1/pj ], the asymptotic probability that the flh element is in U [=i AL
is less than (1/p)(1/22’-’).

b. The expected search time for the jth element is O(log 1/pi).
Proof. From elementary probability theory, we have for 1, 2,..., s

pt#=(1-p)/h(i-1) tLi_ 1.
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Let r be the smallest integer such that T.,r+l =<1/2. It follows that pj >- (1-pj)/h (r) and
tjr>=tj.r+. Then, (1-p)/h (r -1) >p >= (1-p)/h (r) and 2r-<logl/p-<_2. Since
T/,+ -<, we get t,+ -< and, for ->r + 1,

t <- I-I ((1-p)/p)/h(L-1)=<1/2 l-I h(r)/h(L-1).
L=r+2 L=r+2

Thus T.r _-< 1, T.,+I --< 1/2, and, for > r + 1,

T.i tj,.
L=i

Now, for > r + 1,

Tit<1/2 i (h(r) )L-+I (1/2)h(r) 22r_2,_1< <
L=, h(i- 1) h(i- 1)-h(r)

We note that the above bound also holds if r + 1. The first result then follows.
Let C. be the expected cost to access the/’th element. The given conditions ensure

that r -> 0. Thus,

Cj-< Pi log (h(i)+ 1) < i log (h(i)+ 1)+ T, log (h(i)+ 1)
=0 =0 =r+l

< 2r+l- 1 -+- 1/22 r+l -+- 2 T,’i 2i.
=r+2

This expression assumes its largest value for r 0. Thus,

C < 5.52.2r-1 < 5.52 log lips.

The second result then follows. 1
We now consider the performance of the heuristics under the second implementa-

tion, in which one self-organizing move is performed after every nth element com-
parison. We now wish to show that access times, as well as search times, are O(log 1/p).
Let H Y’q= p log 1/p. From [Mel] we have that the expected search time in an
optimal binary search tree is no smaller than H/log 3. Since no arrangement of values
in our search structure can have smaller expected search time than an optimal binary
search tree, H/log 3 is a lower bound for the expected search time in our structures
also. Thus, in our structures, the expected number of searches that together use n
comparisons is no greater than n(log 3)/H, no matter which arrangement it is in.

If there were a fixed number of searches performed during each self-organizing
move, then by Theorems 1 and 2, the expected search time for element/" would be
O(log 1/pi). Under this condition, the expected search time overall would be less than
cH, for some constant c. However, the number of searches per self-organizing move
is not fixed" There are more searches on average for the arrangements with better
average search time. Hence the average search time overall will be no longer if there
are not a fixed number of searches per self-organizing move. Thus, the expected
number of searches using a total of n comparisons is larger than n/(cH). We may
now prove that the self-organizing heuristics have the claimed performance.

THEOREM 3. Let a self-organizing move be initiated after every nth element
comparison in searches. Then the move-to-thee-first-group and the move-up-one-group
heuristics, when applied to structure I, support expected access times of
O(log min {1/pj, n}).
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Proof. From the previous discussion, the expected number of searches for element
/’ during a sequence of n element comparisons in steady state will be no smaller than
pj. n/(cH). Also, the expected number of searches for element j when element j is
in t_J-_i At, will be no greater than pjPjin(log 3)/H. Let r be the largest index such
that at least half of the searches for element j will terminate in U =r AL. Then

1 n n log 3
-P--<-PJP H

Thus

1
Pr > 2c log 3"

Let w max {r, [log log 1/pj]}. From Theorems 1 and 2, we have

1 1

Combining the two previous inequalities, we get

2w-1 < 1 + log c + log log 3 + log 1/p.

Thus the expected search time for element ] will be no more than

C_-<2w+1-1+ 2LP/Pjr<2w+l+2clog3
L=w+l L=w+l

2LP <= 2w+l + c’ 2w+l,

for some constant c’. Since searches are O(log n) in worst case, the claimed result
then follows.

4. Structures that use limited additional storage. We next consider self-organizing
structures that handle unsuccessful search well. In 5, we shall present a structure
that accomplishes this and is also implicit. However, the structure is somewhat
mplicated. In this section, we consider simpler structures that use some pointers.
We first consider binary search trees, since attractive self-organizing heuristics have
been presented for them in [-AM]. We propose a new, space-efficient representation
that is amenable to these heuristics. A normal representation of a binary search tree
would require 2n + 1 pointers" two pointers per node, plus a pointer to the root. This
is quite inefficient, as there are n + 1 null pointers. Our representation uses a total of
just n + 1 pointers.

Let the values from the tree be stored in ascending order in v l, v:,..., vn. In
addition, there is a pointer array, y l, y:, , yn-1, along with a pointer r to the root,
and a pointer holding the value of n. For/" 1, 2,..., n- 1, y. is a pointer to the
right child of v in the tree, if there is one, and left child of v./l, otherwise. An example
of a binary search tree is shown in Fig. 5a, and the corresponding space-efficient
representation is shown in Fig. 5b, with the pointer and value-arrays interleaved.

Let the above representation of a binary search tree be called representation R.
LEMMA 1. For every binary search tree, there is a valid representation R.
Proof. The proof is a simple induction, using an inductive definition of a binary

search tree. If the tree consists of a single node, then representation of R obviously
exists. Otherwise, the tree consists of a root and either one or two nonempty subtrees.
Assume that both subtrees are nonempty. By the induction hypothesis, there is a
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(a)

(b)

FIG. 5. A binary search tree in: a) its normal representation, b) its representation R.

representation for each nonempty subtree. Let these be vl(l: nl), yl(l: rtl-- 1), ra and
v2(l: n2), y2(l: n2-1), r2, where vl(i) v(i) and v2(i) v(i +nl + 1). The full tree will
have y(i) y(i) for 1,. , ha- 1, y(i + nl + 1) y2(i) for 1,. , n2-1, y(n)
r l, y(nl+ 1)= r2 and r n + 1. The cases where either the left or the right subtree
are empty can be handled similarly.

A search in the structure proceeds in a straightforward fashion; when the left
child of value vi is desired, then a test j 0 or y_ >-j determines if there is a null left
child. A similar test is performed if a right child is desired. The test for termination
may be simplified to a single comparison if the value of n is in yo, and the address
of the root is in y,. In this case, the left child of vi will be null if and only if yi_ _->j.
A similar test is used for right children. Our representation is notable in that we make
use of the numeric value of our pointers in our search. This contrasts with binary
search trees, in which a weaker test of equality with null is made.

It is shown in [AM] that a move to the root heuristic, involving a sequence of
simple rotations, yields expected access time O(log 1/pi) and O(log 1/qi). Our rep-
resentation allows rotations to be performed quite easily. In fact, the heuristic may
be applied from the top down, using only a constant number of extra pointers, in time
proportional to the length of the search path. Insertions are, of course, not easy.
Recently, Munro and Poblete [MP] have found another way to represent binary search
trees with essentially n pointers, so that insertions are efficient. Unfortunately, for all
of these representations, as is pointed out in [AM], worse-case search times for a
self-organizing search tree are f(n). This may rule out some applications.

We next present a structure that is amenable to self-organization and also handles
unsuccessful search well. The structure is semi-implicit in the sense of [MS], i.e., it
uses o(n) pointers. The particular instantiation, that we present, will use O(n /2)
pointers, but it is possible to achieve fewer pointers at the expense of a larger constant
factor in the expected access time.
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The structure is organized in the following fashion. Element f and interval/" are
viewed as paired together. Let p. pj + qj,/" 1, , n 1, and p’, pn + qn + qo. Pair

f is represented by element/’, and the elements are partitioned into groups as the
elements were in structure L but on the basis of the new weights p.. The elements
are ordered within a group by their values. The structure will consist of two arrays,
Vl, v2,’’ ", v, and yl, y2," ", y,,, where v. is the value of the element at position/’,
and, for f <= m, y. is a pointer to the next larger value in the structure. For the largest
value, the pointer would be to the smallest value. If we choose m Yi=o h(i), then
the only values without corresponding pointers will be in the last two groups As-1
and As. It may be seen that m is O(na/2). Let the above structure, with elements
partitioned on the basis of p as elements in structure I were, be called structure IL

A search for a value proceeds as before, with the groups examined in turn. When
the search value x is determined not to be in a certain group, a check may be made,
using a pointer to determine if x falls within an interval. The check will be made if
f -< m, where v. is the smallest value less than x in that group. The only searches that
will suffer will be those for the intervals that would fall in group As-a. Since only one
more group must be searched, the search time is at most doubled for an interval in
group As-1.

Appropriate self-organizing heuristics are similar to those already presented. The
data movement is the same, except that when an interval is accessed, the associated
element is moved. The pointers must also be adjusted accordingly" Every time that
a value is swapped into a new position, a search must be performed for the next
smaller value, and its pointer must be updated. This will force an additional factor of
O (log n) in the time to complete a self-organizing move. An example of our structure
is shown in Fig. 6a. Suppose element 13 is accessed. Then, the resulting structure
after a move-to-the-first-group self-organization is shown in Fig. 6b.

Let the approximation to structure H g.enerated by using an appropriate self-
organizing heuristic be denoted as structure IL

THEOREM 4. Structure I*I uses O(n /2) pointers and realizes O(log 1/pj) and
O(log 1/qi) averages access times, respectively, ]or success]ul and unsuccess)ul search,
under either o] the indicated selt-organizing heuristics.

18 7 22 35 5 6 9 11 13 21 26 31 39 2 38

(a)

13 7 18 22 5 6 9 ll 21 26 31 35 39 2 38

(b)

FIG. 6. Semi-implicit structure/: a) before and b) after a move-to-the-first-group rearrangement.
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Proof. By Theorem 3, the expected access time for an element with probability
of access P!/ will be O(log lip ). Since pj <Pi,-- the expected access time for element
j will be O(log 1/pj). Similarly, since qj<=p, and the expected access time for an
interval/" is at most twice that for an element/’, the search time for interval/" is
.O(log 1/qi). q

As noted earlier, fewer pointers may be used. let m Y,g---o h(i). Then, values
in only groups A_, A_/,...,A will not be paired with pointers. It may be seen
that the average unsuccessful search time will be thus O(2 log 1/qi).

5. An implicit self-organizing structure for unsuccessful search. In this section,
we present an implicit structure that is self-organizing and handles unsuccessful search
well. Our structure III draws motivation from structure H in the previous section.
Elements and intervals are once again viewed as paired. Thus, element f and interval
/" are viewed as paired together and have a combined probability of access ofp p. + q,
for/’ 1,. , n 1, with p’ Pn + qn + q0. Elements are partitioned among groups in
a manner similar to that described for structure H, except that the size of the groups
will be described by the function/(. ), to be defined later.

In structure H we used a pointer to identify to the next larger value in the
structure. Since we can no longer use pointers, we must guarantee instead that the
next larger value is nearby in the structure. Let 7r(/’) be the index of the next value
larger than v. in the set. (If v. is largest, then 7r(]) will index the smallest value.)
Precisely stated, we require that if v is in group Ar, then vlj) will be in one of the
groups Ai, for i=< r+ 1. We term this the patronage property. If v<) is in group Ar+l
and v. is in group Ar, then v. is termed the patron of v.), and v)is termed the
protege. It does not appear to be convenient to be more selective about the location
of v.). For instance, we cannot simply require v.) to be in group At/l, since v.)
may have very large weight and thus deserve to be in some group Ai, with _-< r.

We shall describe two search procedures for structure IlL The first will not be
quite as simple, but its correctness will be obvious. The second will be quite simple,
but its correctness will be more subtle. The first search is performed as follows. If the
search value x is in Ao, then terminate the search with success; otherwise, continue
to group A1. To search group A, for r > 0, do the following. Let w be the largest
value smaller than x in Ar-1. Search A for x. If found, terminate with success.
Otherwise, let w’ be the smallest value larger than w in 1.3 i=o Ai. If x < w, terminate
the search with failure. Otherwise, continue to the next group. The correctness of this
procedure is immediate, given that v Ar-1 implies that v.<j) [_1 ’= Ai.

We simplify the search as follows. Instead of determining w’, find w", where w"
is the largest value smaller than x in Ar. Now terminate the search with failure if
w"< w. This termination condition is more convenient, since w" can be identified as
a byproduct in a search for x in Ar. We claim that this termination condition is
equivalent to x < w’. First, we show that x < w’ implies w" < w. Now, x < w’ and w" <x
together imply w"< w’. But, w’ is chosen so that w and w’ are consecutive elements
in the set. Hence, w"< w.

We next show that if w"< w is encountered in a search, then x < w’. We prove
this by induction on the number of groups searched. As the basis, let w be in A0,
and let w" be in A 1, with w" < w. Then w’, the next largest value greater than w, must
be greater than x. For the induction, let > 0 be the smallest value such that w is in
Ai, and w"< w for w" in Ai+l. Now, suppose w’ <x. If w’ is in one of Ao, ,Ai-1,
then the termination condition must have already been met in some earlier group and
the search would not have progressed to group A+I. If w’ is in A or A+, then the
choice of w or w" was incorrect. Since none of these can happen, w’> x.
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If probabilities of access are known, then structure III may be constructed in the
following manner. Let the size of group Ai be h(i). Group Ao will consist of an
element with largest weight p. To construct Ai, given A-I, do the following. For

i-1
every v. in A-I, insert v. in A if v. is not in UL=0AI. Complete group A with
the remaining elements of largest weights {p}. It may.be shown that the search time
for an element or interval whose weight has rank k is O(log k). From the point of
view of simplicity, this structure compares favorably with a static structure in section
4 of [Fs3]. However, the multiplicative factor is smaller for that structure.

In any event we are concerned here with self-organizing structures, so that we
shall consider structure 111, which is an approximation to structure IIL We consider
the move-to-the-first-group and the move-up-one-group heuristics, modified to handle
structure IIL The data movement in a self-organizing move will be somewhat more
complicated for this structure. The element, that is the catalyst for the move, will be
moved forward in the structure. In addition, it may be necessary to elevate a prot6g6
into the next group down from its patron’s group, in order to preserve the patronage
property. But this prot6g6 may have to bring along its own prot6g6, and so forth.
(The situation may be roughly analogous to a promotion in an administrative hierarchy,
where an appointee is allowed to bring along an associate to the next lower level.)
Which elements will move up in the structure under the move-to-the-first-group
heuristic may be determined by the following procedure. Start with/" set to the index
of the catalyst element, and set to group index 0. While v is not in group Ai, v. will
be moved up, will be incremented, and/" will be set to zr(/’). If is initially set to
the next group up, then this procedure may provide similar information for the
move-up-one-group heuristic.

Of course, elements must be moved down to make space for the elements that
are being moved up in the structure. Two restrictions appear necessary to make the
self-organizing structure perform well. First, an element that is a prot6g6 should not
be demoted unless its patron is also demoted. If vL is in Ar and vL is in At/l, and
v was demoted but not v, then the patronage property would be violated. Second,
an element should not be moved down more than one group during all of the
self-organizing move.

It is apparent that more than one element must be moved down from certain
groups under the move-to-the-first-group heuristic. To determine how many elements
must be moved down, do the following. If the catalyst is not in the first group, then
one element will be moved down from the first group. If it has been determined that
a elements in group A-I are to be moved down to group Ar, b elements are to be
moved up out of group A, and c elements are to be moved up into group Ar, then
a -b + c elements should be moved from group A down to group Ar+l. It is simple
to show that no more than r + 1 elements from group A will be moved down.

The characterization of the self-organizing move given in the preceding paragraphs
is sufficient to perform a self-organizing move. From 2, we know that the self-
organizing move cannot be performed all at once, but must be distributed over many
subsequent accesses. This means that the self-organizing move must be performed in
such a way that it can be interrupted at any point, and only a constant number of
pointers will be needed to describe the state of the self-organizing move. Furthermore,
the partially modified structure must be sufficiently well-formed so that searches may
still be performed efficiently, given that the structure is in the middle of a self-organizing
move.

The data movement for the move-up-one-group heuristic is simpler, and we
consider it first. Let x v. be the catalyst, with v. in group A. While x is not in group
AL-1, do the following. Find the smallest r such that V"(j)EAL+r. Thus, y vr-,t.
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will be the element to be promoted in AL+r-1. Choose a nonprot6g6 element z at
random from AL/r-2. Swap y and z and restore the order in AL+r-1 by a sequence
of swaps. When x is in AL-1, restore the order of this group. An example of such a
self-organizing move, with the inter-group swaps labeled in order of the execution,
is shown in Fig. 7. The smallest value of r can be found by a fairly straightforward
search. An element vi can be tested for being a prot6g6 by searching for the position
of

Ao A1 A2 A3 A4
FIG. 7. Inter-group data swaps ]:or structure III under the move-up-one-group-heuristic.

We consider searching the not completely well-formed structure while a self-
organizing move is under way. Since a prot6g6 is never moved down, at every point
during the self-organizing move, the patronage property will hold for all elements in
the structure. At any point, at most two elements (either y and z, or x and z) are
out of order in the groups. As mentioned in 2, one can search each group by first
testing these elements, and then sidestepping them in the binary search.

We next present a procedure that will guarantee that the structure will be nearly
well-formed during a move-to-the-first-group self-organizing move. Let x vi be the
catalyst. While x is not in group A0, do the following. Find the smallest r such that
/).n-r(j) ( 1,3 L=0 AL. Let y v=r-,(j). While y is not in group Ar-1, do the following. Choose
a bounceable nonprot6g6 element z at random from the previous group. Swap y and
z, mark z as unbounceable, and restore the order in the group receiving z by a
sequence of swaps. When y is in group Ar-1, restore the order of this group and mark
y as unbounceable. When x is in group A0, restore the order of this group. Now
remove the unbounceable marks from all elements in the structure. An example of
such a self-organizing move is shown in Fig. 8, again with the inter-group swaps
labelled in order of occurrence.

Ao A1 A2 A 3

FIG. 8. Inter-group data swaps for structure Il under the move-to-the-first-group heuristic.
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It would be convenient to mark values by having an extra bit per value. Since
this may not be possible (and we are interested in implicit structures anyway), the
following trick from [Fs3] may be used. Each group may be viewed as partitioned
into subgroups of size four. The four elements of a subgroup may be permuted to
encode the value of the corresponding four-bit number. The search may handle these
permuted subgroups by performing binary search on the first elements of subgroups
and then performing a linear search through the two sub-groups identified by the
binary search. The reader is referred to [Fs3] for a more complete description of this
technique.

We now consider the choice of/(. for structure I?I. In the move-up-one-group
heuristic, only elements that are not prot6g6s may be chosen at random to be bounced
down one roupzSince every element in group Ai-1 may have a prot6g6 in group Ai,
as few as h (i)- h(i- 1) elements in group Ai may be bounceable. To guarantee, that
there are h(i) bounceable elements in group A, we choose h(0)= h(0), and h(i)=
t(i-1)+h(i) for i>0.

For the move-to-the-first group heuristic, things are not so simple. In addition
to the problem of prot6g6s needing to be protected, in general, more than one element
may be bounced out of a group. However, we know that at most + 1 elements will
be bounced out of group A. Hence, to guarantee that the probability that a bounceable
element/" in ,group Ai is bounced is still no more than (1 -pi)/h (i), we define h ’(0) h (0)
and/’(i) h’(i 1)+(i + 1)h (i) for >0. We now proceed to analyze the performance
of these heuristics.

THEOREM 5. Let the move-up-one-group heuristic be applied to implicit structure
III, with h(. describing the size of the groups. If a self-organizing move is initiated
after every n +cn 1/2 log n element comparisons in searches, then the expected access
times for successful and unsuccessful searches are O(logmin{1/pj, n}) and O(log
rain {1/qi, n}), respectively.

Proof. The performance of the heuristic may be modeled by the Markov chain
in the proof of Theorem 2, with p. replaced by p. The probability p that there is a
transition from state to state i-1 is an underestimate of the probability that an
element is transferred from Ai to A_I, since an element may be promoted as a result
of being a prot6g6 of some element that is promoted. The probability of a transition
from state i- 1 to remains the same, since it requires that some element other than
itself be the catalyst, and that there are h(i- 1) elements in group Ai-1 that can be
bounced. Once again this probability is an overestimate, in part because element/"
may be a prot6g6 and hence not bounceable.

A bound on P. similar to that in Theorem 2a may thus be established as

1 1

For the expected search time, given that a self-organizing move is performed after
every search, we have

C. =< P. log (/(i)+ 1).
i=0

From the definition of/(.), we have lYt (i) <- h (i), for i=0. Thus, the bound on the
expected search time, given a self-organizing move after every search, will be
0(log 1/p; ).

Now the number of swaps will be no greater than n. The work in testing for
prot4g4s is O(n /2 log n), since there are O(n /2) prot4g4s in groups A, for <s.
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Thus, a self-organizing move can be accomplished after the corresponding number
of comparisons. Given these results, an analysis similar to that in Theorem 3 establishes
that the expected successful search time is O(log 1/p;), which is O(log 1/pj). Since
the search time for interval/’ is of order the search time for element/’, the expected
unsuccessful search time is O(log 1/qj). [3

We now analyze the move-to-the-first-group heuristic.
THEOREM 6. Let the move-to-the-first-group heuristic be applied to implicit structure

III, with h’(. describing the size of the groups. If a self-organizing move is initiated
after every c in log log n + c2n

1/2 log n element comparisons in searches, then the expec-
ted access times for the successful and unsuccessful searches are O(log min {1/pj, n})
and O(log min {1/qj, n}), respectively.

Proof. The proof is similar to that of Theorem 5. The performance of this heuristic
may be modeled by the Markov chain in the proof of Theorem 1, with p. replaced
p. The probability p that there is a transition from state 2 to state 1 is an

i-1
underestimate of the probability that an element is promoted from U t-__iAt, to t.J t.=0At,
since an element may be promoted as a result of being a prot6g6. The probability of
a transition from state 1 to state 2 is an overestimate of the probability that an element

i-1
is bounced from U t=oAL to L=iAL, since at least i. h(i- 1) elements in Ai- are
bounceable, and at most elements will be bounced from Ai-1.

A bound on Pji similar to that in the proof of Theorem 5 may be derived. For
the expected search time and given that a self-organizing move is performed after
every search, we have

C. -< P., log (/’(i)+ 1).
i=0

From the definition of/’(. ), we have/7’(i) <= (h(i))2. Thus, the expected search time,
given that a self-organizing move is performed after every search, will be O(log 1/p).

Since no more than s elements are swapped into any group, and s < 1 + log log n,
the number of swaps is no greater than n(1 +log log n). The work in testing for
prot6g6s is similar to that in the proof of Theorem 5. Thus, a self-organizing move
will be completed within the allotted amount of work. The remainder of the proof is
similar to that of Theorem 5. fi

6. Conclusion. We have identified implicit data structures and self-organizing
heuristics that allow for fast access times in dictionaries of elements that have prob-
abilities of access. The heuristics are natural generalizations of the move-to-the-front
and transposition heuristics, and yield expected access times of O(log 1/p,). We have
also settled the question of whether additional space is needed to handle unsuccessful
search well in a self-organizing environment. The data structure that we have designed
seems particularly appropriate and potentially useful. The expected access times for
unsuccessful search are O (log 1/q).

We have not pursued in this paper the problem of identifying a structure and
self-organizing heuristic for which the average access times are a function of the rank
of the weight of an element, rather than the weight, itself. In [Fs2], we proposed a
variant of the notion of rank, termed the near-rank k of the weight p, of an element,
which is the number of elements of weight greater than 1/2p.. A data structure, along
with a partial analysis, appears in [Fs2], and it appears that the analysis can probably
be extended in a fashion similar to the analysis in this paper to yield average access
times that are O(log k).
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There are a number of more interesting problems that we have not addressed
here. We have not analyzed the rate of convergence of our structures to steady state.
Certainly the implementation of the heuristics that require a self-organizing move
after every nth element comparison would have reasonably slow convergence. It would
be interesting to analyze expected access times and rate of convergence for the more
natural implementation of the heuristics. Finally, we note that it would be quite
interesting to obtain sharp performance bounds by which to compare the move-to-the-
first-group and move-up-one-group heuristics. The multiplicative constants in the
bounds derived in the proofs ofTheorems 1 and 2, as well as intuition, might support
the conjecture that move-up-one-group gives better average performance. However,
the bounds derived in these arguments are quite loose, and care should be taken
drawing conclusions.
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VERIFICATION OF PROBABILISTIC PROGRAMS*

MICHA SHARIR’;, AMIR PNUELI: AND SERGIU HART

Abstract. A general method for proving properties of probabilistic programs is presented. This method
generalizes the intermediate assertion method in that it extends a given assertion on the output distribution
into an invariant assertion on all intermediate distributions, too. The proof method is shown to be sound
and complete for programs which terminate with probability 1. A dual approach, based on the expected
number of visits in each intermediate state, is also presented. All the methods are presented under the
uniform framework which considers a probabilistic program as a discrete Markov process.

Key words, program verification, probabilistic programs, Markov chains

CR categories. 5.24, 5.5

Introduction. In this work we examine the possibility of developing verification
methodology for probabilistic programs. The need for analysis of probabilistic pro-
grams arises in two main situations. The first is when we analyze a deterministic
program whose inputs are drawn out of a space with some known probability distribu-
tion, and we wish to infer some statistical property of the program, such as its average
running time, the expected value of some output variable, the probability of program
termination, etc. Another situation is that of a nondeterministic program where the
decision in nondeterministic forks in the program is made according to some known
distribution. We could have, of course, a combination of the two where both the input
values and nondeterministic choices within the program are chosen at random accord-
ing to known distributions.

With the recent emergence of probabilistic algorithms, such as primality testing
[RB] and synchronization between concurrent processes [LR], and the more conven-
tional problem of average behavior of deterministic algorithms, the need for tools for
probabilistic verification becomes increasingly urgent.

One possible approach to the probabilistic analysis of programs, which must
certainly be the first step towards any coherent theory of the subject, is the definition
of the probabilistic semantics of programs. Such an approach is taken for example in
[KO] where a probabilistic program is regarded as a distribution transformer, trans-
forming an input distribution into an output distribution. The output distribution then
tells us the probability for the program to terminate in any of its terminal states. In
principle, once we know how to compute the probability of each terminal state, we
have captured the complete (input/output) behavior of the program, and each specific
question can be settled by referring to the output distribution. In practice, however,
when we are interested in a specific question, the computation of the complete
distribution transformation is often a formidable and unnecessary task. This is why,
in the nonprobabilistic case, the disciplines of semantic assignment and verification
are closely related but still separate. The first seeks to define the mathematical
interpretation of programs in a given language. The latter tries to offer methods by
which specific questions about a program can be vigorously settled by extracting from
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the program just the minimal amount of information which is required in order to
settle the question. In one sense the theory of verification can be regarded as the
theory of semantic approximation.

Taking as our starting point the probabilistic semantics of programs, as defined
for example in [KO], we set out to see whether the verification methods that proved
successful in the deterministic case, such as the intermediate assertion method [FL],
computational induction [PA] and subgoal induction [MW], can be generalized to the
probabilistic case.

The salient teatures of all these methods are"

a) They are goal oriented; i.e., the verification conditions to be solved depend
on the property to be proved, and we only work so hard as is needed in order to
establish the particular property.

b) The verification conditions are local in the sense that they connect two
consecutive instants in the execution of the program.

c) If we insist on the minimal solution to the verification conditions we come
up with the full semantics of the program, or an equivalent characterization. These
are for example the minimal invariant predicates in Floyd’s method.

As will be shown below, we suggest two generalizations. The first is an extension
of the intermediate assertion method with some of the flavor of subgoal induction.
Starting with an assertion on the terminal states which is supposed to hold upon
termination, we seek to extend it into an assertion on all the states which holds
continuously throughout the execution. The second method is similar to computational
induction. We form equations which express changes in the distribution due to a single
program step. The minimal solution to these equations gives exactly the terminal
distribution. Consequently every solution, not necessarily the minimal, provides an
upper bound to the terminal distribution.

We show that these two approaches are dual in the sense that they are both
derived from the same matrix describing the program, and both obey certain duality
relationships which allow us to combine the information yielded by each approach
separately.

The methods are presented in a uniform framework which considers programs
as global state transformations. It should not be too difficult to adapt them to more
structured representations of programs. Specifically" The basic approach treats a
probabilistic program as a Markov process that goes by a chain of transitions through
the program states. At each step, depending on the current state, there are known
probabilities for the next state, and the process chooses the next state according to
their distribution.

These probabilities depend on the nature of the program statement about to be
executed. If this statement is not a random draw, then there is a unique next state;
otherwise, there may be several succeeding states, depending on the outcome of the
draw made by the program. Thus, in such a model the state-transition probabilities
can be assumed to be given a priority.

Note that random distribution of the program’s input will manifest itself in similar
distribution of the program states, but not in the transition probabilities among them.

Since, in principle, Markov chains model infinite processes, our approach can
therefore also assign semantics to nonterminating probabilistic programs. This general-
izes other approaches based on input-output semantics, which ignores nonterminating
executions (see [KO] for example). To deal with terminating programs, we regard the
terminal program states as absorbing states which once in them the process can never
escape.
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This paper is organized as follows. In 1, we define probabilistic programs as
Markov chains and assign to them semantics defined in terms of certain well-known
quantities associated with such chains. We show that these semantics coincide with
the semantics defined by Kozen [KO] and generalize it to nonstructured programs.
In 2, we describe our first method of probabilistic verification, which is based on
invariant functionals on the program states’ distribution. In 3, we describe a second
verification method based on the expected number of visits in the nonterminating
states. Essentially this approach had been formerly suggested by Ramshaw IRA], but
under a different framework. When cast into the framework of Markov chains, the
approach becomes greatly simplified and much of the theory developed by Ramshaw
turns out to be straightforward consequences of Markov chain theory. We also establish
some "duality" relationships between our two approaches. In 4, we demonstrate
our verification methods in a series of examples.

When considering probabilistic programs as Markov chains, it is important to
bear in mind that this representation is faithful only if all the data that can affect
program execution is incorporated into the program’s (or rather the chain’s) states.
Thus, if the program execution depends largely on its input, which in turn is drawn
from some complex distribution, then incorporating the whole input data into the
program states may make its analysis as a Markov chain rather difficult. (For example,
if the program itself is fully deterministic, it may well be the case that its Markov
chain representation decomposes into many disjoint chains, one per each input value.)
The Markov chain representation is most favorable in cases where the probabilistic
nature of the program arises from random draws made by the program itself.

Quite surprisingly, very few researchers have used the Markov chain model to
represent probabilistic programs, although a completely static treatment of programs
as Markov chains (with states being program locations only) has long been suggested
by [RM]. Saheb-Djahromi [SD] uses Markov chains to define the operational semantics
of a probabilistic version of the language LCF. The works of Kozen [KO] and Ramshaw
IRA] mentioned above do not use Markov chains, although most of their results can
be easily interpreted as standard results in Markov chain theory. Probabilistic analysis
of programs is also studied by Wegbreit [WE].

Recently, the authors have generalized analysis of probabilistic programs to the
case of concurrent programs [HSP], [HS]. Their program execution can be described
as a certain cooperation of several Markov chains, and its analysis requires special
techniques, unlike the classical Markov chain theory used in this paper. Another
interesting and recent direction of research is the development of probabilistic logics
for reasoning about properties of probabilistic programs (cf. [RE], [LS], [HS2]).

1. Probabilistic programs and their semantics. In our framework, a program is
considered as a (probabilistic) transformation operating on a set of states. Let S denote
the set of program states which may be infinite but countable. (See, however, 4 for
a treatment of uncountably many states.) We assume that the action of a single step
of the program is represented by a given matrix of transition probabilities P {Pij}.
Thus Pij is the probability of going from state s S to state ] s S in one step. Let/2 0

be the initial distribution vector which specifies for each state S the probability
/z/ -> 0 that initially the program is in this state. Based on the assumption that the
probability for a transition from state to state/’ depends only on and/" (and not
on the time or any other nonlocal entity), an execution of a probabilistic program can
be regarded as a Markov process which goes through a chain of discrete S states
[CH], [RV], [KSK].
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To illustrate these concepts, consider the following program:

i:=0;
11" while random (p8o + q81)= 0 do := + 1;
12" halt.

In general, the probabilistic expression "random (A)" chooses a random value accord-
ing to the distribution h. In this case 8i is a unit distribution concentrated at i,
i=0, 1. Thus, for p+q 1, random(pSo+q81) chooses 0 with probability p and 1
with probability q 1 p. Ignoring the initializing step, the set of states for this program
is"

S {(1, i), (12, i)li ->0}.

Note that states include the location in the program as well as values for all the
program variables.

The initial distribution is given by"
o o
(/t,i) i,O, l, (l,i) O.

That is’ with certainty the initial state is (11, 0). The transition probabilities are given
by:

P(ll,i)(12,i) q, P(l,i)(l,i+l) :P,
i>=O.

e(l:,iRlz,i) 1,

All other transitions have probability 0.
We partition our state space S [LI T. The set T is the set of all terminal states

(absorbing states); for each T, Pt 8t.; i.e., with certainty we remain at for the
next stage and hence forever. The set I S- T is the set of intermediate states. Thus
in the example above,

I {(ll, i)[i -->_0}, T {(12, i)li >_-0}.

Let us define"

P?) -{Probability of reaching state j from state in exactly n steps}.

Obviously Pi? {P"}i,i where P" is the nth power of the (infinite) transition probability
matrix P. This can also be written as"

where the summation extends over all (n- 1)-tuples (il,. , i,-1). Corresponding to
an initial distribution t2 o, we can also define’

(") {Probability of being in state/" after n > 0 steps}.

(n) 0D(n)Obviously/x =is tirq or in matrix notation fi(")= flOp,. Note that, since each
(n)] T is an absorbing state, the sequence {/x },_->o is nondecreasing for each/" e T.

We also define:
(") {Probability of reaching state ] from state ifor thefirst time in exactly n steps}.q

These quantities satisfy:
(n)

where the summation extends over all (n- 1)-tuples (il,. , i-1) of states all of which
are different from/.
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(n)Clearly f." or/. given an initial distribution, fully describe the behavior of
the program. However, they are too detailed, and we would like to take out the
dependence on the step counter n. One such integrated measure is given by"

where fi is the probability of ever getting to state f from state i.
Similarly we define/x f as the probability of ever getting to state j, given that the

initial distribution is o. Obviously"

o

If we restrict ourselves to terminal states j e T, then since j is an absorbing state
it follows that:

f/*., =limP) and /zf=lim/zJ) forjT.

The fi for j T can be considered as the input-output semantics of the program
viewed as a distribution transformer, in that given an initial distribution/2 o the terminal
distribution is given by t2 * t2 F* where F* {f }.

We will therefore regard the program as being fully specified when the matrix
F* is given. It should be noted that this is a generalization of Kozen’s semantics,
provided that one restricts oneself to discrete distributions. Note that Kozen defines
the semantics of only a restricted class of structured programs, whereas our interpreta-
tion does not impose any such restriction. Let us indeed compare the two approaches
for a while loop of the form

while x B do O.

For simplicity, let us identify the program states with values of x. The terminating
states are then elements of B. Suppose that the subprogram 0 has a transition
probability matrix (, where ( specifies probabilities of transitions from B to S
B B. Then the matrix associated with the whole program is easily seen to be

where the states in B precede those in B, so that O is a transition (substochastic)
matrix from B to B, and O is a similar matrix from B to B. A direct calculation
shows that

pn=(O7 (O1-1 +O1 +" +O1+I)O2)0 I

Hence, it follows from preceding remarks that if B, f B we have

k>_o
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But, in Kozen’s notation, Q1 is the matrix defining the linear operator eBoTooeB
on the space of measures on S, whereas Q2 is the matrix defining the operator
eBc To oe, so that

k--1

where T is the distribution-transforming operator associated by Kozen with the while
loop. This and (1) show that the two approaches indeed coincide for the above program.

Returning to the example program, it can be checked that

fll,i),(12,j) pi-iq if/’ -> i,

and that

Unfortunately, in the general case, the quantities fi and tzf may be difficult to
compute explicitly, and we may be interested only in a partial property of the program.
For example, we might only be interested in determining the expected number of
steps till a 1 is chosen. This is the same as determining the expected value of upon
termination, which is

Y i*(12,i)"
i>=O

We therefore would like to find methods for the calculation of such quantities without
having to compute explicitly/2". This is done in the following sections.

2. Probabilistic verification by invariants. In this section we present our first
probabilistic verification method. Motivated by the concluding remarks of the preced-
ing section, we set out to find a way to compute a linear functional over *, having
the general form

This is a probabilistic analogue of an assertion on the terminal program states.
We will assume, henceforth, that/3. ->_ 0,/" T.

Our approach is to try to extend the coefficients {/3}.T to a vector/3 {i}is
such that/3i >- 0, S, and such that its restriction to T gives the original coefficients
of . Furthermore, we require/3 to be a right-characteristic vector of P, i.e., Pfl =/,
or, in expanded form

Pii[3] [3i, S.
]sS

(We assume also that all the infinite sums involved converge.) Such a/3 is known in
Markov chain theory as a P-regular or P-harmonic function (cf. [RV], [KSK]). Note
that, unless the vector {/3i}i7- is bounded, some components/3, for /, may be +.
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If such a/ff exists, then define the linear functional (/2)= is/xd3i which, given
as an argument a distribution /.7. over the program states, computes a real number
(possibly 00).

Then if q(/o) is finite, so is (/2(")), i.e. the value of the functional after step n,
and we have the following invariance relation’

(o)=( ), n=0,1,....

This invariance is a consequence of the computation:

(t (n)) (t TM )"/) t Op,/ (t o./) q (t o)
since fl is a characteristic vector of P.

Obviously this gives a method for deriving invariance relations for general pro-
grams. We may now rewrite this invariance as"

(n (n)/- 0).
iI iT

if we let now n go to co, the second term in the sum keeps increasing (because, for
(n)each T,/-/,i increases and fli-> 0), and is bounded by (/2 o) so that it must converge

to a limit. Consequently, so must the first term, leading to"

R + E ,*t, =(z)
iT

(nwhere R lim,_. R, lim,.Et )fl 0. Thus in the general case, we can con-
clude that

( ,) ( o).
In the case where we can show that R O, we have an exact equality,

(,) ( o).
Thus, this method allows us to compute the desired "output assertion" directly

from the input distribution. Let us consider, for the simple example program above,
the functional given by"

(/1,i) +, (/2,i)
q

(i.e. a nonnegative functional that extends the desired functional ). The invariance
verification condition P amounts in this case to

P(ll,i+l)(12,i) :(/1,i), or p(i+ l+)+qi=i+ ,q
which is easily verifiable, and

(12,i) (/2,i),

which is immediate.
Accepting the easily verifiable Y.i/zl n) (i+p/q)--)O (since /xl n)ll,i i,npn, Rnl,i)

p"(n + p/q) -> 0), we therefore conclude:

. o P P1(t*) Id’(12,i) [’(/1,i) +
i=o
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This, of course, establishes that the expected value of on termination of the program
is p/q. (Here we have explicitly checked that lim/1 R/1 0; in the sequel we will suggest
several simple conditions that imply the vanishing of this limit.)

Summarizing the conditions for applicability of this method we have"

o(V1) Y ut3 <,
ieS

(v2) t3->o, Pt =t3.

Then, under these two conditions we are assured of

0 0).
iT iS

In fact, in order to ensure this result it is sufficient to have P/3 <=/3 in (V2).
If in addition we also have

(/l(V3) Y, /.i )i ’’) 0 (/3-termination),
iI

then we may conclude that

(c)

In order to emphasize the similarity between this method and the method of
intermediate assertions [FL], we point out that (V1) is analogous to saying that q is
true initially, while (V2) is analogous to the local verification conditions. Thus (V1)
and (V2) imply (V3)=),(C), but this is the analogue of partial correctness. It states
that if the program converges then the value on convergence is equal to (IZ). Only
here, we have to require an appropriate rate of convergence as well (i.e./3- termination).

Note that if the/3i, T, are uniformly bounded, then (V3) will hold if the program
terminates with probability 1. Indeed, then one has

(/1 (/1)lim /g’i )i N sup Iil" lim tz
iI iI rt,a3 iI

but the right-hand-side limit is precisely the probability of the program not to
terminate, which, by assumption, is 0. Similar sufficient conditions for the/3-termina-
tion of the program can be given for other kinds of vectors/3 (see 3 where such a
general condition is given).

The main question concerning this approach is: Can we always extend a given
functional to an invariant functional in the manner described above (in other
words, is this method complete)? To see that this is indeed the case, we proceed as
follows: Let {/3i}i T be given, with/3. => 0 for each/’ T. For each I define

(2) [i: Z jfj.
jeT
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Each sum exists in an extended sense (i can be +). Let be the functional
g( Xis ii.

THEOnEM 1. If satisfies (V1), then it also satisfies (V2) and (V3). On the other
hand, if 4 does not satisfy (V1), then b(*)= +c.

Proof. We first note that (V2) always holds. Clearly fli->--0 for each L and

E Pit,fit, E Pit, Z *fk’ifli.
kS keS jeT

Interchanging the order of summation, we obtain

But by the monotone convergence theorem,

E eif*i E Pgt, lim eT, lim Y Pt,PT, lim pini+1 =fi.
keS keS noo noo keS nOO

Hence

Pkflt, Y. flif [3i"
keS jeT

For T, Pit, 8it,, so certainly t,esPgt,flt, fig. (Equality also holds when both
sides are +.) Hence (V2) is satisfied.

Next, suppose that (V1) holds for . Again, by substituting the value of fli, I,
and interchanging the order of summation, we obtain

[A’ [i E tJ, fij < (X).
let

That is,

jeT

This already shows that (C) holds, but it also follows from this that

(n)i O)
no ieI

Hence (V3) also holds. If (V1) does not hold, we still have the above equality
()=4t(*)= +. Q.E.D.

This, of course, establishes the completeness of our verification method theoreti-
cally. That is, given a partial vector fli => 0,/" T, there always exists a completion of
it to a full vector fig, 6S, which satisfies (V2) and satisfies either (V1), (V3) and (C),
or else the value 6(*) ieTflif +.

In practice, of course, there are some difficulties. First, in order to obtain the
above completion of fi, we need to know the matrix fg, which is generally unavailable.
Similarly, the establishment of (V3) (for any completion of fl) requires the knowledge
of fi

(") for every n _---0 which is also unavailable.
A partial solution to these problems is given by the following characterization of

the specific completion of fl given by (2).
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PROPOSITION 1. Let 13i >= 0, f T, be given. Then the completion of t3 given by (2)
is the smallest nonnegative P-regular (i.e. invariant) extension of the given i’s.

Proofi Let {yi}it be such that yi-> 0 for all L and such that, together with
the given/ {/3’}’T, 2 is P-regular. Let us decompose P into blocks as follows"

[ }T"
I T

The invariance of 3’ then can be written as

O +Rfi=
Since 2 => 0, we have Q37 _-> 0 and hence 2 => R/. Continuing inductively in this

manner, we obtain

/>---- Z OkRa.
k

A computation completely analogous to the one performed in the preceding section
yields

, QkR =lim Pi /3 E f/3i=/3i.
k >=O T

(Interchanging the limit and the sum is justified by the monotone convergence
theorem.) Hence yi----/3 for each L Q.E.D.

Proposition 1 therefore yields a practical method for probabilistic verification.
Starting with the given coefficients/3. >-0,/" T, we find the general solution to the
invariance equations P/3 =/3, that coincides with the given partial vector on T, and
then choose the smallest nonnegative solution from which the value of 0(/2") can be
readily obtained.

As an illustration, consider our example program with the coefficients (12,i)= i.
Example 1. The recurrence equations implied by Pfl fl are

Pfl(ll,i+l) +qi

whose general solution is readily found to be

fl (l,.i i+
p A
q P

By the requirement of minimality (and nonnegativity) we must choose A 0 and
are ensured, by the above two propositions, that conditions (V1)-(V3) are satisfied,
so that calculation of 0(t2*) can proceed as before.

Thus, we may summarize: In order to compute jTt/3j, find a completion fli,
L such that (V1) and (V2) are satisfied and either:

a) fli, /, is the minimal such solution; or
b) The program terminates with probability 1 and the fli, eL are uniformly

bounded; or
c) It is possible to verify (V3) by some other means.
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(More about such means will be discussed in the next section.) The desired value is
then Yis/3itz/. In case a), if this latter value is +c, then so is the desired value of
the "output assertion". Note that the family of nonnegative linear functionals enables
us to express a very rich variety of program properties upon termination, such as:

(i) The probability of terminating at a particular state/" T (take/3k kj).
(ii) The probability of termination (take/3i 1).
(iii) The expected value of some variable (as in our running example).
(iv) The expected running time of the program. (One way of doing this is to add

a special "step-counter" variable to the program, and then find its expected
value (cf. IRA]).)

(v) Higher moments of some variables, such as variance, etc.
Remark 1. If one knows that the program terminates almost surely (i.e. with

probability 1), then one can generalize the second approach mentioned above to the
case where the/3i’s are not bounded. This is simply done by defining a sequence of
partial vectors

(N)
/3i min (/3i, N), jeT, N=l, 2,....

For each N, /3N =<N, j T. Hence, the smallest completion of the/3 sl’is, given by
(2), is also uniformly bounded (by N).

We can therefore consider any bounded invariant completion /(N) of the
coefficients/3N), ] T, and obtain

IN IN= /N(IZ 0).o("(z*) Y ,.*/3; Z ,
jT iS

B Hence,By the monotone convergence theorem, limu $(*)
this sum is also equal to limm, (o).

Remark 2. The techniques used in this section are rather standard in Markov
chain theory (cf. [RV], [KSK]). It is pleasing to find out that the adaptation of Markov
chain theory to the realm of program verification yields a natural and straightforward
generalization of existing verification methods for deterministic programs.

We conclude this section with two additional illustrations of our method
Example 2. Consider the program

x:=0;
l" while (t := random (6o+6 +62)) # 2 do x := x + t;
12" halt.

We associate states with the location in the program and with the value of x. Hence,
we can write

The nonzero transition probabilities for this program are

el,n),(l,n) 3, e(l,n),(ll,n+l) 3, el,n),(12,n) , e(12,n),(12,n) 1.

Let us compute the terminal distribution #*. We thus fix n 0, and put

We then want to extend B over the nonterminal state as well, so that it is invariant.
The requirement PB B then becomes

tm,i) + t.i+)+i,,=q,i), iO, or B/,i+I)- l
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whose general solution is

K. 2, _-< n,
(li, i) K 2- 2i-n-1 > n.

To obtain the smallest nonnegative solution, we must choose K 2-n-1. Hence, we
conclude that

tz, 2j-n-1 o
(/2,n) /.L

o

o 2n+1In particular since/Xl,,i) 6i,o, we obtain tz*12,,) 1! (Note that in this example
we have actually computed the matrix [i, in a somewhat roundabout way.)

Example 3 (Gambler’s ruin or Drunkard’s walk). Consider the following program

x := n; /* n is some positive integer */
11" while x # 0 do x := x + random (p6_1 + qS1);
/2: halt.

This program simulates a random walk on the nonnegative integers with 0 as an
"absorbing barrier." This describes a process in which a gambler with an initial fortune
n plays indefinitely against a house with unlimited fortune. In each game the player
has a chance p of losing and a chance q 1-p of winning. The process stops when
the gambler loses all its money.

States are defined as in the preceding example, but in this case T contains only
the state (/2, 0). The nonzero transition probabilities are

P(tl,j),(tl,j-1) P, P(ll,j),(ll,j+l) q for j> 0,

P(lx,O),(12,o) P(12,0),(12,0) 1,
oand the initial distribution is/x l,., ai,,. Let us compute the probability of the program

termination, i.e. taking/312,0) 1. Extending/3 as usual, we are led to the following
recurrence equations:

(/1,0) 1, (l,,i)--p(ll,i_l)+q(ll,j+l),

Solution of these recurrence equations amounts to solving the equation

qA2-A +p =0

whose roots are 1 and p/q. If p 1/2, the roots are distinct and the general solution is

(11, 1 +K 1

If p >1/2, then p/q > 1 and the minimality requirement forces us to choose K =0.
Hence, (l, 1 for all /’_->0 so that the termination probability is /(,= 1 (the
gambler will almost surely be ruined).

If p < -, then p/q < 1, and we choose

1
K inf 1.

1 -(p/q)’

Hence,/3,, (p/q)i, so that the termination probability is (p/q)n.
Finally, if p , the A-equation has two identical roots, and the general solution

for the/3’s is
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The minimality condition implies K 0 so that fl(t,,,,)= 1 and the program terminates
almost surely in this case.

As a related example, consider the case p = n the above program. Although
the program terminates almost surely in this case, it is well known [CH] that it is riot
expected to terminate. We will establish this fact using our method. To do so, we
need to introduce an additional step-counter variable c, and modify the program as
follows:

Ix, c] := In, 0];
11" while x0 do [x, c]:= [x+random (1/23_ +1/261) Cq- 1];
12" halt.

The program states are now

I {(1,, c, n )lc --> O, n 0}, T {(1:, c, O)lc _>- 0}.

The nonzero transition probabilities are

P(l,c,j),(l,c+l,j+l) V(l,c,j),(ll,c+l,j-1) 2, j> 0

P(l,c,O),(12,c,O) --P(12,c,O),(12,c,O) 1.
0The initial distribution is tzars,o,.)= 1, and zero elsewhere. We wish to compute the

expected value of c upon termination, so that we begin with the partial vector
fl,c,O) c, c => O, and we wish to extend it to an invariant vector/3. Instead of doing
so directly, we use the limiting approach suggested in Remark 1 above. That is, let
M-> 0 be an integer, and define

M {C, c<=M,
(;,,o O, c >M.

Since/3M is uniformly bounded on T, and the program is already known to terminate
almost surely, any invariant completion /gt can be used to compute the desired
functional. We claim that the following is such an invariant completion’

’(t-c-i)/21c+j+2k[(j+2k-l) (j+2k- 1)](ll,C,]) E 2i+2k f -> 1,
k=0 k k-1

(note that the sum vanishes if c +/" > M), and

M {C, c<-M,
flct,,,o)

O, c > M.
To verify that /t has the desired properties, one has to check that the following
equations hold"

(/,,c,O) "-’(/2,c,0) and fl/t,.,i,--(/,,c+l,/+l) + (/,,c+l,j-1), ]=>1.
The first equation is immediate, and the second can easily be checked. Since tim is
uniformly bounded on I (it is zero on all but a finite number of components), we
conclude that

EM(c) C# * M
(/2,c,0) (/1,0,n) 2n+2k=o k =o k k 1

Hence, if we let M o, we find that the expected value of c is the sum of the infinite
series appearing above. Using Stirling’s formula, we find that the kth term of this
series is of the order of k -/2, so that the series diverges and the expected value of c
is infinite. (This method can be used to show that the ath moment of c is finite for
a < 1/2 and infinite for a > 1/2.)
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3. A dual approach---expected number of visits. A recent work of Ramshaw
IRA] suggests an alternative approach to probabilistic program verification. Although
he does not use Markov chains in his approach, it turns out that his approach can be
easily and naturally described in terms of the Markov chain model that we have been
using. This leads to a much more compact description of his method, helps to explain
the problems that it faces and the (partial) solutions to these problems suggested by
Ramshaw, and also makes it easier to generalize this approach and to connect it with
our first approach as given in the preceding section. All this will be done in this section.

Intuitively, the approach that we have taken in the first section was to record the
program behavior by taking "snapshots" of the distribution of all program states, at
different times during execution. An invariant functional is thus a linear "assertion"
about this distribution that does not change from one snapshot to another. The
approach that Ramshaw takes is orthogonal to ours, in the sense that he takes an
"infinite-exposure" picture, of each program state separately, throughout the program
execution. His approach can be formally explained in terms of the Markov chain
model as follows:

Let P be the transition probability of the program. Decomposing it into blocks
as we did in the previous section, we obtain

0
I

(i.e., O. is the probability of going from e I to/" e I, and R. is the probability of
going from I to ] e T). Consider a modified transition matrix defined as

This matrix corresponds to a (substochastic) process in which, once the process reaches
a terminal state, it stops right there.

Let( be the distribution of program states after n steps of the revised process,
i.e. (= go. Define a vector O over S as follows’

For each S, v is the expected number of visits at state in an execution, given the
initial distribution go. Following Markov chain terminology, is a pure potential
measure induced by the charge o. Note that is always defined in an extended sense,
but need not be finite. However, if e T, v is always finite and in fact we have v *This follows from the fact that terminal states are visited at most once in the revised
process.

From the definition of g we have immediately the following
CLAIM. i$ the smallest nonnegative solution o the equation

(4 =e+go.
Ramshaw’s approach is to consider the quantities vi, and to introduce assertions

about them having the following restricted form"
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where A
___
S is a subset of states all having the same program location (he refers to

these assertions as "vanilla" assertions). His method is to verify that these assertions
are consistent with (4), i.e., to show that any vector 7 satisfying (4) also satisfies the
assertions. This is done by a generalization of the standard inductive assertions method,
but may not always work. In fact, the assertions must be of a special structure to
allow his inference rules to be applicable.

Ramshaw shows that under certain conditions (roughly amounting to requiring
that t5 be finite) this proof method is sound and yields some information about fi*,
given by those assertions that are planted at the program termination point. Ramshaw
does not bother to actually solve (4), and so the main problem that he faces is to
show that his assertions, even when consistent with (4), do actually describe the
smallest solution of (4). This creates the possibility of obtaining nonminimal solutions,
such as his so-called "time bombs", which may not yield the desired *.

Having stated the basic nature of Ramshaw’s approach, we will not follow his
method of estimating . Rather, we view the solution of (4) as the main goal of this
approach. In this regard, there are several additional possibilities for estimating t. For
example,

A) Let a be any nonnegative solution of

a=aP+g

or even of

a>=aP+g.
Then for every i, vi -< ui, so that t is an approximation from above to the desired

B) Define the sequence of vectors
-0 -0 -n+l pv =/x v =g. +rio, n>O

Then for every and n -> 0, v ’ <-v, so that iT" is an approximation from below for t3.
To illustrate this approach, let us return to our running example of the program

that searches for a first appearance of 1 in an infinite sequence of independent draws
of 0 and 1. Equation (4) then has the following form:

0
V(/1,i) (/1,i) "- Pl)(ll,i--1), >= 1,

o
/-)(11,0) (/1,0),

V(h,i qV(h,i), >= O,
and the (unique) solution is easily found to be

vt.)=p, vt2,)=P q =t.i),

Drawing an analogy to the standard verification techniques, we can compare this
second approach to the computational induction method [PAl, where information
about intermediate program states is derived inductively from information about its
input states. Comparing the two methods presented in this paper, we may view the
first one as being goal-directed, in that it draws from the program output requirements
conditions that should hold at the intermediate and input program states, and only
then checks them against the input information about the program. On the other
hand, the second method is input-directed, in that it draws information about intermedi-
ate and terminal program states from the input information and then computes the
output data from this information.
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There are two main disadvantages of the second approach. The first is that it is,
as just pointed out, input-dependent. Hence, if the program input distribution is not
fixed then we may have to recompute the vector afresh for each new distribution
-0
/ By contrast, it is more natural to assume that the questions about the program
terminal states are fixed, and we can process each of them using our first method
independently of any input distribution. Then for each input distribution, we can
compute the required output quantities immediately.

A second disadvantage is that the expected number of visits at an intermediate
state need not be finite even if, say, the program terminates almost surely. Hence in
solving (4), we may find that certain vi’s are +oo. This is not a major obstacle, since
(4) holds even in such a case. This means that each finite component vi, i L cannot
depend on any infinite components, so that these infinite components correspond to
states from which the program almost surely diverges and cannot reach a terminal
state with a positive probability.

Aside from independent computation of the t or approximations thereof, we can
connect solutions to (4) to linear, invariant functionals. Let t be any solution to

a>-a.#+12 and / any solution to P/=/. By partitioning /--(/1,/2) and
/- (/1,/2) according to the partitioning of S into /, T, we obtain the following
equations satisfied by each:

t21 > tlQ +/2 1, ff2/lR +/_Z, fl=Qfl+Rfl2.

Obviously/2 Q Thus 61 ,=o
Consequently where R, is the

remainder such that lim,_ R, 0 is the required (V3) condition. Hence, we have
PROPOSITION 2. Iffor some satisfying

and some (31,/32) satisfying

31 0131 +R2

the product (ftl /31) < c, then (C) holds; i.e.,

Note, however, that this is only a sufficient condition which implies the /3-
termination of the program (i.e. condition (V3)), but is not necessarily equivalent to
it. To illustrate this point, suppose that /3-1. This is an invariant vector whose
restriction to T yields a functional that computes the probability of termination. If/3
satisfies (V1)-(V3), and therefore also (C), then it follows that the program almost
surely terminates. On the other hand, the above condition, even for t 3, reads

However, we have
LEMMA 1. irVi< if and only if the program has a finite expectation of

termination (i.e., the expected length ofstay in I is finite), which is then equal to that sum.



308 MICHA SHARIR, AMIR PNUELI AND SERGIU HART

Proof. The expectation of program termination is

Y n Prob (the program terminates in exactly n steps)
n0

Y Prob (the program terminates only after n or more steps)
nl

=< Prob (the program is not yet in T after n steps)
n=>0

----’’Vi.
n>=O iI iI

Hence 2iI Vi < O0 implies a finite expectation of termination.
Conversely, if the program has a finite expectation to terminate, then it terminates

almost surely, which makes the inequality in the above formulae into an equality.
hence Y.it vi is equal to the expectation to terminate, which is finite. Q.E.D.

Hence the above condition requires that the program have a finite expected
execution length, which in general is stronger than the requirement that it terminate
almost surely.

Nevertheless, we have the following alternative approach to verification"
(i) Find any nonnegative solution a of (4) (even with an inequality).

(ii) Find an invariant nonnegative completion/3 of the coefficients of the given
functional on T.

(iii) Check that (til’/l)<, where/1 =/l,, a al,.
If so,/3-termination, and hence also (C), are assured.
An example of this procedure will be given in the following section. We will

conclude this section with an example of a straightforward calculation of ,3. Consider
the Gambler’s Ruin program given in Example 3, with p q 1/2. Following the notation
of 2, equations (4) have the form

V(/1,O V(/,I)

V(/1,1 V(/,2)

V(l,j) V(l,j-1)+ V(l,j+l), f 7 n, f 1,

V(/1,Ft 1/2V(/1,/.t--1)"4- 1/2V(/1,rt+l ’ l,

V (/2,0) V (/1,0)"

Putting vt,,o a, we have the following general solution"

a, ] =0,
v,,)= 2a], ]= l, n,

2a/’- 2(/’ n), f>n.

Since we want the smallest nonnegative solution of (4), we must take a 1, and we
obtain the solution

1, /’=0,
v(tl.j 2], f l, n,

2n, f>n.
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* 1 This means that the program terminates almostHence Ix (/2,0) V (/2,0) ) (11,0)

surely. However, evg +oe, so that the program is not expected to terminate, in
accordance with the results obtained, in a much more complicated manner, in the
preceding section.

4. Additional examples. In this section we will illustrate the verification methods
developed in the two preceding sections, as applied to two nontrivial example pro-
grams.

Example 4. Consider the following program (0 a 1 is fixed):

y:=0; n:= 1;
while y < a do

y:= y+ 1/2" random (1/260+1/21);
n:=n+l;

od.

For simplicity, we identify states only by the values of y and n. Thus, S {(y, n)" n => 1,
y D,-I}, where D. is the set of all dyadic fractions having / binary digits. The
terminating states are

T {(y, n)" n >= 1, y Dn-1, y > a and the (n- 1)st digit of y is 1},

and the transition probabilities are

P(y,n),y,n+l) -- }P(y,n),(y+l/2",n+l)

P(y,n),(y,n) 1

yD,,-1, y<-a (i.e.(y,n)eI),

yeD,-I, y>a (i.e. (y,n)e T).

Let us compute the termination probability of this program; that is, we wish to compute

’(g*)= Z tx*(y,n).
(y,n) T

Let us extend to an invariant nonnegative functional q"

(/) /3(y.,)u (y.,), where/3(y.,) 1 for (y, n) T.
(y,n)S

The invariance of implies that for each (y, n) I we must have

(y,n) B(y,n+l) @B (y+(1/2n),n+l)"

Of course, these equations have the solution y,,) 1, but this is too large. (Note in
general that such an extension implies that (go)= 1 for any initial distribution go.
Hence, this extension is the smallest nonnegative invariant extension of if and only
if the program terminates almost surely, regardless of the initial distribution.) In our
case, we have a smaller solution"

0, 2n-l(a-y)> 1,
y.. 1, 2"-1(a -y) < 0,

1 2"-- (a y ), otherwise.

Indeed, let us verify that these coecients satisfy the above recurrence equation.
Suppose first that (y..= 1. This happens when y ga, and then both (y..+l)
(y+/2-..+ 1, so the equation is satisfied. Next suppose y..=0. This happens
when yNa-1/2"-l. Then obviously yNa-1/2" so that (y..+)=0, and also
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y+ 1/2 -<_ a- 1/2n, so that (y+l/2n, n+l) "--0. Hence the equation is satisfied in this case,
too. (Note that this corresponds to the case where the program never terminates if it
reaches the state (y, n).) Finally, assume that

.1o<2n-l(a-y)<l, i.e., a--<y<a.
Two subcases are possible. If a-l/2"y<a then y+l/2"a and so
(y+/2-,.+a 1, whereas (y,.+l)= 1-2"(a-y). Hence

(y+l/2n,n+l) +(y,n+l)- +-2"-1(-y)= 1-2"-(- y) <..).

If 1/2"-a < y < 1/2", then 1/2" < y + 1/2" <, so that

(Y+l/2"’n+l) l--2n (
whereas y..+ 0. Hence

1 1 1 n-l( )2y,.+)++/2-,.+1=0+ 2 a y =l-2-(a y)

Note that we have not shown that these y,.)’s yield the smallest invariant extension
of (although this is indeed the case). However, we can apply the duality principle
stated in 3 by computing the vector 1 and checking that (Ol.a)<. As it turns
out, computation of in this case is simpler, because each nonterminating state (y, n)
can be reached from only one preceding state. Specifically, we have

vm,) 1, vy,.) vy,..-1), n > 1, y 6D.-1, y a,

where y’ e D.-2 consists of the first n -2 digits of y. Thus, for each (y, n)e L we have

1
(y,n) 2n--.

Now we have

Z U(y,n)(y,n) (30

(y,n)/

because for each n there are at most two y D,-1 for which (y, n) I and/3(y,,) 0.
It therefore follows that

(z *) (z o) (6(0,1)) (0,1) 1-a.

Expectation of y upon termination. Here we consider the following functional’

which is extended to

(z*)= Z y*(y,n)
(y,n)T

q(/.Z)= Z /3(y,.)/.Z{y,.) + Z
(y,n)eI (y,n)T

which has to satisfy the same invariance equations

1/2,y,n+l, -}" 1/2 (y+ l/2n,n+ (y, n)L
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Let us guess the following solution"

/3(y,n) An,

Y,

1
2n_

y <

(Note that/3(y.n) An for exactly one y Dn-1.) Let us check the recurrence equations:
If/3y,.)=0, y<a-1/2n-l, then both y and y+l/2 are less than a-l/2n, so that
the left-hand side is also 0. Suppose then that a- 1/2n-l<- y <a. Two cases are
possible.

Case I. a- 1/2"_-<y <a, which happens if the nth digit of a is 0 (assume an
infinite binary representation of c). Then (y,n+l)=A.+I and (y+l/2n,n+l) y + 1/2".
Hence we have

2An+l+ y+ =A. ifan=0.

Case II. a 1/2 =< Y < a 1 /2n, which happens if a. 1. Then/3(y,n + 1) 0 and
y+1/2-,.+1 A.+. Hence

A+I=A if a=.

Combining both cases, we can write

A+ 2A-(1-n) (y +).
where y, is the binary fraction represented by the first (n 1) digits of a, i.e.

nl oj
Yn--- .j=l

The solution of the general equation

A.+I 2An -Cn, n => 1,

is given by

An=2n-1 A1-
k=l

Hence, as usual, we have to choose

AI= Z
k=l

Hence, the expectation of y is t(O,1 --A1 (note that (El" 1) < (30 in this case too)

(1-c)
k--1 /=1

Q S
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To compute this sum, we use the following equality"

Hence

(l-a)2- E (l--aJ)(1--ak)=2 E
k,j=l 2J2k

(1- ak)(1- a)
22 + 22k=l

=-2S+O+2 Z 1
k=l 2

-2S + O+ 2(1 a)-40 -2S- 30+ 2(1 a).

2(1-a)-(1-a)2-O 1-a2 0
(0’1) S ’1 1)

2 2 2"

Thus the derived expectation of y is less than the expectation of y under uniform
distribution of y in (a, 1] by 0/2, where

Q= E 22kk=l

Example 5. Maximum component in a random sequence. Finally we give an
example of an average-case analysis of a nonprobabilistic program, using our methods.
This example will require that we deal with continuous distributions; however, our
methods can be easily extended to the continuous case, as will be demonstrated below,
although we will not justify this extension formally. This example is considered by
Knuth [KN] and is analyzed by Ramshaw [RA] by his system of "frequentistic"
assertions. Consider the following program, which finds the maximum among n random
elements, all drawn independently from a uniform distribution on [0, 1] (A denotes
the Lebesgue measure on [0, 1]; note that here we allow draws out of a continuous
distribution)"

M := random (A); C := 0;
for J := 2 to n do

it (t := random (A)) > M then C := C + 1; M := t; fi
od.

C is a counter variable added to the program in order to measure the number of
assignments to M. This number, the number of "left-to-right" maxima occurring in
the sequence, is the performance parameter that we wish to estimate. The program
states can be compactly represented by the values c, m, j of C, M, J respectively at
entrance to the loop. (We will use the convention that J n + 1 designates terminal
states.) Furthermore, since m varies over a continuous distribution, we will regard o
and/2" as density functions in m, and as distributions in c and/’. (This is the first
example of a continuous distribution; the results obtained so far can be easily general-
ized to this case, by simply replacing sums by the appropriate integrals.)

We thus wish to compute

n-1

I[ ([lb * 2 Cbl’ c,n + (m)dh(m).
c=0

We extend O to an invariant functional q over S, so that

yc," (m)/xc,i (m) dA (m) + ....1C /x,,+l(m dA (m).
/=2 c=0 c=0
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In a continuous model, the transition probability matrix has to be written as a kernel
representing "transition density" in the continuous parameter rn (see Revuz [RV] for
details). Thus, we have the following nonzero entries"

P(c,i,,),(c,i+l,,) m&,(u), }P(c,j,m),(c+l,j+l,u) ,"(m,1] A (U),

P(c,n+l,m),(c,n+l,u) (m (t/).

The first line describes an iteration step of the loop at which C has not been
incremented, so that m does not change; the total weight of this transition is m. The
second line describes an iteration step at which C is incremented, and the new value
(u) of rn is greater than the old value. The third line describes terminating "transitions".

The invariance of q requires the following recurrence equations to hold’

yc,i(m)=myc,i+l(m)+I yc+l,i+l(u)dA(u),

where Tc,n+l(m) c. We will prove that

1-m
Tc,n+l-r(m)=c+

i=1

by induction on r. The equality holds for r O. Assume it holds for some r. Then

Yc,n-r(m)=myc,n+l-r(m)+ Im Yc+l,n+l-r(u) dA(bl)

=m c+ + c+l+ du
i=1 i=1

mc +m 2
1-mi (1-m)-(1-mi+l)/(i +1)
+(1-m)c +(l-m)+

i=1 i=1

1- mi+1 r/l 1- m
=c+ +l-m=c+Y.

i=1 i+1 i=

Note that here 0 is uniquely determined, and so must satisfy (V1)-(V3). Hence
q(ti ) (*) where 2

)
is the initial distribution on entry to the loop. This initial

distribution, however, is concentrated on c 0 and j 2 and is uniformly distributed
in m. Hence we have

IO Iol-mib(/2 *) yo,:(m) dh (m) dh (m)
i=1

nl 1-1,/(i+1)= i I:H.-I,
i=1 i=2l

which is the result in [KN, 1.2.10].

[CH]

[FL]
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CONSTRAINED OPTIMUM COMMUNICATION TREES AND
SENSITIVITY ANALYSIS*

SUNITA AGARWAL’t’, A. K. MITI"AL:I: AND P. SHARMA

Abstract. Consider n cities with specified communication requirements between all pairs of cities. An
optimum communication tree has the property that among all the spanning trees connecting the n cities,
the sum of its costs of communication for the n(n 1)/2 pairs of cities is minimum. The cost of communication
between a pair of nodes, with respect to a spanning tree, is the product of the communication requirement
and the length of the path between the two cities. We construct constrained optimum communication trees
when (i) certain specified cities are required to be the outer nodes of the communication tree, and when
(ii) it is required that certain pairs of cities be connected directly in the communication tree. We further
analyse changes in the structure of an optimum communication tree when the communication requirement
between a pair of cities is subject to changes. We show that for the whole range [0, c), of the communication
requirement, there exist at most (n- 1) optimum communication trees and we construct all of them in
O(?14) computational effort.

Key words, communication spanning trees, cut-tree, critical value

1.1. Introduction. Given a set N of n nodes and a set of n(n- 1)/2 nonnegative
integers {r}, where r is considered as the communication requirement between the
ith and ]th nodes, and taking the distance between every pair of nodes as unity, cost
of communication over a spanning tree T is defined as

C(T) Y r (number of links in the path form to ] in T).
ieN

Hu [5] considered the problem of determining the tree for which the cost of communica-
tion is minimum and has shown that the optimum tree is a cut-tree for an undirected
network G, whose vertex set is N and arc (i, ]), has capacity of r units. Gomory and
Hu [4] and Schnorr [6] have given algorithms for constructing a cut-tree in polynomial
time (operation count).

In this paper we develop algorithms for constructing optimum communication
trees for the following cases:

(1) Constructing a tree such that it contains specified nodes in its outernodes and
is of minimum communication cost among all such trees.

Some of the situations where such a need may arise are:
(i) Certain cities are the outposts and therefore cannot act as transshipment

points in the tree.
(ii) In computer communication networks, input or output devices are represen-

ted as outernodes.
(iii) In military communication, these nodes represent the stations which are not

privileged to receive the information from other stations.
(iv) These nodes have a very high cost of constructing a central facility and hence

are not desired to be the inner nodes.
(2) Constructing a tree such that it contains a specified set of links and is of

minimum communication cost among all such trees. Some of the situations where such

* Received by the editors March 18, 1981, and in revised form June 29, 1983.
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Industrial and Management Engineering Department, Indian Institute of Technology, Kanpur, India.
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a need may arise are:
(i) These links are already existing and therefore have to be used in the communi-

cation tree.
(ii) Information between a pair of cities is classified and hence a direct link

between the two nodes is required as part of the communication tree.
(3) Constructing all cut-trees when the communication requirement between a

specified pair of nodes varies in the interval [0, c), Elmaghraby [3] has pointed out
some interesting applications of such sensitivity analysis.

1.2. Notation and definitions.
GIN, {rq}]" network with N as the the node set and rq as the capacity of

the arc (i, ]).
Let T denote a spanning tree for G[N, {rq}].
(Xi(T), X(T))" partition of N, obtained by removing link (i, ]) from T, with

e Xi(T) and ] e X(T).
Pq(T)" path between and in T.
Rq( T)" capacity of the cut (Xi(T), Xj(T))

Y Y rpq if (i,j) T
pXi(T) qXy(T)

man Y {Rpq( T)} if (i, j) T.
P,q) eij(T)

C(T): cost of communication over T

Y rq x (number of links in Pq(T))
(i,j)G, Rq(T), ([5]).
i,j) T

vii: max-flow between nodes and j in G[N, {rq}].
S" cut-tree for G[N, {rq}], and
Rq(S) vii V( i, j) S, hence,

C(S) Z IAij"
(i,j)S

1.3. Construction of optimum communication tree with specified set of nodes as
subset of its outer nodes. Let M N denote the subset of nodes required to be the
outer nodes of the optimum communication tree. In the proposed algorithm, we start
with the tree S, which is an optimum communication tree without any constraints. At
each iteration of the algorithm we identify a node which is not an outer node of the
current tree but is required to be in M. Let it be node k. We select a node q, adjacent
to k but not in M, such that the max-flow between nodes k and q is maximum among
all nodes adjacent to k. Node k is then converted into an outer node of the current
tree by making all nodes incident on k, except q, to be incident on q. This process is
repeated till all nodes in M are outer nodes of the current tree. This algorithm will
require at most O(n) operation at each iteration and hence has an overall complexity
of O(ne). We give a formal description of the algorithm in Pidgin Algol [2].

procedure SCT n, r, M, S, V, S*)"
comment n is the number of nodes, r is an n n array whose element rq is the
communication requirement between node and node j,
M is the list of nodes required to be the outer nodes,
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S is the link list of the cut-tree for the graph G[N, {r0.}],
V is an n n array whose element v is the minimum cut-value between nodes
and .

begin
B {set of outer nodes of S};
QMTIB;
while IMI  lQI

begin k M- Q;
ommenl k is an inner node in S, and is required to be an outer node.
H {set of adjacent nodes of k in T};
HI-{H-(HQ)};
Val <-- 0;
comment Select the node q, which is adjacent to k in S, such that it is not
required to be an outer node and has maximum value of Vkq among all the
nodes in H1.
for each in H1 do
if val < Vki then

begin val vg; q i;
end;

comment Delete all links incident on k in S and add all these links to q
to get the new tree.
for each j in H-{q} do
S -(SCJ {(j, q)})-{(k, j)};
Q<--QU{k};

end;
S*-S;
write S*;

end.

We now prove that S is an optimum communication tree for the construction in
1.3. At any iteration m, let

T(rn): denote the current tree,
Q(m): the set of outer nodes of T(m) which are also in M,
k and q: nodes of T(m) as selected in the procedure SCT.

We make the following observation. For any link (i, ]) not incident on k, such that
(i, ]) is a link in both T(m + 1) and T(m),

Rij( T(m + 1)) Rij(T(m)).

This follows from the fact that

(Xi( T(m + 1)), x( T(m + 1))) (X(T(m)), X(T(m))).
In Lemma 1 below, we show that for all pairs of nodes i, j, such that i, je M, S* gives
the minimal cuts.

LEMMA 1. For i_ M and j_ M, Ri(S*) = Rii(S) vii.
Proof. By induction. Let the induction hypothesis be

For i_ Q(m),j: Q(m),Ri(T(m)) vii.

For m 1, it is trivially true, since T(1) S and R(T(1)) vi Vi, j N.
Let the induction hypothesis be true for the ruth iteration. We show that it is true

for the (m + 1)st iteration also. Consider the following cases:
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Case I. (i, j) is a link in T(m + I) as well as in T(m) and is not incident on k.
Then by the observation made above and the induction hypothesis,

Rq( T(m + 1)) Rq( T(m)) vq.

Case 2. i: O(m + 1),/’e O(m + 1), and path from to ] in T(m) does not contain
the link (k, q). Then the same path connects and j in T(m + 1) also (see Fig. 1), i.e.,
Pq( T(m + 1)) Pq( T(m)). Therefore,

(1) Rq(T(m+l))= min {Rp(T(m+ 1))}.
(l,p) Pij( T(m))

By the observation made above, and the induction hypothesis being true for the ruth
iteration, it follows for all the links (1, p) Pq(T(m)) that

(2) Rp(T(m+ 1))=Rlp(T(m))= Vp.

From (1) and (2) it now follows that

Rq(T(m+ 1))= min {Vp} vq.
(l,p)Pq(T(m))

T(m)

T(m +I)

FIG.

Case 3. i Q(m + 1), j O(m + 1) and the path from to j in T(m) contains the
link (k, q). Let this path be denoted by (i, it," ", i, k, q, iq,..., ie, j). Then the corre-
sponding path in T(m + 1) is (i, il," , i, q, iq,. , ie, j). Since all the links on this
path, except for (ir, q), satisfy the conditions for Case 1,

(i) Rp( T(m + l )) Rlp( T( m)) Vlp V( l, p) e {Pq( T(m + l )) i, q)}.

Also, at the ruth iteration, k: O(m) and the induction hypothesis holds; hence,

R(T(m))= v and Rq(T(m))= vq.
But Vq >= vq (from the selection criterion for q). Therefore,

(ii) R(T(m)) >- R(T(m)).
Using the configurations in Fig. 1, (ii) implies

(Xq(T(m)),X,(T(m)))=(Xq(T(m+ t)),Xq(T(m))),
i.e.

(iii) v=R(T(m))=Rq(T(m+ l)).
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We can now write

Rq( T(m + 1)) =min {R,,( T(m + 1)),..., Rqq( T(m + 1)),..., Rid( T(m + 1))}

=min {R,,(T(m)),..., Rqk(T(m))," Rid(T(m))}
(from (i) and (iii))

=min {R,,( T(m)), Riek( T(m)), Rkq( T(m)), Rie( T(m))}

(from (ii))

=Rq(T(m))

=Vq.
We have thus shown that the induction hypothesis is true for the (m + 1)st iteration
if it is true for the ruth iteration. Hence it holds for the last iteration. But Q (last
iteration) M. This proves Lemma 1.

We now prove the following theorem.
THEOREM 1. S* is the optimum communication tree among all trees which have

all the nodes in M as its outer nodes.
Proof. It is obvious from the procedure SCT that S* contains M in its set of outer

nodes. Proof that C(S*) is minimum among all such trees is by contradiction. Let T
be a tree which has all the nodes ofM as its outer nodes and for which C(T) < C(S*).

Let

A(T)={(i,j) T/iM} and A(S*)={(i,e)S*/iM}.

Remove all the links in A(T) and A(S*) from the corresponding trees and let the
trees so obtained be denoted by Tt and S respectively. For each link (i, j) S,
using the mapping by Adolphson and Hu 1 ], we associate a unique link ([i], [j]) Tt,
which lies in the path from to j in TM. Since the link ([i], [j]) is also in Pij(T),

Rti,tjl)( T) >= Rq( T) >= l.)ij Rq(S*) (by Lemma 1).

Hence,

E Rij(S*) <= Rcq,t1)(T).
(i,j)S (i,j)S

Also V(i, e)A(S*),Rie(S*)=Y’.k rk and V(i,j)A(T), Rq(T)=Ek rk. Using
the definition of the cost of communication over a tree, it follows that,

C(S*) <= C(T), contradicting C(T) < C(S*).
Example. Consider the following network, where the numbers on the arcs are

the corresponding rq. Arcs not shown are assumed to have rq =0 (Fig. 2). Figure 3
gives the cut-tree for this network, and the numbers on the links represent the
corresponding maximum flows. We now require that all the nodes of M {3, 5} should
be the outer nodes. Then Q {3}, and M- Q {5}. Hence H1 {4, 6}.

We determine the node q such that

max { Vs} vsl)5q
jH1

i.e. q 4, and the modified tree is obtained by making nodes 3 and 6 incident on node
4, instead of on node 5. Since 3 and 5 both are outer nodes in this tree (Fig. 4) the
algorithm stops. This is the required optimum tree.
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FIG. 2

FIG. 3

FIG. 4

1.4. Construction of an optimum communication tree having some specified
links. We first prove a simple lemma and then give the algorithm SLT, for constructing
the above tree.

LEMMA 2. If for a pair of nodes i, j

rij>min{ Y rik, .
keN-{j} keN-{i}

then i, j) is a link in the cut-tree S.
Proof. By contradiction. Let

(3) r> Z r..
pN-{i}

Let us assume that (i, j) is not a link in S and k is the first node on the path from
to j in S. Then (i, j) (Xi(S), Xk(S)) and since this is the minimum cut between and
k, link (i, j) is used to its full capacity in the max-flow between and k. Thus by
conservation of flow at j, it follows that

ri <= Z rp < rq (from (1)).
pN--{i}

This proves the lemma.
Algorithm SLT simply makes repeated use of this lemma, for constructing the

optimal tree in 1.4.
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procedure SLT n, r, J, S);
comment n is the number of nodes in N, r is an n x n matrix whose element rij is
the communication requirement between nodes and ,
J is the list of the links required to be in the optimal communication tree,
S* is the tree constructed by this procedure,
G[J] is the graph formed by the arcs in J.
begin

for each (i, j) J, is an outer node of G[J] do

r-u Y rik+l;
keN

for each (i, j) J do gu ri; compute the cut-tree S using Gomory and Hu’s
procedure for the network with N as its node set and ?u as the capacity of
arc (i, );
write S*;

end.

TI-IEOREM 2. S* is the optimal communication tree for GIN, {ru}] containing all
the links of J.

Proof. For the modified communication requirements { j}, all the links in J satisfy
the condition for Lemma 2, and hence S* contains all the links in J. Let T be another
tree which contains all the links in J and for which C(T)< C(S*). Let/i(S*) denote
the value of (Xi(S:), Xj(S*)) for the network G[N, {u}]. Since ij rij V(i, j) J and
S* and T contain all the links in J, it follows that for (i, j) J,

Ri(S*) Rij( S*) + i ri and Ri( T) Ri( T) + ij ri.

Since S* is a cut-tree for GIN, { ?u}], it follows that for V(i, j) J, Rij(S*) <= Ri(T). For
(i, j) S*-J, let ([i], [j]) be the corresponding link in T, ([1]). Then

Ru(S*) u(S*) <= i( T) <= ti]ei]( T).

Since ?0 ri V(i, j) J and all the links in J are links in T, Rti]tj](T) Rttn(T), hence
R(S*) <-_ Rt.tn)(T). We thus obtain C(T) >= C(S*), a contradiction. Hence S* is the
required tree.

Example. Consider the network of Fig. 2. Let

J= {(2, 5), (5, 4)}. Then G[J] =@m(__@.

Since 2 is an outer node of G[J], we replace r25 by 725 1 + r21+ r23 +/26 18 and
delete the arc from G[J]. Next replace r54 by 54 18 + 4 + 3 + 1 26. Figure 5 shows
the network with modified requirements. Figure 6 gives the corresponding cut-tree,
it is also the optimum tree containing links (2, 5) and (5, 4). Numbers corresponding
to the links are the cut values w.r.t, the requirements {rj}.

FIG. 5 FIG. 6
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2.0. Sensitivity analysis w.r.t, changes in the level of communication between a
specified pair of nodes. It is evident that with any change in the capacity of an arc,
the minimum cuts between the nodes of G will change, thus altering the structure of
the optimum communication tree. We shall analyse such changes with respect to a
pair of specified nodes p and q. Elmaghraby in [3] has pointed out some interesting
applications of such sensitivity analysis.

Let denote the value of the communication requirement rpq. Each value of A
for which the cut-tree changes when rpq _-> h we shall call a critical value and the interval
between two consecutive critical values a critical interval. Let [-, ] denote the
kth critical interval, with h= 0. A cut-tree will remain optimum for all values of h
in this interval. Elmaghraby [3] has given an algorithm for constructing such intervals
but in his case it is possible that the same spanning tree is a cut-tree for more than
one interval as these intervals are not necessarily critical. Furthermore, at each iteration
his algorithm requires O(n4) computational effort and the number of iterations may
be more than n.

We show that there are at most (n- 1) critical values, and give an algorithm to
construct all the cut-trees corresponding to the (n- 1) critical intervals using at most
O(n4) operations.

2.1. Bound on the number of critical values. We make the following observations
in order to arrive at an upper bound on the number of critical values for a specified
pair of nodes (p, q).

(i) If rpq > min{_p r, YI-q rp}, then (p, q) is a link in the cut-tree S.
This is the statement of Lemma 2.

(ii) If link (p, q) S(m), the cut-tree for the ruth critical interval [h "-1, ’],
then , 0. For any increase in the value of rm beyond ’-, all the cuts between
p and q will also go up by the same amount and the cut value of any other link in
S(m) will not be affected. Hence S(m) will continue to be the cut-tree for all rm >= ’-.

(iii) All the critical values are in the interval [0, min {Y_p ro,Y_q rp}).
This follows from the observations (i) and (ii).

We now prove that there are at most (n- 1) critical values.
LZMMA 3. There are at most n 1) critical values as rm varies in the interval [0, ).
Proof. Let S(k) denote the cut-tree for the kth critical interval [/k-1, ,k]. We

prove the lemma by showing that the number of links in Ppq(S(k + 1)) is less than the
number of links in Ppq(S(k)), i.e. IP,,q(S(k+l))l<lP,,q(S(k))l.

0 kConsider a fixed value rpq(<A of rpq in the interval [A k- Ak], and let C(S(k))
and C(S(k/ 1)) denote the costs of communication for the corresponding trees for
this value of rpq.

For rpq A k, the increased cost on S(k) is
(i) C(S(k))+IPpq(S(k))I(A k o

/’pq
and on S(k + 1),

(ii) C(S(k+I))+IPpq(S(k+I))I(A k o
?’pq

0 kSince rpq < A and S(k) is the cut-tree for the critical interval [A k-l, A k], C(S(k))<
C(S(k+ 1)). Since, for rpq A k, S(k+ 1) is also the alternate cut-tree, the costs in (i)
and (ii) are equal.

Comparing the expressions in (i) and (ii), it follows that

(S(k))l > IP (S(k +
Now, for the first critical interval, [0, A 1],

IPpq(S(1))l<=n-1.
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Thus there can be at most (n- 1) critical values before the path between nodes p and
q reduces to the link (p, q). In the following section we present an algorithm which
will identify all the critical values and will also construct a cut-tree for each critical
interval.

2.2. Algorithm |or constructing all the critical values. We begin by putting rp 0
and constructing the corresponding cut-tree. Values of rpq is progressively increased
to identify its critical values. At each critical value, there exists at least one link on
the path from p to q, for which the incident pair of nodes have an alternate minimum
cut whose value is not dependent on the value of rpq. We identify a consecutive set of
such links on the path from p to q, and collect all the nodes incident on these links in
a set B. To obtain these alternate minimum cuts for each pair of nodes in B, we work
with a reduced network. Each component of the current cut-tree which is incident on
a node of B is shrunk into a single node and the communication requirement between
this node and any other node is the sum of the communication requirement between
and all the nodes of this component. Using Gomory and Hu’s procedure, nodes in
B are connected by links which form part of the links of the new tree. Shrunk nodes
are expanded by adding the corresponding components to the new tree. For the current
value of rpq, the new tree is an alternate cut-tree, such that all the links incident on
both the nodes of B have been removed from the path from p to q, and number of
links in this path has also been reduced by 1/31-1 links. This procedure requires solving
at most IBI- 1 max-flow problems. We repeat this procedure, until no link is a candidate
for being removed from the path from p to q. Value of rpq is further increased and
the whole procedure repeated again, until (p, q) becomes a link in the cut-tree.

It can be immediately observed that obtaining all the critical values will involve
solving at most IPpq(T1)l max-flow problems, (i.e. equal to the number of links in the
path from p to q in T1), and hence the complexity of the algorithm is O(n4), i.e.,
same as that of constructing a cut-tree on a network with n nodes. Below we give a
formal description of the algorithm. For keeping the description short, we omit details
of labelling and record keeping etc. Before describing the main procedure, we describe
two other procedures which are required for executing the main procedure.

procedure SHRINK (m, n, T, N, C, r)"
comment This procedure shrinks the component of the tree T, which is rooted at
node m, and which is obtained by removing link (m, n), into node m,
N is the node list,
C is the matrix whose element Cij, i, j , is the capacity of arc (i, j),
r is the communication requirement matrix.
begin
CN {set of nodes of the component rooted at m and obtained by removing

link (m, n) from T};
comment m does not belong to CN.
NN-CN;
for each in N do

begin Cim l’ki
k CNU{m}

for each j N-{m do Cij -ri1;
end;

end.
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procedure CUT-TREE Y, X, C, T, V):
comment Y and X are the subsets of the node set of the network for which a
cut-tree is to be constructed,
C is the matrix whose element Cq is the capacity of arc (i, ]), i, ] XUY,
T is the cut-tree constructed by this procedure,
V is the matrix of max-flows for the given network,
(X, X) denotes the minimum cut between nodes and ].
begin

Find minimum cuts between the nodes of X with respect to the network whose
node set is XUY and C is the matrix of its arc capacities;
Use Gomory and Hu’s procedure to connect nodes in X by links which form
part of the link set of T. Remaining links of T are obtained without solving
any max-flow problems;
for each in X do

begin
if Ix,xl-1 then T-TU.,.nx, (i,j);
tor each node k in T, such that (i, k) is a link in T, do
l)ik <’- 2 Xi, X Cmn

end;
tor l _-< -< n, l _-< j_-< n do

it (i, j) is not a link in T, then
12ij-mink.1) {tkl}; is a link on the path between to j in T;

end.

We now begin the procedure for computing all the critical values and constructing
the corresponding cut-trees.

procedure CRITICAL VALUES (n, p, q, r, LAMBDA, N, SC):
comment n is the number of nodes, p, q is the pair of nodes with respect to which
sensitivity analysis is done,
r is the communication requirement matrix,
LAMBDA is an array whose element LAMBDA [k] is the kth critical value,
SC is an array, where SC[k] gives the link list of the cut-tree for the kth critical
value, N is the node list.
begin
IR min (Y’.i-p rp, ,S-q rq);
rpq-IR; Y-{ };X-{1,2,...,n};
CUT-TREE Y, X, r, T2, V2);
comment cut-tree T2 has the property that (p, q) is a link in T2, and hence
the max-flow between any other pair of nodes is independent of the value of rpq.
rpq - 0;
CUT-TREE Y, X, r, T1, V);
CT- T1; k - 1;
comment CT is the current cut-tree.
while number of links in the path from p to q > 1 do

begin
comment Identify the next critical value by increasing the value of rpq.
d -IR;
tot each (i, j) in the path from p to q, do

begin
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dij v2ij vi; d min d, dii};
vi - vi + d;

end;
rpq rm + d; LAMBDA [k] rpq;
for each subpath P in the path between p and q in CT, such that for all
links (i, j) in P, dij d, i.e. for all links in P, the max-flow between the pair
of nodes incident on these links will no longer be dependent on the value
of rpq, do
begin

a -the first node in P;
b -the last node in P;
if (a p) ^ (b q) then
begin SC[k] - T2;

write (LAMBDA [k], SC[k], V);
end;
N-N;
else begin

for each node in P do
begin
NBi {set of nodes adjacent to in CT, except those in the path

from p to q};
for each j in NBi do
SHRINK (j, i, CT, N, C, r);

end;
p(a) -node preceding a in the path from p to q in CT;
s(b) -node succeeding b in the path from p to q in CT;
?-C;
if a p then SHRINK (p(a), a, CT, N, C, );
-C;
if b q then SHRINK (s(b), b, CT, N, C, );
B {nodes in P};
comment We now define a condensed network G with N as its node
set and C as the matrix of its arc capacities. It is understood that if
some Ci =0, then the corresponding arc is not in the network. We
construct a cut-tree for G, such that for each pair of nodes in B, the
nodes p and q are in the same partition of the minimum cut. To ensure
this we set Cpq equal to a large number.
Cpq IR + l; Y-N-B;
CUT-TREE (Y, B, C, T, V);
for each in Y do

begin
comment Expand the node into the component shrunk into
node i.
T T t_J {set of links of the component of CT rooted at i};
N N t.J {set of nodes of the component of CT rooted at i};
for each link (i, j)in {set of links of the component of CT rooted

at i} do
I)ij <’- )ij CT T;

end;
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end;
SC[k] <- {links of CT};
write (LAMBDA [k], SC[k]);
k<- k+l;

end;
end;

To show that two consecutive values of the array LAMBDA form a critical interval
and the corresponding links in the array SC, the cut-tree for that critical interval, no
formal proof is necessary. It is enough to say that for any cut-tree only for the pair
of nodes on the path between p and q, the cut values are dependent on the value of
rpq. Also, when the value of rpq is increased until at least for one pair of nodes the cut
value becomes equal to its cut value with respect to the tree T2, it is necessary to
obtain for this pair an alternate minimum cut, which has both the nodes p and q in
the same partition. That is, it is necessary to remove this link from the path from p
to q and hence change the structure of the cut-tree. In the above procedure we simply
obtain the alternate minimum cuts for all pairs of nodes which should no longer be
on the path from p to q and keep all the other minimum cuts intact. Hence the resulting
tree is a cut-tree for the next critical interval. We illustrate the various procedures of
this algorithm by solving an example in detail.

Example. Consider the network given in Fig. 7 with communication requirements
between nodes indicated along the corresponding arcs. Suppose we want to compute
all the critical values of r25.

FIG. 7

r25 0, cut-tree T1.

14

FIG. 8

cut-tree T2, r25 IR 14.
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Iteration 1. Path from 2 to 5 {(2, 3), (3, 6), (6, 7), (7, 5)}. IR 14, d 2, r25 2,
B {6, 7}, a 6, b 7 and Y {3, 5}. The component rooted at node 3 is shrunk into
node 3, and the condensed graph with the corresponding arc capacities is shown in
Fig. 10.

FIG. 10

Minimum cut between nodes 6 and 7 is the cut ({3, 5, 6}, {7}), which is obtained by
solving a max-flow problem on the network in Fig. 10, and (6, 7) is a link in the new
cut-tree with v67- 23.

Since nodes 5 and 3 Y f’l X6 and IX6 f’l BI 1, we connect nodes 3 and 5 with 6
and expand the component shrunk into node 3, according to the cut-tree in Fig. 8.
The alternate cut-tree for r.5 2 is shown in Fig. 11, with the max-flows between the
nodes indicated along the links, and link (6, 7) out of the path from 2 to 5, and
LAMBDA 1 2.

Gl9 G25 29 23 Q
FIG. 11

Iteration 2. d 8, re5 10, B {3, 6} and Y {2, 4, 5, 7}. The condensed graph
with arc capacities is shown in Fig. 12. To obtain a minimum out between nodes 3
and 6 such that both the nodes 2 and 5 are in the same partition of the cut, we solve
a max-flow problem on the network in Fig. 12. The cut obtained is ({3}, {2, 4, 5, 6, 7}).
Thus (3, 6) is a link in the new cut-tree with/)36 37.

FIG. 12

Since nodes 2, 4, 6, 7 Y f’l X6 and IX6 f’l B[ 1, we connect nodes 2, 4, 7 with
node 6 and expand the component shrunk into node 2. The alternate cut-tree for
r25 10, i.e. for LAMBDA [2] 10 is given in Fig. 13 with the max-flows between the
nodes indicated along the links.
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19 ( 33

FIG. 13

Iteration 3. d 4, r:5 14 and B {2, 6, 5}, a 2, b 5. since a =p and b q,
no more max-flows to be solved and the cut-tree for r:5 14 is the cut-tree T2,
LAMBDA [3] 14, and no more critical values for r:5. Thus the four critical intervals
are [0, 2], [2, 10], [10, 14] and [14, c).
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IMMUNITY, RELATIVIZATIONS, AND NONDETERMINISM*

UWE SCHNINGt AND RONALD V. BOOKer

Abstract. It is known [8],[13] that there is a recursive set A such that NP (A) contains a set that is
P (A)-immune; that is, there is an infinite set Le NP (A) such that no infinite subset of L is in P (A). The
first result generalizes this fact to situations where the running times of the machines specifying the "larger"
class bound the size of the sets of strings queried in the computation trees of the machines specifying the
"smaller" class. The second result is of a different type. For relativized complexity classes specified by
bounds on the number of oracle queries and the number of nondeterministic steps allowed in computations,
it is known [14] that one can describe a set A such that there is an infinite hierarchy of classes relative to
A where each new class in the hierarchy is obtained by increasing the amount of nondeterminism. Here it
is shown that the conditions allowing infinite hierarchies to exist also allow for each => 0, the existence of
a set in the (i + 1)st class which has no infinite subset in the ith class.

Key words, complexity classes, relativizations, nondeterminism, bounded queries, immunity, P, NP

1. Introduction. Does every infinite set in NP have an infinite subset in P? An
infinite set with no infinite subset in P is called P-immune [12].

Bennett and Gill [4] showed the existence of a set A such that NP (A) has a
P (A)-immune set, that is, an infinite set in NP (A) with no infinite subset in P (A).
Recently, Sch6ning [13] and, independently, Homer and Maass [8] showed that the
set A can be taken to be recursive.

The proof technique used in 13] can be applied in a variety of other circumstances.
The purpose of this paper is to establish two general settings in which this technique
can be used to establish "immunity" results. The First Immunity Theorem generalizes
the result noted above by giving conditions on a set F of running times such that there
exists a set A and a set L in NTIME (F, A) that is immune with respect to the class
of languages accepted relative to A by any class of oracle machines such that the set
of strings queried in all computations on an input is bounded in size by a function
in F.

Baker, Gill, and Solovay [1] showed that there exists a set A such that P (A)
NP (A). Kintala and Fischer [10], [11] showed that the construction of the oracle set
could be "spread" to show the existence of an infinite hierarchy P (A) g P (A)log2 g
P (A)log " P (A), and an infinite hierarchy P (B) P (B), P (B),:.
NP (B) where the function in the subscript indicates a bound on the number of
nondeterministic steps in any computation. Thus, one can "refine" the use of nondeter-
minism in relativized computation to obtain infinite hierarchies.

The proofs of the separation theorems in [1] and [10], [11] do not depend on
time as such. Rather time bounds serve to bound the number of nondeterministic steps
allowed in any computation and also to bound the number of oracle queries allowed
in any computation. Consider classes of oracle machines such that it is these two
parameters that are bounded during computations. In this context Xu, Doner, and
Book. establish in [14] a very general theorem which allows one to describe infinite
hierarchies of relativized complexity classes by allowing the amount of nondeterminism

* Received by the editors October 27, 1982, and in revised form July 12, 1983. This research was
supported in part by the National Science Foundation under grants MCS80-11979 and MCS83-12472 and
by the Deutsche Forschungsgemeinschaft.

" Institut fiir Informatik, Universitfit Stuttgart, 7000 Stuttgart 1, West Germany.
$ Department of Mathematics, University of California, Santa Barbara, California 93106.
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used to grow at each level. The hypotheses specify how the nondeterminism can grow
and how the amount of nondeterminism is related to the bound on the number of
oracle queries.

In the present paper we extend the immunity result cited above to the situation
studied by Xu, Doner, and Book. The Second Immunity Theorem shows the existence
of an oracle set such that at each level of an infinite hierarchy there is a set that is
immune with respect to the previous level. Again, the parameters involve only the
amount of nondeterminism and the number of oracle queries allowed in any computa-
tion, and the hypotheses specify the conditions on these parameters. The Second
Immunity Theorem is applicable to a wide variety of classes. Just five examples are
given here.

One may wish to interpret the value of these general theorems, and there is one
interpretation that arises immediately. These results add evidence to the thesis that
separation theorems about relativized classes say little about the difference between
determinism and nondeterminism in ordinary computation but rather illustrate the
power of nondeterminism to generate a large set of strings to be queried. This is
strongly emphasized here since the Second Immunity Theorem is established in the
context of limited nondeterminism and not just determinism vs. full nondeterminism.

The study of immunity with respect to complexity classes was initiated by Flajolet
and Steyaert [7]. The notion of "simplicity" is essentially dual to that of immunity.
Balcizar [2] has established results on simplicity that parallel the results of this paper,
The notion of both a set and its complement being C-immune for a complexity class
C has been studied by Balcizar and Sch6ning [3].

2. The basic proof. The Immunity Theorems are essentially invariant under a
variety of changes in the model of computation with the exception that inputs are
assumed to be strings and the oracle queries are of the form "is the string on the query
tape in the oracle set?" However, the examples given are in terms of classes specified
by various types of restricted oracle Turing machines.

An oracle machine is a multitape Turing machine M with a distinguished work
tape, the query tape, and three distinguished states, QUERY, YES, and NO. At some
step of a computation on an input string w, M may transfer into the state QUERY.
In state QUERY, M transfers into the state YES if the string currently appearing on
the query tape is in an oracle set A; otherwise, M transfers into the state NO; in either
case the query tape is instantly erased. The set of strings accepted by M relative to the
oracle set A is L(M, A) { wlthere is an accepting computation of M on input w when
the oracle set is A}.

Oracle machines may be deterministic or nondeterministic. An oracle machine
may operate within some time bound T, where T is a function of the length of the
input string, and the notion of operation within a time bound for an oracle machine
is just the same as that notion for an ordinary Turing machine. An oracle machine
may operate within some space bound S, where S is a function of the length of the
input string, and here we require that the query tape as well as the ordinary work
tapes be bounded in length by S.

We assume that every machine has nondeterministic fan-out at most two.
We assume that the reader is familiar with the elements of machine-based com-

plexity theory at the level of a textbook such as [9] and with relativized complexity
classes such as P (A), NP (A), PSPACE (A), etc.

For a string w, wl denotes the length of w.
The formal definition of "immunity" is made in a general context.
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DEFINITION 1. Let C be a (possibly, relativized) complexity class. A set L is
C-immune if L is infinite and no infinite subset of L is in C.

Now we have the first result.
PROPOSITION. There exists a recursive set A such that NP (A) has a set that is

P (A) -immune.
Proof. We construct a recursive set A such that L(A)= {0"[there exists a word

of length m in A} does not have an infinite subset in P (A). Clearly, L(A) is in NP (A).
Let P0, P1,""", be an effective enumeration of the deterministic oracle machines

that run in polynomial time. For each i, let qi be a polynomial that bounds the running
time of Pi. The set A will be constructed in stages so that for each m at most one
string of length m will be put into A. For each n-> 0, An is the set of strings put into
A at stages 0,..., n, and Rn is the set of indices of machines Pi, i-< n, that are
candidates for diagonalization at stage n + 1.

Stage O.
Ao:= .
(0):=0.
R0:= {0}

Stage n n >= 1).
Let/x(n) be the least integer k such that the following conditions hold:

(i) 2 k > E,<__, q,(k);
(ii) k > max {qi(lz(n- 1))1i < n}.

Search for the smallest ] Rn-1 such that 0"n L(P, An-).
Case 1. No such ] is found. Search for a string w, ]w[ =/x (n), such that no machine

P, =< n, on input 0"n queries its oracle for "w e A,_?" Such a string exists since on
input 0"", P can query its oracle at most q(lz(n)) times, the number of strings in
{0, 1}* of length/z(n) is 2"n, and/z(n) was chosen so that condition (i) is satisfied.

Let w be the least such string in some effective enumeration of strings and let
An := An- U {w}. Let Rn := Rn- t.J {n}.

Case 2. Some such ] is found. Let Rn := (Rn-1 { j}) { n} and let An := An-1.
End of construction.

Define A as A :--
Notice that condition (ii) implies that k is larger than the length of any string

queried at any previous stage. Thus, for any n > 0 the behavior of machines P, <= n,
on 0"n relative to An- is precisely the same as their behavior on O"n relative to
An/j for any j=> 0 or relative to A.

Clearly, L(A) is infinite if and only if A is infinite. Suppose that A is finite. Then
there exists no such that at each stage n >- no, Case 2 occurs so that an index is cancelled
from Rn. Thus, at each stage n >_-no, the size of Rn remains constant, the size of Ro.
But there are infinitely many with the property that for all sets B, L(P, B)=, so
that no index in this set is cancelled from Rn in an occurrence of Case 2. Hence, A
must be infinite.

Suppose there exists an infinite subset C of L(A) such that for some j, C L(Pj, A).
Since C is infinite, C

_
L(A), and L(A)_ {0"nln =>0}, there are infinitely many n

such that 0"k C L(Pj, A). The index j was put into Rj at the end of stage j. Since
there are only finitely many indices less than j, there must be a stage k > j such that
Case 2 with index j occurs so that 0(k L(P, Ak-) and, hence, 0Ix(k) L(P, A) C.
But then Ak is chosen so that 0’(k) L(Ak), and, hence, 0’(k) L(A) since no string
of length/z(k) is put into A at a stage greater than k because condition (ii) is satisfied
when choosing/x(n). Thus, 0’(k) C since C c__ L(A), contradicting 0’(k) C.
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Hence, L(A) is P (A)-immune.
The existence of a set A such that NP (A) has a P (A)-immune set was first shown

by Bennett and Gill [4]. That the set A can be taken to be recursive was shown by
Homer and Maass [8] and, independently, by Sch6ning [13]. The proof of the proposi-
tion is from [13] and serves as the outline of the proofs of our more general results.

For any set D, let NPB (D) be the class of languages L such that L NP (D) is
witnessed by a machine M with the property that there is a polynomial q such that
for all inputs x there are at most q(Ixl) accepting computations of M on x (relative
to any oracle). One can trivially alter the proof of the proposition to show that there
is a set A such that L(A) is NPB (A)f)co-NPB (A)-immune.

3. The First Immunity Theorem. The First Immunity Theorem is a straightfor-
ward generalization of the proposition to settings other than deterministic and non-
deterministic polynomial time. It illustrates how nondeterminism is used to generate
more strings than a deterministic machine can query when the number of strings that
the deterministic machine can query is restricted.

DEFINITION 2. Let M be an oracle machine. For each set B and each input string
x of M, let Q(M, B, x) be the set of strings y such that in some computation of M
relative to B on input x, the oracle is queried about y. Let IIQ(M, B, x)ll be the
cardinality of Q(M, B, x).

Consider the proof of the proposition. Since each Pi is deterministic and runs in
time q, for every set B and input string x, IIQ(Pi, B, x)ll <- q(Ixl). Thus, condition (i)
implies that 21xl> _<_ IIQ(Pi, B, x)ll for all sets B and x, and there are 2I1 strings in
{0, 1}* of length Ixl. Hypotheses forcing this to happen allow one to consider more
general classes of oracle machines. This leads to the First Immunity Theorem.

FRST IMMUNITY THEOREM. Let M={M/Ii=>0} be a class of nondeterministic
oracle machines, and let F be a class ofnondecreasingfunctions (on the natural numbers)
that are running times. Suppose that the following conditions hold:

(i) for each there exists fF such that for every set B and every string x,
IIQ(M, B, x)ll <-- f(Ixl);

(ii) for each f F and integer c >= O, there exists g F such that for all but finitely
many n, if(n) <= g(n);

(iii) for every f and g in F, log f= o(g);
(iv) for infinitely many and all sets B, L(M, B)=

Then there exists a set A and a set L in NTIME (F, A) such that L is {L(M, A)li >=
0} -immune.

Sketch of the proof. Let be in F. For each set B, define L(B, t) {0"lthere exists
w B such that Iwl-t(m)}. Clearly, for every set B and every in F, L(B, t) is in
NTIME (F, B).

For each function in F, construct a set A in stages so that L(A, t) is {L(M, A)li >=
0}-immune. For each m at most one string of length m will be put into A.

For each let f be any function in F such that for every set B and every x,
IIO(M,, B, x)ll < f,(lxl). By condition (i), for each such an j exists.

Now proceed as in the proof of the proposition where condition (a) below replaces
condition (i) in that proof and condition (b) replaces condition (ii):

(a) 2’)> Y__<J(k);
(b) k > max {lyll for some i< n, some computation of M relative to A-I on

input 0"-1 queries the oracle about y}.
The details are left to the reader.

Consider the following applications of the First Immunity Theorem.
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1. Let M be the class of deterministic oracle machines that run in exponential
(i.e., 2) time. Let F be the set of functions {2"1i=> 1}. For each set B, denote
{L(M, B)]i >= 0} by DEXT (B) and NTIME (F, B) by NEXT (B). Then there exists a
set A and a set L in NEXT (A) that is DEXT (A)-immune.

2. Let M be the class of deterministic oracle machines that use polynomial work
space and are restricted so that only a polynomial number of oracle queries are allowed
in any computation. For each set B, denote {L(Mi, B)Ii>-0} by PQUERY (B); see
[5], [14] for properties of classes of this form. Let F be the set of polynomials, so that
for any set B the class NTIME (F, B) is NP (B). Then there exists a set A and a set
L in NP (A) such that L is PQUERY (A)-immune.

For other examples of settings where the First Immunity Theorem is applicable,
see [6], [14].

4. The Second Immunity Theorem. Now we establish the definitions that enable
us to formulate the Second Immunity Theorem.

DEFINITION 3. A machine M operates in nondeterminism g(n) if for every input
string x to M, any computation ofM on x has at most g(Ixl) nondeterministic steps.

DEFINITION 4. Let M be a set of nondeterministic oracle machines. Let T be a
set of nondecreasing functions with the property that for each M M, there is a function
T such that for every n, in any computation on an input of length n, M can query

its oracle at most t(n) times, and, conversely, for every T, there is an M M
satisfying this condition. Let G be a set of nondecreasing functions with the property
that for each M M, there is a function g G such that M operates in nondeterminism
g, and, conversely, for every g G, there is an M M satisfying this condition. Assume
that each of M, T, and G are countably infinite, and that there are infinitely many
deterministic M M such that for every set A, L(M, A) . Any such triple (M, T, G)
will be called a proper oracle machine class.

DEFINITION 5. Let (M, T, G) be a proper oracle machine class. For any set A and
any g G, define D (M, A) {L(M, A)IM M operates in nondeterminism g}. For
any set A, define D (M, A)0 {L(M, A)IM M operates deterministically} and define
D (M, A)= {L(M, A)IM M}. Now we can state our result.

SECOND IMMUNITY THEOREM. Let (M, G, T) be a proper oracle machine class.
Suppose that G {gin]In > 0} and T= {tin]In > 0} have the following properties:

(i) log n =< gill(n) for all but finitely many n;
(ii) < j implies g[i] o(g[j]);
(iii) for every e T, log o(g[1 ]);
(iv) for every integer i> 0 and every set X, the set {OP]there exists w X such that

Iwl g[i](p)} is in D (M, X)gi.
Then there exists a set A with the property that for every i, with 0 <=i < j <= o, there is
a set in D (M, A)gtjj that is D (M, A)gj-immune.

The statement of the theorem is very technical, so before giving the proof, we
turn to some applications.

1. Let M1 be the collection of clocked nondeterministic oracle machines that run
in polynomial time. Let M2 be the collection of oracle machines that are obtained
from M1 be adding clocks that bound the amount of nondeterminism allowed, say
g[i](n)=n for all n_->0, i=>0. Thus, D (M1, )o=D (M2, )o=P and D (M,)=
D (M2, )=NP, and for each i, D (M1, ()gti is the class of languages accepted by
polynomial time machines that are allowed to make at most g[i](n) n nondeterminis-
tic steps in any computation on an input of length n. The theorem states that there
exists a set A such that for every i, j with 0 <= < j <_- , there is a set L in D (M, A)g[j]
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that is D (M, A)gj-immune. In the notation of [10], [11], L is in P (A), and L is
P (A),,-immune. When i=0 and j=o, L is in NP (A) and is P (A)-immune. If the
machines in M2 are enumerated so that M runs in time t[i], a polynomial, then the
function t[i] also serves as a bound on the number of oracle queries that M can make.
Thus, the existence of clocks for the t[i] and the g[j] allows one to claim that the set
A is recursive.

2. As in 1, consider oracle machines that run in polynomial time but now restrict
the nondeterminism by means of the functions g[i](n) (log n) /1. It is known that
there is a set A such that for all i, P(A)log,nP(A)log,+ln [10], [11]. The theorem
states that there is a set A such that for every i, j with 1 _-< < ]-< , there is a set L
in P (A) logJn that is P (A) log,n-immune. As in 1, A can be chosen so as to be recursive.

3. Let 111 be the collection of clocked nondeterministic oracle machines that
operate in polynomial space. Let both T and G be the collection of polynomials
{nklk >= 0 and integer}. Let M2 be the collection of clocked oracle machines obtained
from 1I by adding clocks from G that bound the amount of nondeterminism and
clocks from T that bound the number of oracle queries allowed in any computation.
Thus, D (M1, )0 D (M1,) D (M2, )0 D (M2, )-PSPACE and for every
set A, D (M2, A)o PQUERY (A) and D (M2, A)o NPQUERY (A) (see [5]).
Extending the notation of [10], [11] to classes PQUERY (?), if g[i]- n i, then for every
set A, D (Me, A)g[i] PQUERY (A)n’ is the class of languages accepted relative to A
by polynomial space-bounded oracle machines that make at most a polynomial number
of oracle queries in any computation and that operate in nondeterminism g[i]- n . It
is known that there is a set A such that PQUERY (A) NPQUERY (A) [5] and that
there is a set B such that for all i, ] with 0 <- < ] _-< , PQUERY (B)n, PQUERY (B)nJ
[14]. The theorem states that there exists a set A such that for every i, j with
O<-i<j<-m, there is a set L in D(M2, A)Ljl that is D(Ma, A)gLij-immune, that is, L
is in PQUERY (A)n and L is PQUERY (A),-immune. As in 1, the set A can be
chosen to be recursive.

4. Extend the first example to clocked oracle machines that run in time 2kn, k > 0
an integer, and bound the amount of nondeterminism allowed by the functions g[ i](n)
2, > 0. The theorem states that there exists a set A such that relative to A there is
an infinite hierarchy with the property that at each level there is a set that is immune
for the previous level.

5. Extend the second example to clocked oracle machines that operate in space
2kn, k >0 an integer, and add clocks from T G ={2lk >0 an integer} to bound
both the amount of nondeterminism and also the number of oracle queries allowed
in computations. The theorem states that there exists a set A such that relative to A
there is an infinite hierarchy with the property that at each level there is a set that is
immune for the previous level.

For other examples of settings where the theorem is applicable, see [6], [14].
Now we turn to the proof of the theorem. The overall outline follows the proof

of the proposition. In that case a time bound for a machine served to bound both the
amount of nondeterminism available and also the number of oracle queries allowed.
Here these two parameters are independent modulo the hypotheses of the theorem.

Proof of the theorem. Let M1, M2,""", be an enumeration of the machines in M.
Let g[0](n) 0 for all n. Let 7r(0), r(1),. ", be an enumeration of the set {(a, fl, y)la >
0, y > 0, y >/3 _-> 0, and machine M operates in nondeterminism gift]}. We abuse the
notation by writing a,/3, and 3’ for functions such that for all n, 7r(n) (a (n),/3 (n),
(n)>.

Notice that hypotheses (i) and (ii) imply that for every j > O, g[]] is unbounded.
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Construct set A in stages as follows"

Stage O.
z(0) := 0.
Ao:= D.
Ro:= {0}.

Stage n => 1. Let B(n) {m -< n I/3 (m) _<-/3 (n) }. By hypothesis, if rn B(n), then
g[/3(m)] o(g[y(n)]) since/3(m) =</3(n) < y(n); also, log t[a(m)] o(g[y(n)]). Thus,
there exists k such that

(i) 2t’(n)3()> E,U(,,) 2[(")() t[a(m)](k)
(ii) g[3,(n)](k)> max ({lylly A -l}U(gE ,(mi](lyl)lm < n and
(iii) k >/x(n- 1).
Let/x(n) be the least such k.
Search for the smallest ] e Rn-1 such that 0’(n)e L(Ms(j), An-).
Case 1. No such j is found. Search for a string w, Iwl g[y(n)](tx(n)) such that

on input 0"(n) no machine Ms(j), j e B(n), queries its oracle about w in any of its
computations on 0"(n) relative to An_a. Such a string exists since for any (a,/3, ,) on
an input of length q relative to a fixed oracle set, Ms can have at most 2g[t](q)

computations and each computation can query the oracle at most t[a](q) times so
there are at most 2[](q). t[a](q) strings that are candidates for oracle queries.
There are 2t()](’n)) words of length g[,(n)](l(n)) and, as above,
Ym(,) 2t(’)("(")) t[a(m)](tz(n)), and so such a w exists.

Let w be the least such string in some effective enumeration of strings and let
A, := A-I U { w}. Let R := R,_I U {n}.

Case 2. Some index j is found. Let Rn := (Rn-1- {j})U {n} and let An :=
End of construction.

Define A as A := U ,->_0 A,.
Notice that for all n -> 1,/z (n) > tz (n- 1), and if w is put into An at stage n, then

w is never removed from A. Further, if w is put into A at stage n, then [w[>
max {ly]ly An-l}" Thus, for each w {0, 1}* there is at most one stage when w can
be put into A and there is at most one string of length wl in A.

For each integer ]=>0, let L(A)={OPlthere exist n and w such that y(n)=j, w
is put into A at stage n, /x(n) =p, and Iwl=g[]](p)}. Clearly, Lj(A)D(M,A)gtj.
Let Lg(A)= U.__>0 Lj(A) so that Lg(A)={0Plthere exist w and n such that w is put
into A at stage n, z(n) =p, and Iwl=g[tx(n)](p)}. Clearly, Lg(A)D (M, A).

CLAIM 1. For all i, .i, if j, then Li(A) f’) L(A) .
Proof. As noted above, for every w {0, 1}* there is at most one stage when w

can be put into A and there is at most one string of length wl in A. Thus, for every
w {0, 1}*, there is at most one stage when a string of length Iw can be put into A.
If w{0, 1}* is put into A at stage n, then Iwl=g[y(n)](tx(n))>
max({lYl[yA._}U{g[/(m)](ly[)lm<n and yAn-1})so that 0(n)L,(A)and
0’(n) : L,,(A) for any m < n. Since # j implies < j or j < i, Li(A) 0 L(A) D as
claimed. E]

CLAIM 2. If 0p Lg (A), then there is a unique n such that there is a string w that
is put into A at stage n and Iwl- g[tx(n)](p).

Proof. This follows immediately from the definition of Lg(A) and Claim 1.
CLaI 3. For each j > O, Li(A) is infinite.
Proof. Suppose that for some j, L(A) is finite. Then there is an no such that

y(no) j and for all n >-no, if y(n)= j, then Case 2 occurs at stage n so that IIRnll-
IIR-II. But there are infinitely many such that L(Mi, A) and M is deterministic.
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Thus, there are infinitely many m such that L(M(,),A)=( and y(m)=j so that
Case 1 occurs at stage m and [[R,,[[ =[[R,,-II[+ 1, a contradiction.

CLAIM 4. For each i, j with i< L Lj(A) is D (M, A)gEi-immune.
Proof. Suppose that there is an infinite C Lj(A)c_ {0"(")In =>0} such that C

D (M,A)gEi. Let m be the least integer with the property that 7r(rn)=(k, i,j) and
L(Mk, A) C.

Since C is infinite and C c_ {0(")ln __> 0}, there are infinitely many n such that
0’(n) C. But there are only finitely many indices smaller than m so there must be a
p > m such that Case 2 with index rn occurs at stage p. At stage p, Ap := Ap-1 since
Case 2 applies so that 0"(P) Lg(A) by Claim 2. Since Case 2 with index m occurs at
stage p, O"(P L(M,(m), Ap-1). But a(m)= k, and 0/(p) L(Mk, Ap-1) if and only if
0’p) L(Mk, A), so 0"p L(Mk, A)

_
Lg(A), a contradiction.

Thus, there is no infinite subset of L(A) in D (M, A)gi. By Claim 3, Li(A) is
infinite. Hence, Li(A) is D (M, A)gti-immune as claimed.

As noted above L(A) is in D (M, A)gti and Lj(A) is D (M, A)gti-immune. Hence,
the theorem is proved.

5. Remarks. In the statement of the Second Immunity Theorem, nothing is said
about the set A being recursive; indeed, generally A is not recursive. However, if M
is a class of machines that halt on every input and if the functions in G and T are total
recursive so that the sets in D (M, ?)g can be specified by clocked machines for every
oracle set, then one can choose A to be a recursive set.

Let us attempt to interpret the Second Immunity Theorem. One might ask whether
the various theorems separating relativized complexity classes specified by nondeter-
ministic machines from those specified by deterministic oracle machines (as in [1], [5])
speak to the difference between deterministic and nondeterministic computation in
general or, instead, illustrate the power of nondeterminism in steps that write on the
query tape. Consider the proof of the Second Immunity Theorem" if sufficient work
space is available, membership of L(A) in D (M, A)ge may be witnessed by a machine
that on input 0p nondeterministically guesses a string w {0, 1}* such that Iw[ g[.i](p)
and queries the oracle about w’s membership in A(]). Equivalently, a machine might
simply compute g[j](p), write 0 g[Jp) on the query tape, and then ask "does there exist
a string w A(]) whose length is the same as that of the string on the query tape?"
that is, the additional nondeterminism is absorbed by the existential quantifier in the
question "does there exist w A(j) such that [w[ ---og[JJ(P)? Juris Hartmanis (personal
communication) has pointed out that the use of nondeterministic oracle machines by
Baker, Gill, and Solovay in [1 have precisely this form. It is easy to see that the proof
of the Separation Theorem of Xu, Doner, and Book [14] uses nondeterminism in
precisely this form. The fact that both the proof of both of the Immunity Theorems
as well as the proof of the Separation Theorem can be described in this way as results
about limited nondeterminism, provides strong evidence that indeed these theorems
say little about the difference between deterministic and nondeterministic computation.
Rather, these theorems illustrate the power of nondeterminism in steps that write on
the query tape and so generate a very large set of strings to be queried.
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FAST ALGORITHMS FOR FINDING NEAREST COMMON ANCESTORS*

DOV HARELt AND ROBERT ENDRE TARJANt

Abstract. We consider the following problem: Given a collection of rooted trees, answer on-line queries
of the form, "What is the nearest common ancester of vertices x and y?" We show that any pointer machine
that solves this problem requires fl(log log n) time per query in the worst case, where n is the total number
of vertices in the trees. On the other, hand, we present an algorithm for a random access machine with
uniform cost measure (and a bound of O(log n) on the number of bits per word) that requires O(1) time
per query and O(n) preprocessing time, assuming that the collection of trees is static. For a version of the
problem in which the trees can change between queries, we obtain an almost-linear-time (and linear-space)
algorithm.

Key words, graph algorithm, nearest common ancestor, tree, inverse Ackermann’s function, random
access machine, computational complexity

1. Introduction. Aho, Hopcroft, and Ullman [2] consider the following problem:
Given a collection of rooted trees, answer queries of the form, "What is the nearest
common ancestor of vertices x and y?" (We shall denote this vertex by nca (x, y).)
There are actually many versions of this problem, depending upon whether the queries
are all specificed in advance and how much the trees change during the course of the
queries. We shall consider the five versions of the problem listed below, given in order
from least dynamic (easiest) to most dynamic (hardest).

Problem 1 (off-line). The collection of trees is static and the entire sequence of
queries is specified in advance.

Problem 2 (static trees). The collection of trees is static but the queries are given
on-line. That is, each query must be answered before the next one is known.

Problem 3 (linking roots). The queries are given on-line. Interspersed with the
queries are on-line commands of the form link (x, y) where x and y are tree roots.
The effect of a command link (x, y) is to combine the trees containing x and y by
making x the parent of y.

Problem 4 (linking). The queries are on-line. Interspersed with the queries are
on-line commands link (x, y) such that y, but not necessarily x, is a tree root.

Problem 5 (linking and cutting). The queries are on-line. Interspersed with the
queries are on-line commands of two types: link (x, y), where y but not necessarily x
is a tree root, and cut (x), where x is not a root. The effect of a command cut (x) is
to cut the edge connecting x and its parent, splitting the tree containing x into two
trees: one containing all descendants of x and another containing all nondescendants
of x.

In our discussion, we shall use n to denote the total number of vertices in the
trees and rn to denote the total number of operations (queries, links, and cuts). We
shall distinguish between two machine models: pointer machines [8], [12] and random
access machines [1]. In a pointer machine, memory consists of a collection of nodes
(sometimes called records). Each node consists of a fixed number of fields. The fields
have associated types, such as pointer, integer, real. A field of a given type contains a
value of that type; for instance, a pointer field contains a pointer to a node. In a

* Received by the editors May 24, 1982, and in final form July 21, 1983.
f University of New Hampshire, Durham, New Hampshire 03824. Present address: Intermetrics, Inc..,

Cambridge, Massachusetts 02138.
t Bell Laboriatories, Murray Hill, New Jersey 07974.
See the appendix for the tree terminology used in this paper.
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random access machine the memory is an array of words, each of which holds an
integer expressed in binary.

For measuring time on a random access machine, we use the uniform cost measure,
in which each operation on a word or pair of words (such as an addition, comparison
or branch) requires O(1) time. We place an upper bound of O(log n) on the number
of bits a word can hold, thereby precluding fast algorithms that obtain the effect of
parallelism by manipulating very large integers. The main difference between our
machine models is that address arithmetic is possible on random access machines but
not on pointer machines.

Let us review what is known about Problems 1-5. In their seminal paper, Aho,
Hopcroft, and Ullman consider Problems 1, 2 and 4. They describe an O(n+
ma(m + n, n))-time algorithm running on a pointer machine for Problem 1 (off-line).
Here a is the functional inverse of Ackermann’s function defined by Tarjan [10], [13].
Their algorithm requires O(n) storage. For Problem 2 (static trees) they propose a
random access machine algorithm requiring O(n log log n) preprocessing time,
O(n log log n) space, and O(loglog n) time per query. This algorithm uses their
algorithm for Problem 4 (linking), which also runs on a random-access machine and
requires O((m + n) log n) time and O(n log n) space.

Several more recent papers improve and extend the results of Aho, Hopcroft,
and Ullman. Van Leeuwen [14] considers Problem 3 (linking roots). He gives an
O(n + m log log n)-time algorithm that can be modified to run on a pointer machine
in O(n) space. Maier [7] addresses Problem 5 (linking and cutting). Although his
algorithm is not very time-efficient, his results do improve the space efficiency of Aho,
Hopcroft, and Ullman’s algorithm for Problem 4 (linking). Sleator and Tarjan [9] use
their data structure for dynamic trees to solve Problem 5 in O(n + m log n) time and
O(n) space on a pointer machine.

Table 1 summarizes the known results. For Problem 1, Aho, Hopcroft, and
Ullman’s O(n+ ma(m+ n, n))-time algorithm is the fastest known. For Problems 2
and 3, van Leeuwen’s O(n+ m log log n)-time algorithm is fastest. For Problems 4
and 5, Sleator and Tarjan’s O(n + rn log n)-time algorithm is best. All these algorithms
use O(n) space and run on pointer machines.

TABLE
Best pointer machine algorithms for finding nearest common ancestors

Problem

1. Off-line

2. Static
3. Linking roots
4. Linking
5. Linking and cutting

Algorithm

Aho, Hopcroft, and Ullman [2];
see also Tarjan [11

modified van Leeuwen [14]
modified van Leeuwen 14]
Sleater and Tarjan [9]
Sleator and Tarjan [9]

Time

O(n+ma(m+n,n))

O(n + m log log n)
O(n+mloglog n)
O(n+ m log n)
O(n + m log n)

Space

O(n)

O(n)
O(n)
O(n)
O(n)

In this paper, our goal is to study the effect of the machine model on the nearest
common ancester problem. Our results are three. In 2 we show that any pointer
machine requires O(log log n) time per query to solve Problem 2 (static trees). This
means that van Leeuwen’s algorithm is optimum to within constant factors for Problems
2 and 3. In 3-5 we develop an algorithm for Problem 2 that runs on a random
access machine and uses O(n) preprocessing time, O(1) time per query, and O(n)
space. This algorithm is also optimum to within a constant factor. Harel’s paper [5]
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TABLE 2
Random access machine algorithms for finding nearest common

ancestors

Problem

1. Off-line
2. Static
3. Linking roots

Time

O(n+m)
O(n+m)
O(n+ma(m+n,n))

Space

O(n)
O(n)
O(n)

gives a preliminary version of the results in 2-5. In 6 and 7 we extend our
algorithm to Problem 3, for which we obtain an O(n + ma(m + n, n))-time, O(n)-
space algorithm. Our results thus explicate the difference in power between pointer
machines and random-access machines. Table 2 summarizes our upper bounds.

2. A lower bound for pointer machines. In this and the next three sections we
shall restrict our attention to the nearest common ancester problem on static trees
(Problem 2). Without loss of generality we can assume that there is only one tree. If
not, we create a new (dummy) vertex r and make it the parent of the roots of all the
actual trees. The nearest common ancester nca (x, y) of two vertices x and y in the
new tree is the same as the nearest common ancester of x and y in the collection of
old trees; if nca (x, y)= r in the new tree then x and y are in different old trees.

Let us consider pointer machine solutions to the nearest common ancester problem
on a static tree. We make the following assumptions about the way such a machine
solves the problem. We assume that the tree is represented by a list structure (which
may change during the course of the computation), with each tree vertex represented
by a single node. The structure may contain additional nodes not representing any
tree vertex. Each node contains a fixed number of pointers, independent of n; without
loss of generality we may take this number to be two. As input for a query, the
algorithm is given pointers to the nodes corresponding to two tree vertices x and y.
To answer the query, the algorithm must return a pointer to the node corresponding
to the tree vertex nca (x, y). We assume that the algorithm remembers nothing between
queries. (Any fixed amount of global memory can be encoded into the list structure.)

THEOREM 1. Let T be a complete binary tree with n leaves. Any pointer machine
requires fl(log log n) time to answer any nca query in the worst case, independent of the
representation of the tree.

Proof Let us fix our attention on the time just before a query. The key point is
that, from any node in the data structure, at most 2j+l- 1 nodes are accessible in j
steps or less. Let k be such that any possible nca query can be answered in k steps
or less. For each leaf x of T let Ax denote the set of nodes representing tree vertices
that are accessible from x in k steps or less. Let w be a nonleaf vertex of T and let
u and v be its two children. We claim that either w belongs to Ax for every leaf x
that is a descendant of u, or w belongs to Ar for every leaf y that is a descendant of
v. Otherwise, for some descendant x of u and some descendant y of v, w would be
accessible from neither x nor y in k steps, and an nca query on x and y would be
unanswerable in k steps.

We conclude that w belongs to Ax for at least half the leaves x that are descendants
of w. If w has height >_-1, then w has 2 leaf descendants, and thus w occurs in at
least 2i-1 sets Ax. Since if 1 <_-i <_-h lg n 2 there are 2h-i vertices of height i, we see

We use lg n to denote log2 n.
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that vertices of height contribute 2h-i2i-] 2h-1 n/2 occurrences to the collection
of sets Ax. Summing over all heights from 1 to h, we find that

n
Y IAxl > lgn,
L -where L is the set of leaves of T. Since for any leaf x we have lAx] < 2k+l, we get

which means

n
n2k+l > lg n,

k > lg lg n 2.

Theorem 1 implies that van Leeuwen’s algorithm for static trees runs in optimum
time, to within a constant factor. It also provides a nontrivial lower bound for pointer
machines on a natural problem. (For a similar result see [12].) We conjecture that
Problem 5 (linking and cutting) requires f(log n) time per command in the worst case
on a pointer machine, and leave the proof (or disproof) of this conjecture as an open
problem.

3. Overview of a fast algorithm for static trees. If we allow algorithms on random-
access machines, we can beat the lower bound in Theorem 1. In this and the next two
sections, we shall develop an algorithm that runs on a random-access machine in O(n)
space, using O(n) preprocessing time and O(1) time per query. These bounds are
best possible; there are n n-1 distinct rooted trees with n labeled vertices [6], implying
that f(n log n) bits, or l(n) words, are necessary to store a tree of n vertices in a
random-access machine. Just reading in such a tree requires f(n) time, and answering
a query requires (1) time.

We begin by observing that on complete binary trees the nearest common ancestor
and related problems can be solved in O(1) time by direct calculation. Let T be a
complete binary tree whose vertices are numbered from 1 to n in symmetric order.
(See Fig. 1.) We use sym (v) to denote the number of a vertex v and sym-1 (i) to

16

5 5 7 9 11 1:5 15 17 19 21 2:3 25 27 29 :51

FIG. 1. Symmetric-order numbering of a complete binary tree.

denote the vertex whose number is i. For any height h, the vertices of height h are
numbered 2h, 3" 2 h, 5" 2h, from left to right. It is easy to verify the following facts
about the numbering:
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LEMMA 1. The height of a vertex v is the largest integer h such that 2h divides
sym v). We shall denote this height by h(v).

LEMMA 2. The descendants of vertex v are those vertices with numbers in the range
[sym (v) 2h(v) + 1, sym (v) + 2h(v)- 1].

LEMMA 3. If V is a vertex and h is a height such that h >-h(v), then the ancestor

of v of height h has number 2h+l [sym (V)/2h+lj +2h.
LEMMA 4. If V and w are two unrelated vertices, the height of the nearest common

ancestor of v and w is [lg (sym(v)sym (w))J, where iO)j is the integer whose binary
representation is the bitwise exclusive or of the binary representations of and j.

As examples of Lemma 3, vertex number 22 has vertex number 20 8 [22/81 + 4
as its ancestor of height 2 and vertex number 24 16122/16J + 8 as its ancestor of
height 3. (See Fig. 1.)As an example of Lemma 4, the nearest common ancestor of
vertices number 20 and number 27 is number 24, of height 3; [lg(200)27)J
[lg (101002) 110112] =[lg (11112)J 3.

Lemmas 2 and 4 allow us to solve the following problem in O(1) time, given that
we know the number and height of each vertex and the depth d of the tree:

The nca depth problem. Given vertices v and w, compute the depth of the nearest
common ancestor of v and w.

Algorithm to solve the nca depth problem. If v is an ancestor of w (that is, if
sym (w) [sym (v)- 2h(v) + 1, sym (v) + 2h(v)- 1]), return d- h(v). Ifw is an ancestor
of v, return d-h(w). If v and w are unrelated, return d- [lg (sym (v)O3sym (w))J.

Lemmas 1 and 3 provide a way to solve the following problem in O(1) time, if
we know the number of each vertex, the vertex corresponding to each number, and
the depth d of the tree:

The depth problem. Given a vertex v of depth dl and a depth d2 <--dl, compute
the ancestor of v whose depth is d2.

Algorithm to solve the depth problem.
Let h=d-d2. Return sym- (2h+l[sym (V)/2h+lj +2h).
These algorithms combine to give an O(1)-time algorithm for the nearest common

ancestor problem"

Algorithm to compute nca(v, w).
Step 1. Compute do, the depth of nca (v, w).
Step 2. Compute and return the depth-d0 ancestor of v.

The O(1) time bounds for these three algorithms depend on the ability to perform
multiplication, division, powers of two, base two discrete logarithm, and exclusive or
in O(1) time. If these operations are not part of the machine’s repertoire, we can in
O(n) time construct operation tables that allow these operations to be carried out in
O(1) time using (possibly repeated) table look-up.

Let us turn now to the nearest common ancestor problem on an arbitrary tree T.
Our plan is to convert the nca problem on T into an nca problem on a subtree of a
moderately-sized complete binary tree; then we can use the method above. The
transformation proceeds by a sequence of steps, which involve solving depth and nca
depth problems on two auxiliary trees: a compressed tree C and a balanced binary tree
B. C has the same vertex set as T; B contains all vertices in T and possibly some
auxiliary vertices. To facilitate the solution of depth problems on B C, both of these
trees are divided into plies. We construct B and C in a preprocessing step requiring
O(n) time. We compute nearest common ancestors as follows:
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Algorithm to compute ncaT- v, w).
Step 1. Compute ncac v, w) as follows:

Step la. Compute ncaB (v, w) using algorithms for the nca depth problem
and the depth problem on B.

Step lb. Given ncaB (v, w), look up ncac (v, w).
Step 2. Look up the depth in C of ncac (v, w). Using an algorithm for the depth
problem on C, compute ncaT (v, w).

Each step of the nca computation takes O(1) time. Sections 4 and 5, which discuss
the compressed tree C and the balanced binary tree B respectively, give the details
of this method.

4. The compressed tree. Let T be an arbitrary n-vertex tree with root r. We
define a compressed tree C, representing T, as follows. For each vertex v in T, let
size (v) be the number of descendants of v (including v itself) in T. Define an edge
v PT-(v) to be light if 2. sizeT- (v) <= sizeT- (PT-(v)) and heavy otherwise. Since the size
of a vertex is one greater than the sum of the sizes of its children, at most one heavy
edge enters each vertex. Thus the heavy edges partition the vertices of T into a
collection of heavy paths. (A vertex with no entering or exiting heavy edge is a
single-vertex heavy path.) (See Fig. 2.)

26

FIG. 2. Heavy and light edges in a tree. Numbers are vertex sizes.

The apex of a heavy path is the vertex on the path of smallest depth. For any
vertex v we denote by apex (v) the apex of the heavy path containing v, and by
hp size (v) the number of descendants of v on the same heavy path as v. The compressed
tree C is defined by the set of edges

{v apex (pT-(v))[v isa vertex of T other than r}.

(See Fig. 3.) The compressed tree was used by Tarjan [10] to compute functions
defined on paths in trees; Aho, Hopcroft, and Ullman used a closely related idea in
their nca algorithm for static trees.
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FIG. 3. The compressed tree ,corresponding to the tree of Fig. 2. Numbers are vertex sizes.

In O(n) time, we can compute the following information for each vertex v: PT-(v),
Pc(V), apex (v), hp size (v), de(v) (the depth of v in C), and sizec (v) (the size of
v in C). Note that we can use apex to test in O(1) time whether two vertices are on
the same heavy path in T. To compute ncaT-(v, w), we first compute ncac(v, w) using
the balanced tree B. (We describe how to do this in the next section.) Then we proceed
as follows:

Step 2 of algorithm to compute ncaT- v, w):
Step 2a. Let u ncac (v, w). (Either u v w or u is the apex of the heavy

path containing ncaT(v, w)). If u= v or u= w, return u as ncaT (v, w).
Otherwise look up de(u).

Step 2b. Compute the ancestor v’ of v in C whose depth is dc(u)+l. If
apex (v’)= u (u and v’ are on the same heavy path) let v"= v’. Otherwise
let v"= Pr(V’).

Step 2c. Compute the ancestor w’ of w in C whose depth is dc(u)+ 1. If
apex (w’)= u (u and w’ are on the same heavy path) let w"= w’. Otherwise
let w"= pT-(w’).

Step 2d. Return as ncaT-(v, w) whichever of v" and w" has the larger value of
hp size.

As an example of Step 2, consider ncar (n, o), where T is the tree of Fig. 2. We
have ncac(n, o)= a (see Fig. 3), n’= n, n"= n, o’= c, o"= a, and ncaT- (n, o)= a. We
omit the easy proof that Step 2 is correct; crucial to the proof is the observation that
v"(w") is the nearest ancestor of v (respectively w) on the heavy path containing u.
Step 2 requires O(1) time plus the solution of at most two depth problems on C. To
solve depth problems on C, we must do some additional preprocessing. We need some
simple facts about the structure of C, which we state without proof. (See [11].)

LZMMA 5. IfV is an apex, size c (v) size (v); ifv is notan apex, sizec (v) 1.
LEMMA 6. Every edge v Pc (v) of C satisfies 2. sizec (v) <-_ sizec (Pc (v)).
LEMMA 7. C has depth at most [lg nJ.
We divide C into three plies as follows. Define the rank of a vertex v to be

rank (v)= [lg(sizec (v))J. Ply three consists of all vertices with rank [lg(2 nJ 3 or
greater; ply two consists of all vertices with rank between [lg(3 nJ and [lg(2J- 1
(inclusive); ply one consists of all vertices with rank less than [lg(3 nJ. Fig. 4 schemati-
cally illustrates this definition.

LEMMA 8. For any rank i, the number of vertices of rank is at most n/2i.
Proof. By Lemma 6, any two vertices having the same rank are unrelated in C

and hence have disjoint sets of descendants in C. Any vertex v of rank has
sizec (v)>-2 i. Thus there can be at most n/2 vertices of rank i.

For any nonnegative integer and function f, we define f(i)(x) by f()(x)= x, f(i+l)(x)=f(f(i)(x)).
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FIG. 4. Plies of a compressed tree.

PLY THREE

PLY TWO

PLY ONE

LEMMA 9. Ply three contains at most O(n/log n) vertices. Ply two contains at most
O(n/log(2) n) vertices. Each connected component ofply one is a subtree of C containing
at most log(2) n vertices.

Proof. By Lemma 8, the total number of vertices with rank k or greater is at
most Y=k n/2 n/2k-1. This implies that ply three contains ar most 4n/lg n and ply
two at most 4n/lg(2) n vertices. Each connected component of ply one is a subtree of
C whose root has rank at most [lg(3) nJ- 1 and thus contains at most 2 [lg(3)nj =<lg(2) n
vertices. F1

With each vertex v in ply (i E {1,2, 3}), we store the vertex a(v) such that a(v)
is the shallowest ancestor of v in C whose ply is i. We also represent each ply so that
it is possible to carry out the following computation in O(1) time: given a vertex v in
ply and a depth d E[dc(a(v)), dc(v))], compute the ancestor of v whose depth is
d. (We shall describe this representation below.) Then we can solve the depth problem
on C as follows.

Algorithm to compute the ancestor of vertex v in C whose depth is d. Repeat the
following step until a vertex is returned:

General step. If d [dc(a(v)), dc(v)] compute and return the ancestor of v whose
depth is d. Otherwise, replace v by Pc (a (v)).

This method requires O(1) time. (The ply of v increases by at least one with each
iteration of the general step.)

The representation of plies two and three is very simple: with each vertex v of
ply (E {2, 3}), we store an array of all ply-/ancestors of v, indexed by depth. Then
we can solve a depth problem within ply two or three in O(1) time by table look-up.
Note that the size of all arrays for ply three is O((n/log n) log n)= O(n) by Lemma
9, since any vertex has O(log n) ancestors in C. Similarly the size of all arrays for ply
two is O((n/log(2) n)log(2) n O(n) by Lemma 9, since any vertex has O(log(2) n)
ply-two ancestors in C. It is straightforward to divide the vertices into plies, compute
a(v) for every vertex, and construct all the arrays for plies two and three in O(n) time.

Ply one has very small connected components but contains most of the vertices
in C, and we represent it differently than plies two and three. Let v be any vertex in
ply one. We denote by Da(v) the subtree of C rooted at a(v); this is the connected
component of ply one containing v. Da(v) contains at most lg(2) n vertices and has
depth at most lg(3) n. Let d be the depth of Da(). We embed the vertices of Da(o) in
a complete binary tree Ea() of depth d [lg(3) n so that a vertex of depth in Da()
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(a)

(b)

FIG. 5. Embedding a multiway tree into a complete binary tree. (a) Multiway tree. (b) Part of complete
binary tree containing the multiway tree.

has depth [lg(3) n in E(), and so that if v is a vertex of depth in D() and 0 _<- i’ <_- i,
the ancestor of v in D() whose depth is i’ is also the ancestor of v in E() whose
depth is i’ [lg(3 n ]. (See Fig. 5.) Then we can solve depth problems in ply one using
the method of 3. The algorithm is as follows:

Algorithm to compute the ancestor of v in C whose depth is d v is in ply one and
d>=dc(a(v))).

Let h=(dc(a(v))-d)Jig(3) n]. Return

symv) (2h+l [sym (t))/2h+l] h" 2h).
The notation in this algorithm requires a little explanation. If v is any vertex in

ply one, sym (v) is the symmetric-order number of v corresponding to its position in
Ea(o), and sym-v) (i) is the vertex in Ea(v) with number i, if this vertex is in Damon;
otherwise sym-o) (i) is undefined. This method solves depth problems within ply one
in O(1) time, if syrn and sym-) are precomputed.

The difficulty with this method is that the trees Ea() are too big to construct
explicitly, so we must represent them implicitly. To represent the trees Ea(v, we store
two numbers, sym (v) and pre (v), with each vertex v in ply one, and two arrays,
pre-) and inversea(), with each vertex a(v) in ply one. The values of pre, pre-,
inverse are defined as follows: We number the vertices of each tree Da(o) in preorder
from 1 to IDa  )l, If v is a vertex in D(o), pre (v) is the number of v and
pre-v) (pre (v))= v. Note that the total size of the arrays pre-o) for all vertices a(v)
in ply one is O(n). For e[1, lE.()l], inversea()(i) is the pre-order number of the
vertex in D() whose symmetric-order number in Ea() is i; inversea(v)(i)= 0 if the
vertex in Ea() whose symmetric-order number is is not in Damon. Note that inversea()
contains IDa(v)l nonzero entries and needs O(IE(v) lg [Da(v)l)=2 ((g(3’n)2) lg(3)n
O(log n) bits for its storage. Thus the total number of nonzero entries in all the
inversea(o) arrays is O(n), and each inversea() array fits into one word of storage.
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Given sym (v) for each vertex v in ply one and pre2v and inversea(v for each
vertex a(v) in ply one, we can solve depth problems within ply one in O(1) time,
since sym-v (i)= pre- (inversea(o (i)) if is the symmetric-order number in Ea(
of a vertex in Da(. It is easy to construct the pre-v arrays in O(n) time. We can
construct the sym numbers and the inverse( arrays by traversing each ply-one tree
in preorder as follows: Let D( be a ply one tree of height h, to be embedded in the
complete binary tree E(. We initialize inversea( to be zero. Then we execute
traverse(a(v), h [lg(3 n ], 1), where traverse is defined as follows:

Procedure traverse(v, h, i):
v is a vertex in D(v>, h is the height of v in Ea(), and is the symmetric-order
number of the smallest-numbered descendant of v in Ea()]

Stepl. Let j= 2h[i/2h (] is the symmetric-order number of v in Ea()). Assign
sym (v) j and inverse() (j) pre (v).

Step 2. Initialize k i. For each child w of v, carry out the following steps:
Step 2a. Execute traverse(w, h -[lg(3 n ], k).
Step 2b. Replace k by k +2 h-flg(3)n]+l.

It is routine to verify that this method is correct and requires O(n) time to
preprocess all the ply-one trees. This completes our description of the algorithm for
solving depth problems on C and with it our description of the role of C in the nearest
common ancestor algorithm. As noted by Hal Gabow (private communication), it is
possible to simplify the solution of depth problems in ply one by using the table look-up
technique of Gabow and Tarjan [4]. This requires additional preprocessing, but the
additional time is only O(n).

5. The balanced binary tree. To complete our solution of the nca problem, we
need a way to solve the nca problem on the compressed tree C. For this purpose we
represent C by a second auxiliary tree B called the balanced binary tree. B contains
all the vertices of C, called green vertices, and some additional vertices, called red
vertices. For each family in C consisting of a parent v and a set of children W, B
contains a subtree whose root is v, whose leaves are the vertices in W, and whose
remaining vertices are red. Each vertex v contains a pointer to its nearest green
ancestor green (v). Nearest common ancestors in B and C are related by the equation

ncac (v, w)= green (ncaB (v, w))

if v and w are vertices in C. Thus if we can solve the nca problem on B, we can solve
the nca problem on C in O(1) additional time.

Thus it remains for us to describe how to construct B and how to solve the nca
problem on B. Consider a family in C consisting of a parent v and a set of children
W such that IWI>_-3. To binarize the family, we execute the recursive procedure
binarize (v, W), where binarize is defined as follows:

Procedure binarize v, W):
Step 1. Let W { wl Wk} and s k sizec (wi).Let ] be the minimum indexi=1

such that Y.i=l sizec (w) >= s/2. If ] k, replace ] by k- 1.
Step 2. If ] 1, attach Wl as the left child of v. Otherwise, let Xl be a new red

vertex. Attach Xl as the left child of v and execute binarize (xl, W1), where
W { w, , w}.

Step 3. If j k-1, attach Wk as the right child of v. Otherwise, let x2 be a new
red vertex. Attach x2 as the right child of v and execute binarize (x2, W2),
where W2 { wj/ ", Wk }.
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FIG. 6. Balanced binary tree corresponding to the compressed tree of Fig. 3. Dots are red vertices.

(See Fig. 6.) This method can be implemented to run in O(IWI) time [3]. The
idea is to construct an array of size k, whose ]th position contains Y--1 sizec (wi).
Then one can find the appropriate index ] in O(log (min {], k-j})) time by using a
form of binary search simultaneously from both ends of the array. The same array
can be used for all the recursive subproblems. The running time t(k) of the method
is given by the recurrence

t(k) max {t(j) + t(k-j)+ O(log (min {j, k-j}) + 1)},
O<j<k

which has the solution t(k)= O(k).
To construct B, we binarize each family of C using the method above. Since B

contains at most 2n-1 vertices, the total time to construct B is O(n).
Let us define sizeB (v) for a vertex v in B to be the number of green descendants

of v in B. The following lemmas show that the tree B has properties similar to those
of C:

LEMMA 10. If v is a green vertex sizeB (v)= sizec (v).
Proof. Immediate.
LEMMA 11. If V is a vertex such that p4(v) is defined, then 2 sizen (v)<-

size, (p4 v)).
Proof. If the path in B from v to p (v) contains two green vertices, the lemma

is immediate from Lemmas 6 and 10. Otherwise, the path from v to p4(v) contains
three consecutive vertices w-->p,(w)-->p(w) such that w and pn(w) are red. If
2. sizen (w)> sizeB (p(w)), the operation of binarize guarantees that w is the left
child of pn(w) and pn(w) is the left child of p (w). But the right children of pn(w)
and p (w) together have less than half the size in C of p (w), which contradicts the
operation of binarize on p (w). [-1

LEMMA 12. B has depth O(log n).
Proof. Immediate from Lemma 11.
We solve the nca problem on B by solving the nca depth problem and the depth

problem on B. To solve the nca depth problem on B we embed B in a complete
binary tree B’ and use direct calculation as described in 3; all we need to know for
each vertex in B is its symmetric-order number and height (as a vertex in B’). To
number the vertices of B we execute the recursive procedure number(r, h, 2h), where
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r is the root of B, h is the height of B, and number is defined as follows"

Procedure number (v, h, i): Iv is a vertex in B, h is the height of v in B’, and
is the symmetric-order number of v in B’]

Step 1. Assign number and height h to v.
Step 2. If v has a left child wl, execute number (wl, h-1, i-2h-1).
Step 3. If v has a right child w2, execute number (w2, h-1, i+ 2h-1).
This computation takes O(n) time. Once the vertices of B are numbered, we can

solve the nca depth problem on B in O(1) time.
We solve the depth problem on B in the same way we solved it on C. For each

vertex v in B, we define rankB (v)= [lg (sizeB (v))J. We divide B into threeplies as
follows: Ply three consists of all vertices with rank [lg(2) n or greater, ply two consists
of all vertices with rank between [lg(3) nJ and [lg(2) nJ- 1 (inclusive), and ply one
consists of the remaining vertices. Lemma 9 holds for the plies in B just as for the
plies in C, except that the constants are larger by a factor of four because the weaker
Lemma 11 holds for B in place of Lemma 6. We represent the plies of B exactly as
we did the plies of C, and we solve the depth problem in the same way. We can simplify
the representation of ply one a little because B is binary; in particular, we do not need
to binarize the ply one trees. Filling in the details is routine and we leave it as an exercise.

Constructing the plies of B requires O(n) preprocessing time and allows us to
solve the depth problem on B in O(1) time. Hence we can solve the nca problem on
B, on C, and on T in O(1) time. This completes our description of the nca algorithm
for static trees.

6. A fast algorithm for the linking roots problem. We now turn our attention to
the linking roots problem. In this and the next section we shall develop an algorithm
for this problem that runs in O(n + ma(m + n, n)) time and O(n) space on a random-
access machine. We begin in this section by developing a simpler O(n + rn log* n)-time
algorithm.

We shall use - to denote the set of trees defined by the link operations. We
maintain the following information for each vertex v: p(v), sizer (v), a list of the
children of v in if, the child w of v (if any) such that w v is a heavy edge, hp size (v)
(the number of descendants of v on the same heavy path as v), and light (v), defined
to be true if p(v) is defined and v p(v) is light, and false otherwise. It is easy to
update this information in O(1) time per link. Note that a link can cause a formerly
heavy edge to become light (but not vice versa) and can create either a heavy or a
light edge. We also maintain a data structure 1 ], 11 that allows us to rapidly compute,
for any vertex v, the root r(v) of the tree in containing v. Updating this data
structure during links and carrying out O(m) root calculations requires O(n+
ma(m + n, n)) time.

Corresponding to ff we maintain a forest of compressed trees; T contains one
or more trees representing each tree in ft. We build the trees in family-by-family
in delayed fashion. When a link creates a light edge v- p(v) or causes a formerly
heavy edge v p.(v) to become light, we explore the heavy path o- whose apex is v,
constructing the set S {w v[w is on r or p(w) is on o-}. We then combine the
compressed trees whose roots are in S into a single compressed tree; the root of this
tree is v and the children of the root are the vertices in S. In general a tree T in ff
is represented by several compressed trees; if r is the root of T and r is the heavy
path whose apex is r then contains a tree for every vertex v on r whose single
vertex is v, and a tree for every vertex w such that Pe(w) but not w is on r whose
vertices are all the descendants of w in T. (See Fig. 7.)
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FIG. 7. Set of compressed trees corresponding to the tree in Fig. 2, for the linking roots problem (see Fig. 3).

We maintain certain information about the compressed trees. With each vertex
v we store size (v). With each vertex v such that p(v) is defined, we store p(v)
and apex (v). Updating this information during links requires O(n) total time. We
also maintain a data structure [1], [11] that allows us to rapidly compute two pieces
of information about any vertex v: d(v) (the depth of v in the forest ) and r (v)
(the root of the tree in qg containing v). Maintaining this data structure during links
and carrying out O(m) root and depth computations requires O(n+ ma(m+ n, n))
time. We compute nearest common ancestors in using the following variant of the
method in 3 and 4:

Algorithm to compute ncar( v, w).
Step 1. Compute re(v) and r(w). If rr(v) r(w), return a message that v and
w are in different trees.

Step 2. Compute r(v) and r(w). If r(v)= r(w), go to Step 3. Otherwise (v
and w are in different compressed trees), let v’= r(v) if light (r(v)) is false,
v’=p(r(v)) if light (r(v)) is true. Let w’=r(w) if light (r(w)) is false,
w’=pe(r(v)) if light (r(w)) is true. Return as ncae (v, w) whichever of v’
and w’ has the larger value of hp size.

Step 3 (v and w are in the same compressed tree). Compute u nca (v, w). If
u v or u w, return u as nca (v, w). Otherwise, compute d(u).

Step 4. Compute the ancestor v’ of v in whose depth is d(u) + 1. If apex (v’)
u, let v"= v’. Otherwise let v" =p(v’).

Step 5. Compute the ancestor w’ of w in whose depth is d(u) + 1. If apex (w’)
u, let w"= w’. Otherwise let w"= pr(w’).

Step 6. Return as nca (v, w) whichever of v" and w" has the larger value of hp
size.

This method requires O(n + ma m + n, n time plus time to solve m nca problems
on and 2m depth problems on . We shall postpone a discussion of how to solve
depth problems on % as this is the hardest part of the algorithm. To solve nca problems
on % we use the method of 5. That is, we represent the forest of compressed
trees by a forest of balanced binary trees. If C is a tree in qg, contains a tree B
whose green vertices are the same as those of C. B is constructed exactly as in 5;
each time we create a new family in we combine the corresponding trees in , using
procedure binarize if the set of trees has size three or greater. For each vertex v, we
maintain size (v). Constructing and updating the size information during links
takes O(n) total time.

As in 5, we solve the nca problem on by solving the nca depth problem and
the depth problem on . To solve the nca depth problem on we embed in a
complete binary tree ’ and use direct calculation as described in 3; all we need to
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know for each vertex in is its symmetric-order number and height (as a vertex in
’). These numbers require updating as is built. Let u be a vertex in with left
child v and right child w. When edges v--> u and w--> u are added to , we must update
the numbers of the descendants of u as follows:

Let hi height, (v), ha height, (w), and h =max {hi, h2}. Redefine

height, (x)- hi+ h if x is a descendant of v,
height, (x) h + 1 if x u,

height,(x)-h2+h if x is a descendant of w;

2h-h1 syrup, (x) if x is a descendant of v,

syrn, (x) 2h/ if X U,

2h-h2 syrup, (x) + 2h+l if x is a descendant of w.

We can use the data structure of [11, 3] to maintain the numbers implicitly. The
total time to maintain the data structure during links and compute O(m) numbers is
O(n + ma(m + n, n)). Given the numbers, solving an nca depth problem on requires
O(1) time.

We come now to the last and hardest part of the method: solving depth problems
on and . Since we use the same method for both forests, we shall discuss only c.
To solve the depth problem on % we divide c into O(log* n) plies. As in 4, define
rank (v)= [lg (size (v))J. Define the function f(i) by the recursion

f(1) =8;

f(i) 2f(i-1)/2 for any integer -> 2.

Define the ply of vertex v to be the minimum value of such that f(i)> rank (v).
It is easy to compute the ply of a vertex at the moment its size is determined; this
takes O(1) time per vertex for a total of O(n) time. (We precompute a table that for
any integer x [0, [lg nJ] gives the minimum such that f(i)> x.) The total number
of plies is O(log* n).

With each vertex v, we store not only its ply but several other values: the vertex
a(v) that is the shallowest ancestor of v in the same ply as v, a list of the children of
v that are in the same ply as v, and an array, indexed by depth, of all the ancestors
of v in the same ply as v. Each time we add a new family to % we update this
information by performing a search from the root r of the new tree, using the lists of
children to reach all descendants of r in the same ply as r. The total amount of time
spent updating this information, and the total size of the ancestor arrays, is bounded
by a constant times the following sum:

8n + Y, f(i + 1)n n
2f(i-"-’--’-’-- 8n + 2f(i)/2 O(n).

i= 1"-"

To solve depth problems on % we use the same method as in 4.

Algorithm to compute the ancestor of vertex v in c whose depth is d. Repeat the
following step until a vertex is returned:

General step. If d [d(a(v)), d(v)], look up in v’s ancestor array the ancestor
whose depth is d. Otherwise, replace v by p(a(v)).

This method requires O(1) time per execution of the general step, or O(log* n) time
per depth problem. (Note that if we store with each vertex v the current size of v’s
ancestor array, we can compute d(a(v)) and d(p(a(v))) from d(v) in O(1) time.)
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Using this method on both 3 and q, we obtain a total time bound of O(n + m log* n)
for the linking roots problem; solving the depth problem is the most time-consuming
part of the algorithm.

7. A faster algorithm for the linking roots problem. In order to obtain a faster
algorithm for the linking roots problem, we must improve our method for solving
depth problems on and . Our method in 6 was based on the representation of
plies used in 4 for plies two and three. By including the method used in 4 for ply
one and defining the plies more dynamically, we obtain an O(n + ma(m + n, n))-time
method. As in 6, we shall discuss the depth problem only for ; we use the same
method for . We shall assume that n, the number of vertices, and m, the number of
nca queries, are known in advance. Working knowledge of the analysis of the disjoint
set union algorithm [10], [13] will help the reader in what follows.

We divide into three super-plies exactly as in 4: super-ply one consists of
vertices with rank less than lg3) n, super-ply two consists of vertices with rank between
lg3) n and lg2 n-1 (inclusive), and super-ply three consists of vertices with rank
lgz n or greater. We maintain super-plies two and three exactly as we maintained the
plies in 6. The results of 4 imply that updating super-plies two and three requires
O(n) total time.

We divide the trees of super-ply one into a number of subtrees whose definition
is based on Ackermann’s function. For integers i, =>0 define A(i, }) by

A(0, j)= j for j>-0;
A(1,j)=2 for j=> 0;
A(i, O) A(i- 1, 1) for i-> 2 (also valid for 1);
A(i, j) A(i- 1, A(i, j- 1)) for i>=2, j_>- 1.

Let a(m+n,n)=min{i>-llA(i, [(m+n)/nJ)>lgn}.
Let v be a vertex that is in super-ply one and such that Pe(v) exists. We define

the level of v to be the maximum value of i [0, a(m + n, n)] such that, for some j,
rank (v)<A(i, j)<= rank (p(v)); we define the position of v to be the minimum such
j. We can compute the level and position of a vertex when its parent is defined in O(1)
time by using a small precomputed table.

We maintain super-ply one as a collection of subtrees. Each vertex in super-ply
one for which p(v) is undefined is in a single-vertex tree by itself. When a vertex v
in ply one of positive rank has its parent defined, we build a new subtree So with root
v. So includes all descendants of v with ranks in the range Ix, A(i, j)- 1], where is
the level of v, j is the position of v, and x is defined as follows" if there is an integer
A(i’, j’) such that < i’-<- a(m + n, n), j’>= 1, and A(i’, j’) < A(i, j) then x is the
maximum such integer; if there is no such integer let x be the maximum integer less
than the rank of v of the form A(i’, 0) for some 0 <- i’<= i. We can compute x in O(1)
time by table look-up. The definitions of So and Ackermann’s function guarantee that
the vertex set of the new subtree So is the union of the vertex sets of one or more
older subtrees; thus each vertex is only in one subtree at a time.

This partitioning into subtrees has the following effect. Let r be a shallowest vertex
in super-ply one and let v be a leaf descendant of r. The subtrees partition the path
from v to r as follows. Let be the maximum level of any vertex along the path from
v to r and let x be the last vertex along this path of level 1. The subtrees partition
the path from v to x into segments (v =/)1 Xl), ()2," x2)," ", ()l," Xl),
(DI+I,""" X), (Yl-1, We-l), (Yl-z, We-2), (Yo, Wo), (r), where X for [1, l]
is the first vertex on the path of level preceding all vertices of higher level and wi
for i [0, l] is the last vertex on the path of level succeeding all vertices of higher
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level. Some of the vi’s and wi’s may be undefined; the corresponding segments of the
path are empty. It is also possible that (Vl,. , Xl) (Vl+l," , x). When p(r) becomes
defined, subtrees are combined to form a segment (y, r), where is the level of r; .if
i= l, the new segment is (Vl/l,. "", r), and if i> l, the new segment is (Vl,.. ", r).

To facilitate the construction of the subtrees, we store with each vertex in super-ply
one a list of its children, in order by rank. Then we can determine the vertex set of
So in O(ISol) time by searching from v. If we represent each list of children as a list
of buckets, each bucket containing the children of a given rank, then inserting a new
child requires time proportional to its rank, and Lemma 8 implies that the total time
for constructing these lists of children is O(=0 (i + 1)n/2) O(n).

We represent the subtrees of super-ply one exactly as we represented the trees
of ply one in 4. We also store with each vertex in such a subtree a pointer to the
root of the subtree. If So is one of these subtrees, constructing the representation of
So requires O(ISol) time.

We solve depth problems in exactly as we solved them in 6. The following
argument shows that this method solves a single depth problem in O(a(m + n, n))
time. Let v be a vertex, d a depth such that d =< d(v), and w the ancestor of v whose
depth is d. With each iteration of the general step, v is replaced by an ancestor that
is either in a new subtree of super-ply one or in a new super-ply, until eventually w
is reached. Each execution of the general step requires O(1) time. Thus it suffices to
bound the number of subtrees in super-ply one encountered during this process. Let
r be the shallowest ancestor of (the original) v in super-ply one, let be the maximum
level of any vertex along the path from v to r, and let x be the last vertex along this
path of level/. Before x is reached, every iteration of the general step (except possibly
the one that reaches x) causes the level of the current vertex to increase by at least
one; after x is reached but before r is reached, every iteration of the general step
causes the level of the current vertex to decrease by at least one. Thus there are
O(a(m+ n, n)) iterations of the general step.

It remains for us to bound the total time spent constructing subtrees in super-ply
one. For each vertex v, this time is O(1) for each subtree in which v is placed. Our
analysis is almost identical to the analysis of the disjoint set union algorithm [10], [13].
For e [0, a(m + n, n) + 1 ], we define a multiple partition on ranks. The blocks of the
level partition (see Fig. 8) are given by

block (i, j)= [A(i, j), A(i, j+ 1)-1] for el0, a(m + n, n)], j_>-0;
block (i, 0) =[0, Jig(3) n]] for i=a(m+n,n)+l.

0

LEVEL 2

4

0 2 3 4 8 16 216 226

FIG. 8. Multiple partition for analysis of subtree construction. Some block boundaries in levels zero and
one are omitted.

Note. For [0, a(m + n, n)], the level partition does not include ranks smaller
than A(i, 0). Thus not all ranks are in every partition.
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We define nij to be number of vertices with rank in block (i, j) and bij to be the
number of level i-1 blocks whose intersection with block (i, j) is nonempty (i-> 1).
As the algorithm proceeds, we define the effective level of a vertex v in a nontrivial
subtree of super-ply one to be the minimum value of such that rank (v) and
rank (p(r(v))) are in the same block of the level partition, where r(v) is the root
of the subtree containing v. As v is placed in larger-and-larger subtrees, its effective
level increases from a minimum of one up to a maximum of a(m + n, n)+ 1.

Consider a vertex v in block (i, j). We would like to bound the number of different
subtrees that can contain v while v is at effective level i. First consider the case
i<=a(m+n,n). When v is the first at level i, rank (v) and rank (p(r(v))) are in
different level i-1 blocks. Subsequently, each time v is placed in a new subtree,
rank (p(r(v))) moves to a new level i- 1 block. Thus the number of subtrees that can
contain v while v is. at effective level is at most b-1. Second consider the case
i=a(m+n,n)+l. If vblock (i’,O) for some i’<a(m+n,n), then v is only in one
subtree while at effective level i. If v block (i, j’) for some j’ => 0, v while at effective
level is in at most as many subtrees as there are level-a(m + n, n) blocks, namely
[(m+n)/nJ-1.

By Lemma 8, the number of vertices in block(i, j) is at most 2n/2A(i’). The
following sum gives an upper bound, to within a constant factor, on the time spend
building subtrees in super-ply one:

o(m+n,n)

bo2n/2A(i’)+n[(m+n)/nJ.
i=1 j=O

Now we must estimate bij. For 1, j _>- 0, A(i, j + 1) A(i, j) 2 A(i, j), which
means bj < A(i, j). For >- 2, j -> 0, A(i, + 1) A(i 1, A(i, )), which means bj <
A(i, j) in this case also. Thus the time spent building subtrees in super-ply one is at
most a constant times the following estimate:

o(m+n,n) o(m+n,n)

Y Z 2nA(i,j)/2(i’)+O(m+n) <= Y
i=l j=o i=

O(nA i, O)/ 2A(’)) + O(m + n)

=O(m+n).

Thus the entire algorithm solves the linking roots problem in O(n + ma(m + n, n))
time.

This algorithm has the disadvantage that both m and n must be known ahead of
time. We leave to the reader the easy exercise of modifying the algorithm to avoid
this. (The idea is to re-estimate m and n each time the actual value of either grows
by a factor of two.)

Appendix. Tree terminology. Throughout this paper we consider only rooted
trees. A rooted tree T consists of a vertex set V, a root re V, and a mapping p(v):
V-{r}- V such that, for every vertex v, there is an integer => 0 such that p(v)=r,
where p(v) is defined inductively by p(v) =0, p+l(v)=p(pi(v)). For v V-{r},
p(v) is the parent of v; v is a child o:f p(v). The edges of T are the ordered vertex
pairs VpT(V) for v V-{r}. A leaf is a vertex with no children. If pi(v)= w for
some >-0, v is a descendant of w and w is an ancestor of v. Two vertices are unrelated
if neither is an ancestor of the other. A path in T is a sequence of vertices v, p(v),
p2(v),..., pk(v); the length of this path is k. The depth of a vertex v is the length of
the path from v to r; the height of v is the length of the longest path from a leaf to
v. The depth (and height) of T is the length of the longest path in T. We use TI to
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denote the number of vertices in T. The nearest common ancestor nca(x,y) of two
vertices x and y is the vertex of greatest depth that is an ancestor of both x and y.

A forest is a collection of vertex-disjoint trees. (We use capital italic letters to
denote trees and capital script letters to denote forests.) When discussing parameters
associated with several trees or forests, we use the names of the trees or forests as
subscripts to distinguish the parameters. For example, PT-(v) is the parent of v in T.
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THE SPECTRA OF FIRST-ORDER SENTENCES AND
COMPUTATIONAL COMPLEXITY*

ETIENNE GRANDJEANt

Abstract. The spectrum of a first-order sentence is the set of cardinalities of its finite models. We
refine the well-known equality between the class of spectra and the class of sets (of positive integers)
accepted by nondeterministic Turing machines in polynomial time. Let Sp (dr) denote the class of spectra
of sentences with d universal quantifiers. For any integer d -> 2 and each set of positive integers, A, we obtain:

A NTIME (na)A Sp (d’) A NTIME (n’(log n)2).
Further the first implication holds even if we use multidimensional nondeterministic Turing machines.
These results hold similarly for generalized spectra. As a consequence, we obtain a simplified proof of a
hierarchy result of P. Pudlik about (generalized) spectra. We also prove that the set of primes is the
spectrum of a certain sentence with only one variable.

Key words, first-order sentences, spectrum, generalized spectrum, computational complexity, non-
deterministic Turing machine

Introduetlon. The spectrum of a first-order sentence is the set of cardinalities of
its finite models. If instead of cardinalities of models, we conserve some relations and
functions of the models, then we obtain a generalized spectrum. More precisely, let
o be a first-order sentence with relation and function symbols U1, , Uk, V1, , Vp;
the generalized spectrum of o is the set of finite structures d/ of type {U1," , Uk}
which have an expansion (, V1, Vp) satisfying 0.

There are equivalence between certain model-theoretic concepts such as (general-
ized) spectra and complexity classes. Jones and Selman [11] proved that if A is a set
of positive integers,

(a) A is a spectrum iff A LI d NTIME (na).
(n represents the input integer.) Similarly, Fagin [5] proved that if G is an isomorphism
invariant set of structures of a given type,

(b) G is a generalized spectrum itt G LI a NTIME (ma).
(m represents the cardinality of the input structure.) More recently, Immerman [10]
gave purely logic characterizations of the classes P and PSPACE.

In the present paper we adopt the philosophy expressed by N. Immerman in [9],
[10] and J. Lynch in [13]; that is, logical sentences act like automata. Let be a
property (of integers, of graphs,...). According to our choice of a logical or a
computational viewpoint, there are two kinds of complexity for "(,) the "complexity" of the sentences which characterize property ;

(**) the computational complexity of the automata which recognize property .
Connections between complexities (,) and (**) allow one to translate some

automata-theoretic results into model-theoretic results: Pudlik [15] uses Cook’s
hierarchy theorem [4] in an essential manner to prove that there is a strict hierarchy
of generalized spectra depending on the number of quantifiers. Conversely, there are
potential translations of model-theoretic results into computational ones. For example,
by equivalence (a), if there is a spectrum whose complement is not a spectrum, then
P NP. However, we do not know any proved computational result whose proof uses
model-theoretic arguments in an essential manner: we think the reason is that automata
and their computations are more "supple" concepts than sentences and their models.

Received by the editors February 25,1981, and in revised form December 3, 1982.
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The logical concepts that we investigate in this paper are exclusively spectra and
generalized spectra which are sets of directed graphs. We justify this last restriction
by the fact that results for directed graphs can be easily generalized to other types of
structures, and that most natural problems of structures concern (directed) graphs.

We think that there are two natural complexity measures of the (generalized)
spectrum of a sentence:

(’1) the maximum arity of the relation and function symbols of the sentence;
(*2) the number of quantifiers, or, equivalently, of universal quantifiers of the

sentence.
Concerning the relationship between complexities (’1) and (**), there is:
TIEOREM 0.1 (J. Lynch [13]). If a set, A, of positive integers belongs to

NTIME (n a) for an integer d >=2, then A is the spectrum of a sentence with relation
symbols of arity at most d and without function symbols. (The same result holds for
generalized spectra.)

This is a nice result because we easily see that any improvement of it would imply
an improvement of the inclusion NTIME (n a) DSPACE (na). However, we do not
know any kind of converse" for example, if a sentence has only binary relation symbols,
we do not know any fixed polynomial time upper bound for its spectrum. (See [6] for
more details about the hypothetical hierarchy of spectra depending on arity of relation
symbols.)

We improve a theorem of Pudlik [15] which connects complexities (*2) and (**)
in both directions. Let Sp (d) (resp. GenSp (d/)) denote the class of spectra (resp.
generalized spectra) of sentences with at most d universal quantifiers.

TI-IEOREM 0.2 (Pudlik). Let G be an isomorphism invariant set of directed graphs.
Then, for all integers d >-2:

G GenSp (d/) implies G NTIME (m 3d),

G NTIME (m a) implies G GenSp (2d/).

Pudlik also states the following translational lemma of model theory"
LEMMA 0.3 (Pudlik). For all integers d >= 2, e >= 1,

GenSp (d’)= GenSp (d + 1/) implies GenSp (ed/)= GenSp (e(d + 1)).

From these results and from Cook’s hierarchy theorem, Pudlik deduces the nice
hierarchy result mentioned above which can be reformulated as follows’

COROLLARY 0.4 (Pudlik). For all integers d >= O,

GenSp (d’) GenSp (d + 1’).

Unfortunately, Pudlik’s paper [15] does not provide the proofs of the results
that he states. Therefore the present paper includes an explicit proof of Pudlik’s
hierarchy result. However, its main merit is that it considerably improves the connec-
tions Pudlik states between GenSp (d’) and NTIME (-) since we prove:

THEOREM 0.5. LetA be a set ofpositive integers and G be an isomorphism invariant
set of directed graphs. Then for all integers d >= 2:

(i) A NTIME (n d) A Sp (d) A NTIME (n d (log n )2);
(ii) G NTIME (m d) G GenSp (d) G NTIME (m d (log m)2).
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These results are interesting for two reasons"

(1) They state that the polynomial degree of the (nondeterministic) time com-
plexity of a property is almost equal to the number of universal quantifiers required
to express .

(2) They allow one to prove Pudlik’s hierarchy result (and the similar result for
spectra) without any model-theoretic lemma, by an immediate translation of the
nondeterministic time hierarchy theorem (Cook [4], Seiferas et al. [17]).

Note that the second implication of (i) is essentially proved by H. Lewis [12] in
a different context: he investigates the complexity of the satisfiability problem for
classes of quantificational sentences.

These results are optimal in the following sense: each first implication of (i) and
(ii) holds even if the nondeterministic Turing machine (NTM) is multidimensional; so
any improvement of one of the above implications would improve the known simula-
tion of a multidimensional T(n) time-bounded NTM by a (one-dimensional)
T(n). (log T(n))2 time-bounded NTM.

Notice that Immerman [9], [10] also investigates the number of quantifiers as a
complexity measure: using connections between first-order expressibility and computa-
tional complexity, he hopes to translate into computational complexity, some lower
bounds he obtains for first-order expressibility of "natural" properties of graphs.
However, his results and methods are quite different from ours because he characterizes
a property, not by only one sentence, but by a uniform sequence of sentences. (Of
course, by the uniformity condition, such a sequence can be regarded in a certain
sense as a unique sentence.) As a consequence, he no longer needs additional relation
and function symbols, but only a successor relation. Immerman’s opinion in [9] is that
"it is difficult to show lower bounds for the expressibility of (existential) second-order
sentences" and that "first-order sentences mimic computations much more closely."
In fact, from our results and from the time hierarchy theorem, it is immediate that
there is a spectrum in Sp (d/) which cannot be accepted by an NTM in time less than
dn However, Immerman is right in a certain sense" we are not able to prove a

nontrivial lower bound for any naturally defined (generalized) spectrum.
Our paper includes the following sections. Notation and definitions are given in

1. In 2, we give two arguments for the naturalness of the measure (Gen)Sp (d/):
first that it is preserved under intersection and union, secondly that it is equivalent
to other complexity measures such as quantifier depth. We also prove the previously
mentioned upper bound of spectra.

The announced lower bound for spectra is proved in 3. Besides the usual
"folding" technique [5], [11], [13] for encoding the time units and the tape cells of a
computation of a NTM, the proof essentially uses a "numbering" of the ordered pairs
(H(t), t), where H(t) is the position of a tape head at instant t; informally, this
numbering, N, is such that if N(x)=(H(t),t), and if t’ is the first time after such
that H(t) H(t’), then N(x + 1) (H(t’), t’).

Lastly, 4 presents two corollaries of the previous results. First is the hierarchy
result of the classes (Gen)Sp (dV). The second is a rather surprising result: The set
of primes and most "natural" sets of positive integers are spectra of certain sentences
with only one variable.

1. Preliminaries.
1.1. Preliminaries in logic. We will use the usual notation and definitions in

first-order logic and model theory (see [3, Chap. 1], for example). In particular, our
formulas include the equality symbol =, and relation and function symbols.
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The arity of a relation or function symbol is a nonnegative integer; in fact, a
0-ary relation (resp. function) symbol is a proposition (resp. an (individual) constant)
symbol.

Our logical connectives are exlusively v, ^, -, interpreted as’ or, "and," "not,"
respectively. The existential and universal quantifiers ::1 and are interpreted as "there
exists" and "for all," respectively.

(Individual) variables are called x, y, z, with or without subscripts or primes.
The metavariable v (with or without subscripts or primes) will denote any variable.

A term is an expression constructed from variables and function symbols in the
usual way. An atomic formula is of the form z z2 or R (T1,""", Tr), where zg is a
term and R is an r-ary relation symbol. A (first-order) formula is built out of atomic
formulas in the usual way, using v, ^, -, :1, /. A signed atomic formula is an atomic
formula or its negation.

We suppose familiarity with the notions of subformula, of (existentially or uni-
versally) quantified variable, of free occurrence of a variable, and of free variable. A
(first-order) sentence is a formula all of whose variables are quantified. We use
(4 (/-) 1, Ok) to denote a formula p whose free variables form a subset of {v 1, Vk }.

A prenex sentence is a sentence q of the form

OlVl""" OkVkt(Vl, Vk)

where is a quantifier-free formula and Ol," ", Qk are quantifiers; QlVl’’’ OkVk
and are respectively the prefix and the matrix of q. A quantifier-free formula is in
disjunctive normalform if it is a disjunction of conjunctions of signed atomic formulas.

Sometimes we will use the following abbreviations: v v’ for v v’; p for
--he v if; for ( 4)^ ( q). The conjunction of the indexed formulas i, for

J and J a finite set, will be denoted/irq, and similarly for the disjunction. Let
Tk and Qf)k (where Q is a quantifier) abbreviate the k-tuple Vl,." ", Vk and the string
Qvl’" Qvk, respectively. (More generally, let dk denote a k-tuple of elements
al, ", ak in a given set.)

A type is a finite set of relation and function symbols {V1, , Vk}. The arity
of " is the maximum arity of V1," ", Vk. A formula is of type - if all its relation
and function symbols are in -.

A structure /l (D, VI,..., Vk) Of type 3- consists of a nonempty set D called
the domain of (denoted D()) and for each r-ary relation (resp. function) symbol
of -, an interpretation, i.e., an r-ary relation (resp. function) on D. If Vk/l," ", Vp
are other relations and functions on D, the structure (D, V1,"’, Vk, Vk/l," ", Vp)
is called an expansion of and is denoted (, Vk/l," ", Vp). For convenience, our
notation does not distinguish between a relation or function symbol and its interpreta-
tion. The cardinality of a structure is the cardinality of its domain. A finite structure
is a structure of finite cardinality.

Let p and be respectively a sentence and a structure of type 3-. We put ,
and we say that is a model of p, to mean that p becomes a true assertion when each
logical symbol v, ^, -, :!, /, is given its usual meaning and each relation (resp.
function) symbol is given its interpretation in the structure .

Let D be a nonempty finite set and be a type; we will regard the elements of
D,as constant symbols; let -o -t_JD be the type enlarged by these constant
symbols. Any structure of type - on the dtgmain D is identified with its expansion
of type -o where constant symbols a D are interpreted as themselves. Let (Tk) be
a formula of type and dk be a k-tuple of elements in D; (dk) will denote the
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sentence of type ,Y-D constructed from (3k) be replacing each free occurrence of
by ai. If there is a structure, , of type ,Y on the domain D, such that (dtk), we
will say that q (dk) is satisfiable in D, or, in case the domain D is implicit, satisfiable.

Existential second-order sentences are expressions of the form :IV1...
where o is a first-order sentence and V1, , Vp are among the relation and function
symbols of 0. (Unless stated otherwise, formula and sentence will mean first-order
formula and first-order sentence.) Let A be a structure of type ,Y and be a sentence
of type -LI {V, , Vp}, where V1, , Vp are symbols not in ,q. Then we put

to mean that / has an expansion ’ of type ffLJ{V1, Vp} such that A/’6. (Of
course, the type of ::i V... ::i V,6 is ft.)

Two (first-order or second-order) sentences of type -, and if, are (semantically)
equivalent if for each structure J//of type -,

We similarly define the (semantical) equivalence of formulas (Ok) and (Ok).
In the following, for each integer n > 0, Dn will denote the set {0, 1,. , n 1}.
The spectrum of a sentence o, denoted Sp (o), is the set of cardinalities of its

finite models, or, equivalently, the set of integers n > 0 such that

(nn> 7 V1 3Ups,

if q is of type {V1,..., Vp}.
A directed graph or, in short, a graph, will be a finite structure (D,,, R), where

R is a binary relation. (In graph-theoretic terminology, is a labeled directed graph
on m vertices labeled 0, 1,..., m- 1.)

The generalized spectrum of a sentence 0 of type {R, V,. ., V} where R is a
specified binary relation symbol, is the set of directed graphs ff (D,,, R) such that

It is denoted GenSp ().
We will investigate the number of universal quantifiers as a complexity measure.

There is a little difficulty: a universal (resp. existential) quantifier in the scopes of an
odd number of negation signs must be treated as an existential (resp. universal)
quantifier. So, to make sense, we always assume in this paper that no quantifier occurs
in the scope of a negation sign. (Clearly, each formula is equivalent to a formula of
the requisite form.)

Let Sp (d/) (resp. GenSp (d)) denote the class of spectra (resp. generalized
spectra) of sentences with at most d universal quantifiers.

The depth (resp. universal depth) of a formula q, denoted by depth () (resp.
"q-depth ()), is the maximum number of quantifiers (resp. universal quantifiers) in
the scopes of which a subformula of q can be found. More formally, for a quantifier-free
formula q,, depth ()=0; for any formulas 0, $o, q’, depth (::l v0) depth (X/ v$)
1 + depth (q,), and depth ($o v 1) depth ($o ^ 01) max[depth (0o), depth (q,a)].
V-depth (-) is defined as depth (-), except that "q-depth (::1 v$) ’q-depth ($).
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1.2. Preliminaries in computational complexity. For all real numbers r, [r]
(resp. [rJ) is the least (resp. greatest) integer n->r (resp. n-<r) and log r is the
logarithm of r in base 2.

Let f(n) and g(n) be two nonnegative real-valued functions on positive integers.
We use the notation f(n)= O(g(n)) to mean that there is a constant number c such
that, for all sufficiently large integers n, f(n)<=cg(n).

We suppose that the reader knows the main definitions about Turing machines
and nondeterministic computations (see [8, Chap. 7]). Our model of computation will
be a one-dimensional nondeterministic Turing machine (NTM); more precisely, an
NTM has several one-dimensional tapes, infinite to the right only, which consist of
one (read-only) input tape and several (read-write) worktapes. A multidimensional
NTM is an NTM whose worktapes are multidimensional. (Unless otherwise specified,
NTM will mean a one-dimensional NTM.)

Let E be a finite set. E+ will denote the set of finite nonempty words over the
alphabet E. A subset of E+ is called a language over E.

Let M be an NTM and E be the set of input symbols of M. (An input of M is
a word of Z+.) M accepts an input w if, when it is started in start state with all tape
cells blank except that the leftmost input tape cells contain w, and with all tape heads
at the leftmost cells of the tapes, a computation (i.e., some sequence of moves) takes
M to the accepting state. Further, if T is the number of moves of such a computation,
then we say that M accepts w in time T.

Let T(n) be a function from positive integers to positive integers. An NTM M
accepts a language L Z+ in time T(n ), if

(i) M accepts no input except the words of L, and
(ii) each word of L of length n is accepted by M in time at most T(n).

To make sense, we require that T(n)_>-n + 1 since it needs n + 1 moves to read an
input of length n and the first blank symbol. Let NTIME (f(n)) denote the class of
languages accepted by a NTM in time max(n +1, If(n)]), for a real-valued
function f.

Let A be a set of positive integers. Identifying each positive integer n with 1 n,
(1 is the word of n l’s), we can regard A as a language over the one-letter alphabet
5; {I}. Thus A belongs to NTIME (T(n)) if the corresponding language belongs to
this class. Let Bin (A) denote the set of binary representations of the integers of A.
(Of course, Bin (A) {0, 1}/.)

Our complexity results for spectra will be presented with integers in unary
notation. However, if one prefers binary notation, then the following lemma will give
an immediate translation of our results.

LEMMA 1.1. Let A be a set of positive integers. Then for all integers d >-1 and
k >-O, the following statements are equivalent"

(i) A NTIME (n a (log n)k).
(ii) There is an NTM which accepts Bin (A) in time O(na(log n)k), where n is the

input integer.
(iii) Bin (A) NTIME (2nn k), where n is the length of the input integer.
Proof. It is sufficient to remark that there is a deterministic Turing machine which

transforms any integer n from unary to binary notation (resp. from binary to unary
notation) in time O(n)" the lemma follows by linear speed-up (see respectively [7],
[8] and [2], [17] for linear speed-up of nonlinear and linear functions).

It is natural to encode a directed graph, , of domain D,,, with the word
WlW2 w,2 over the alphabet {0, 1}, defined by: for 1 -<i -<m 2,

wi 1 iff c R (a 1, a2),
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where (a l, a2) is the ith element of D for lexicographical ordering. An NTM, M,
accepts a set of graphs, G, in time T(m) if M accepts in time T(m) the set of words
Wl... w,,2 which encode the graphs of G. (Notice that the input has length m 2, not
m; m is the number of vertices of the encoded graph.) We will say that a set of graphs,
G, belongs to NTIME (f(m)) if an NTM accepts G in time max (m2+ 1, If(m)]).

2. Upper bounds for spectra. Lemmas, Propositions and Theorems 2.1 to 2.5
will be expressed for spectra. However, they hold as well for generalized spectra with
the same proofs.

LEMMA 2.1. For each sentence o with at most d universal quantifiers, there is a
quantifier-free formula O’(d) such that

Sp (q)= Sp (VYCdP’($d)).

Proof. By standard manipulation of quantifiers, it is easy to put all the quantifiers
of 0 in front of the sentence. Therefore we can assume that # is prenex. We use the
following fact: a sentence of the form hJk ::lv’6 (t3, v’) is equivalent to the second-order
sentence iFVfkf(k,F(k)) where F is a new k-ary function symbol. For example,
the sentence Vx:lyVz:lt 6(x, y, z, t) is equivalent to :lFlVXVz:lt 6(x, Fl(X), z, t) and
then to

:lFlF2Vx/z(X, Fl(X ), z, F2(x, z )).

From this example, we clearly see that the prenex sentence o can be transformed
according to the following rule’ To each existentially quantified variable v, associate
a function symbol F (a "Skolem function") and replace each occurrence of v in the
matrix of 0 by the term F(o1, ldk) where U1, ldk are the universally quantified
variables lying before v in the prefix of q; lastly, remove all the existential
quantifiers. El

It is natural to require that complexity classes be closed under intersection and
union. We have:

PROPOSITION 2.2. Let A, B be two sets in Sp (d), for d > 1, and A’ be a finite
modification of A (i.e., A’ is constructed from A by adding or removing finitely many
positive integers). Then

(i) A fqB Sp (d’q’);
(ii) A tAB Sp (d/);
(iii) A’ Sp (d).
Proof. (i) By Lemma 2.1, we can assume that A =Sp(Caqo(a)) and B=

Sp (/$aql($a)), where qo and ql are quantifier-free formulas. We can also assume
that qo and qq have no common relation or function symbol. Then A fqB=

Sp (/d(tPo(a) ^ ql(a))). This proves (i).
(ii) Clearly, A LIB =Sp (o) with =/:aOo($a)v’q’Y,tOl(Ya). Let Ro be a new

0-ary relation symbol. (Intuitively, the proposition symbol Ro stands for the disjunct
/,aqo(a).) q is equivalent to the second-order sentence ::lRo[(--nRoV V$aqo($a))A
(Rov Ltal(a))]. The first-order sentence in brackets is equivalent to the sentence

q’= V2a[(-nRo v o(2a)) ^ (Ro v 01(:a))],

and then A UB Sp (o’).
(iii) By (i) and (ii), it is sufficient to prove that for each positive integer k,

the sets {n: n > k} and {k } belong to Sp (1V). We have

{n" n> k}=Sp (::lxo... =lxk A xi xj),
O<-i<j.<_-k

l<-i<j<-k i=1
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Another argument for the naturalness of a complexity measure is the fact that it
has several reformulations.

THEOREM 2.3. Let A be a set of positive integers. A Sp (d/) if and only if there
is a sentence o such that A Sp () with the following property (i) (resp. (ii), (iii)):

(i) -depth (q) d;
(ii) o has d quantifiers
(iii) depth (0) d.
Theorem 2.3 is an immediate consequence of
PROPOSITION 2.4. For each sentence o of universal depth d, there is a sentence o’

with d universal quantifiers only and no existential quantifier, so that Sp (o)= Sp (q’).
Proposition 2.4 is a particular case of Lemma 2.4’ proved in the Appendix. The

proof uses additional "Skolem functions" and relations, as do the proofs of Lemma
2.1 and Proposition 2.2(ii), respectively. Notice that Proposition 2.2 (except part (iii))
is an immediate consequence of Theorem 2.3.

To prove our upper bound theorem for spectra, we shall use the following
definitions and lemma.

DEFINITIONS. An elementary formula of type T is a signed atomic formula of
one of the five following forms:

(--1)/91 V2, ()R (/)r), F(fr) Vr+l,

where R, F are respectively r-ary relation and function symbols of ft.
Let n be a strictly positive integer. An n-formula of type is a formula of type

’, UD, which is constructed from an elementary formula of type - by replacing
each variable by an element of D,. (So an n-formula of type ff is of the form ()e e2,

()R (r) or F(G) e+l, where R,F and eiDn.)
Remark. Since n has length O(log n) in base 2, an n-formula can be encoded

with O (log n) symbols.
LEMMA 2.5. IfA Sp (d/), then there are a type r and a sentence

i=1

such that:
(i) A Sp (o);
(ii) each i, 1 <= <= c, is a conjunction of elementary formulas of type -.
Proof. By Lemma 2.1, A Sp (Ycao’($a)) for a quantifier-free formula o’. We

construct 0 as follows. First put 0’ in disjunctive normal form. Secondly, transform
the signed atomic subformulas of 0’ as in the following example" the subformula
-R (Fl(x, y), F2(y)) is replaced by the equivalent formula

::lz::lt(Fl(X, y)=z ^F2(y) ^ -R(z,t)).

Lastly, put the added existential quantifiers in the prefix. [3
THEOREM 2.6. LetA be a set ofpositive integers and G be an isomorphism invariant

set of directed graphs. Then:
d 2(i) A Sp (d/) implies A NTIME (n (log n) ), for each integer d>= 1;

(ii) G GenSp (d’q) implies G NTIME (m d (log m)2), ]’or each integer d >- 2.
Proof. of (i) Let A Sp (0) where the sentence 0 of type - is of the form
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of Lemma 2.5. The principle of the algorithm which checks if an integer belongs to
A, is given by the following equivalences.

Let n be a positive integer and be a structure of type on the domain Dn. Then:
At q--,for all (luD an, there are/k D,k and ie{1, c}, such that

4,(, b)
,-, there are a function g" Da k {1, C},,--> D and a function h’Da

such that

granD a

Let O,h denote the above conjunction. Clearly, O,h is Of the form/.’= ri, where each
ri is an n-formula of type - and n’= O(n a). (Here and in the following, the constant
numbers implicit in O-notation only depend on the sentence 0.)

We have"

n Sp (o)*-> 0 has a model of domain D,,

and then from the previous equivalences:

(,) n Sp (o),-->there are functions g Da k d
--> D and h" D, --> {1, , c } such

that the conjunction Og,h is satisfiable in Dn.

For each (relation or function) symbol s , let 1-Is denote the set of n-formulas
zri(1 <= <-n’) mentioned above which contain the symbol s. The following equivalences
are obvious:

/k / 7r is satisfiable for each s s ’,/n zr is satisfiable
s

--for each s , IIs includes no pair of incompatible
n-formulas.

(Incompatible n-formulas are of the forms R(?r) and -R(/r) or F(Pr)=e and
F(6) e’ with e e’.)

The following nondeterministic algorithm (divided in two procedures, (a) and
(b)), thus emerges.

(a) Construct the binary representation of n. Guess (nondeterministically) the
functions g and h and write the conjunction (49g,h. There are n d values to guess for
each function. Since integers are written in base 2, procedure (a) requires a time
O(n a log n ).

(b) Check (deterministically) if (4g,h is satisfiable in Dn. (Recall: 0g,h =/i--1 ri,

where n’= O(n d) and each zri is an n-formula of type .) Procedure (b) divides into
three steps:

(bl) Evaluate the (in)equalities, i.e., n-formulas of the form ()e e’, among the
n-formulas 7ri; if any is false, then 0g,h is not satisfiable; otherwise, delete the (true)
(in)equalities and sort the conjunction (gg.h in the form Ase Ans r.

(bE) Sort each conjunction Ari 7r according to the lexicographical order of the
arguments of the n-formulas rr. (Recall that zr has form ()R(,r) or F(/)=e+.)

(b3) For each s , test whether II includes a pair of incompatible n-formulas,
using the fact that incompatible n-formulas (if any) now appear side by side.

We clearly see that steps (b) and (b3) each require time O(n’ log n). Therefore
procedure (b) requires time O(n l (log n)) which is the time to execute step (bE) with
the sorting algorithm of [1, p. 78].

It is easy to implement procedures (a) and (b) on an NTM, and then A
NTIME (n (log n):), by linear speed-up.
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Proof of (ii) Similar to the proof of (i). Therefore we only emphasize the differ-
ences. Let G GenSp () where the sentence q of type {R, V1, , V,} is as in
Lemma 2.5.

Let be a directed graph of domain D,,. By the argument used in the proof of
(i), we obtain"

GenSp(p <--) there are functions g"D,Da,k and h’D d,, --> { 1, c } such
that has an expansion (, V1,’", Vp) which is a model
of Og,h.

Let A() denote the conjunction of the rn 2 m-formulas (--a)R(el, e2), where
(el, e2)D.,, such that : (-)R(el, e2). Then we obtain the following equivalence"

(**) c GenSp (q)<-)there are functions g’D
{1,... ,c}, such that the conjunction 0.h ^h() is
satisfiable in D,,.

The second member of equivalence (**) is similar to the second member of equivalence
(.) in the proof of (i), except that (.g.h is now replaced by (s0g,h ^ A(64) which is a
conjunction of O(m a) m-formulas of type , since d => 2. Therefore the remainder of
the proof is exactly like that of (i).

Remarks. Part (i) of Theorem 2.6 is essentially stated by H. Lewis [12, Prop.
3.2] with a proof more informal than ours. More precisely, he states the following:
"Whether a prenex sentence with d universal quantifiers has a model of cardinality
n can be ascertained nondeterministically in time f(ll n), for some polynomial f."
(]o1 denotes the length of sentence .) However, H. Lewis states his proposition in a
different context" he uses it as a tool to prove a complexity upper bound for the
satisfiability problem of a class of sentences with a fixed number of universal quantifiers;
he does not need to know a precise value of polynomial f. (Moreover he assumes that

0 contain no function symbol and no equality symbol.)
By Theorems 2.3 and 2.6, the spectrum of any sentence q of universal depth d

belongs to NTIME (nd(logn)2). In fact, there is a natural generalization of the
algorithm of Theorem 2.6 which accepts Sp (p) in time O(na(log n)2), and similarly
for generalized spectra.

3. Lower bounds for spectra. We want to "simulate" a computation of an NTM
in a finite structure. Therefore we need a numbering of the structure to express the
numbering of the tape cells and of the time units the computation requires. We can
construct a linear order by"

LEMMA 3.1. There is a first-order sentence /such that:
(i) has only two universal quanti[iers
(ii) is of type = {Fsu, R<, Rsvp, Co, c}, where Fs is a unary function symbol,

R< and Rsu are binary relation symbols and Co, ct are constant symbols;
(iii) if Af =(D, R<, Rs., Co, ct) is a finite structure of cardinality at least two, then:

3Fsuc R< is a strict linear order of D, and Rsuc, Co, Cl are respectively
the corresponding successor relation and the first and last
elements of this order.

Proof. Let us give some sentences with their intuitive meaning.

d/ l" /x =i yFsuc(y x ^ /xFsuc(X x.

expresses that Fsuc is a permutation of the (finite) domain and has no loop.

2: fx R<(x, x)^ VxVy[x y (R<(x, y)<--)R<(x, y))].
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12 expresses that R< is a tournament.

@3"VxVy[(R<(x, y)^ y ct)-->R<(x, Fsue(y))]^Fsuc(Cl)=co.

’3 expresses that R< is a transitive relation for function Fsuc, except for the value
Fsuc(ct) which is Co.

A consequence of the conjunction 1 ^ 2 ^ @3 is that the permutation Fsuc has
only one cycle. In investigating this cycle, we clearly see that this conjunction implies
that R< is a linear order of the domain, with first and last elements Co, c, respectively,
and that Fsu maps each element to its immediate successor for this order, with
moreover Fsuc(C) Co. Therefore the following sentence defines the successor relation:

14: VxVy[Rsuc(X, y)<--(Fsuc(X) y ^x #ct)].

So the conjunction I]/1 ^ I//2 ^ I]/3 ^ I//4 has properties (ii) and (iii). Clearly, it has an
equivalent form with property (i) also since it is a conjunction of sentences with at
most two universal quantifiers.

In the following, we will use Lemma 3.1 with the expressive symbols <, Suc, 0,
instead of R<, Rsu, Co, c, respectively.

The following is our second main result.
THEOREM 3.2. LetA be a set ofpositive integers and G be an isomorphism invariant

set of directed graphs. Then, ]’or any integer d >-2:
(i) A NTIME (n d) implies A Sp (d);
(ii) G NTIME (m a) implies G GenSp (d).

Moreover these two implications hold even if we use multidimensional NTMs.
Proofof (i). Let A be a set in NTIME (na). By Proposition 2.2(iii), we can assume

that A is a set of integers n -> 2. For each integer n -> 2, let us consider :1"-25, a word
of length n, that we regard as a "self-bounded" unary representation of n. Clearly,
the set A’ {:1n-25 n cA} also belongs to NTIME (na), and then, by speed-up, there
is an NTM, M, which accepts A’ in time n a- 1. The input head of M does not visit
any cell outside the input, because of the "bounds" : and $. (An NTM which accepts
A must visit the n cells of the input plus the next one to the right. It is less convenient
to encode n + 1 cells than n cells in a domain of n elements" this is why we consider
A’ in place of A. Similarly, we choose the time bound na- 1 for technical reasons
which will be explained later.)

In the following, we will adopt almost the same notation as J. Lynch [13] used
in the proof of his theorem (mentioned in our introduction), so that it is easy to
compare his proof and ours.

Suppose that the tapes of M are the input tape and only one (one-dimensional)
worktape. The set of input symbols of M is of course X {1, , $}. Let F be the set
of worktape symbols of M, including the blank symbol b. Let Q be the set of M’s
states, including q0, the start state, and qa, the accepting state. Let 8 be the transition
function of the NTM M. More precisely,/ maps each (tr, 3", q) X F Q to a subset
of F {-1, 0, 1}2 Q; the set 8(tr, 3",q) consists of those (3", a,B,q’) such that if at
some time, the symbols under the input head and the worktape head are respectively
tr, 3’ and M is in state q, then the following is a possible move: M prints 3" in place
of % and at the following time, the input head and the worktape head move accordingly
to numbers a, , respectively (0 means no movement, 1 and -1 a movement to the
right and to the left, respectively) and M enters state q’.

Since M accepts A’ in time n a 1, we can regard each computation of M (on an
input of length n) as a sequence of exactly na- 1 moves by adopting the following
conventions: each computation of M is truncated by an n a- 1 time-bounded clock;
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in case M enters an (accepting or rejecting) final state before the clock rings, then M
continues "runuing" in the same configuration until the clock rings. Therefore each
computation of M uses exactly n a configurations (including the start and the final
configurations) and at most n d worktape cells.

By Lemma 3.1, there is an existential second-order sentence which defines a
linear order < of the domain with the corresponding successor relation, Suc, and first
and last elements, 0 and l, respectively. To encode the moves of M, we shall use the
lexicographical order of k-tuples, constructed from <, and also denoted <, and the
corresponding successor relation, also denoted Suc. More precisely, 2k < Yk is an
abbreviation of

xl<Yl V Xi--Yi Ax/<y
i=2

Similarly, Suc (2k, 37) abbreviates the following formula:

[Suc (x 1, Y 1) A A (xi A yi 0
i=2

v xi yi ^ Suc (xi, y.) A (xi A Yi 0
j=2 i=1 i=]+1

V Xi Yi A Suc (Xk, Yk)
i=1

Clearly k <Yk and SUC(.k, Yk) express the required relations. Let )k---k +1
and Sk )Tk 1 be synonymous with Suc (.k, 37k). Lastly, let 2 37 (or
.k Yk -"0) and -k 7 )Tk abbreviate the conjunction /=x x y and its negation,
respectively.

Let t3 in short denote the d-tuple of variables bd V,’’’, Va. Similarly, let 0
(resp. l) denote the constant symbol 0 (resp. l) repeated d times. For convenience,
our notation does not distinguish between a variable and its assignment.

Now let us consider a domain of n elements, denoted E,, and let us intuitively
describe how to encode in E, a computation of M on an input of length n. There are
as many elements in Ea" as time units (resp. worktape cells) used in the computation.
So each element (resp. y, 3)) of Ea, (resp. E,, Ed,) corresponds to a time unit (resp.
an input cell, a worktape cell), also denoted /" (resp. y, y). (This is the "folding"
technique of [5], [11], [13].) For convenience, we will use (d,k)-ary functions" a
(d, k)-ary function symbol F abbreviates a k-tuple F1,’" ,Fk of d-ary function
symbols. Let us introduce the following relation and function symbols for which the
argument intuitively means "at time ""The d-ary relation symbols C*, Cv, C’, tr E, / F" C* ( (intuitively) means
"the symbol under the input head is tr"; C() (resp. Cv ()) means the symbol
under (resp. printed by) the worktape head is y."

The d-ary function symbol H*" H*() is "the cell, y, under the input head."
The (d, d)-ary function symbol H: H() (HI(), , Ha()) is "the cell, y,

under the worktape head."
The d-ary relation symbols Sq, q Q" Sq (?) means "M is in state q."
For technical reasons, we also introduce a (d, 2d)-ary function symbol, N, less

intuitive than the previous symbols. It will be used to lexicographically number the
dn couples (H(),) of the computation. The (intuitive) value of N()=

(NI($),""", N2a($)) is "the couple (H(), ) of number "
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Function N is defined by the two following sentences with only d universal
quantifiers". V3x(H(), i)= N(X),

where the subformula (H(), )= N(g) abbreviates

d d

A Hi(i Ni(z) ^ A t, N,+,(,);
i=l i=1

2’ (Vg /)(::Ix?’ a? + 1)N(g) <N(’),

where (’q2 # I-) and (:!2’ + 1) abbreviate V,t (2 #/--. ") and
::!2’(’=+1^. .), respectively. Clearly, Ol expresses that the equality
(H(),)=N(g) defines a bijection between the na d-tuples and the na

d-tuples g, and q2 expresses that N is an increasihg function for lexicographical order.
Figure 1 illustrates (for a particular computation) how function N numbers the

ordered pairs (H(), ) which are intuitively the worktape head positions during
the computation. (We assume that d 1 and.n 6; each element of E6 is denoted in
Fig. 1 by its rank for order <.)

tape

time

0 0

1

0 1 2 3 4 5

FIG.

It should be clear that ol ^ o2 implies that function N satisfies the two following
(informal) statements:

(a) ’ is the first time after such that H()= H(’) iff H()= H(’) and there is g
such that N(g) (H(), ) and N(g + 1) (H(V), ’).

(b) ’ and the worktape cell H(V) has never been visited before time V iff
there are 2, such that N(2) (H0), ) and N(g + 1) (H(’), ) and H()
H(i’).
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The following sentences express how to encode an accepting computation of M
in a structure with the relation and function symbols mentioned above.

q3" V[(H*() 0C()) A (H*() C ())

A (0 < H*() < C* ())].

q3 expresses what is the symbol under the input head. (Recall that the input is 1"-25.)
(04" Cb(0) A H*(0)--0 A H(0)--0 A _Sqo(0).

(In 4 and in the following sentences, _C(), y6F, abbreviates the conjunction
Cr(i)AAr,v_r}-C,(); _C(), yF, and S_q(i),qO, are similar abbrevi-
ations.) 4 describes the start configuration.

Let Cs be the conjunction, for all (0-, % q) 6 g x F x (2, of:

(V #/)(:1’ -+ 1)

[(c* ()^ c() ^- V (_C,([) ^ H*(’) H*([) + a ^ H(’) H([) +/3 ^ _Sq,(’))],
where the disjunction extends over all (y’, a, fl, q’) of (tr, y, q). 5 describes the set
of possible moves determined by the transition function 8. (Notice that we assume
that the worktape head prints the symbol y’ at time , not at time + 1.)

(’P6" (V’ 0)3’].,(]."’= ., -" 1)

[N(:) (H([), [) ^ N(#’) (H([’), [’)

^ A [(H() H([’) ^ C,()) --> _C([’)]

^ [H() # H([’)- _Cb(’)]].

Using equivalences (a) and (b), (’6 expresses what is the symbol under the worktape
head at time F# 0, according to whether the scanned worktape cell has been visited
or not before.

o7" So(l).

Let qo be the sentence of Lemma 3.1 and o be the conjunction/7i=o qi. Then
it should be clear that M accepts 1"-25 iff has a model of cardinality n. Hence
n s A iff n s Sp (q). Moreover, o is a conjunction of sentences with at most d universal
quantifiers. This proves part (i) of the theorem in case the machine M has only one
(one-dimensional) worktape.

In the general case, for every k-dimensional worktape of M, we need a (d, kd)-ary
function symbol, H, and a (d, (k + 1)d)-ary function symbol, N, and the corresponding
sentences qx, 02 and 6. There are also obvious modifications of sentences (04 and

Proofof (ii). Similar to the proof of (i). Therefore we only dwell on the differences.
Let G be an isomorphism invariant set of directed graphs such that G s NTIME (ma).
Let E be the alphabet of six symbols {0, 1, (0, ), (1, ), (0, $), (1, $)}. A "self-bounded"
encoding of a directed graph is a word of ,v_,,

(W 1, )W2 Win2-1 (Win2, $),

where the word W w,,2 of {0, 1}"2 encodes the graph . Clearly, there is an NTM
which accepts the set of self-bounded encodings of the graphs of G in time
max (m z ma- 1)
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We construct a sentence q such that G GenSp (q) exactly as in the proof of
(i), except that the conjunct q3, expressing what is the symbol under the input head,
is now replaced by the conjunction of’

V[H*() (0, O)--C()],
V[H*(-) (1, l)<-->C ()],

V:lx ::ly[H*() (x, y) ^ (R(x, y) <-> C* (i)) ^ (R(x, y) <-> C0* (E))].

Note that H* is now a (d, 2)-ary function symbol since we have to "fold up" an input
of length m 2 to encode it in a domain of m elements.

There is a slight technical difficulty in case G E NTIME (m2), because an NTM
which accepts the set of self-bounded encodings of graphs of G in time m 2 cannot
be sped up, and then each computation requires m2+ 1 configurations. In this case,
the ordered pair (l, l) does not encode the last time unit, but rather the time unit
before last. However, we are not interested by the last configuration, except for its
state. From these remarks, the reader should be able to modify sentences q5 and q7

for this case. F1
Remarks. In fact, we have proved a little more than the stated theorem" if A, a

set of positive integers, belongs to NTIME (rid), for an integer d =>2, then A is the
spectrum of a sentence with at most d universal quantifiers and a type of arity d.
Similarly, for generalized spectra.

As P. Pudlfik 16] points out, the implication G E NTIME (m d) --> G E GenSp (dr)
might be useful for finding some nontrivial lower bound for a concrete problem in
NP. In particular, if G GenSp (2V) then GNTIME (m).

4. Corollaries.
COROLLARY 4.1 (Pudkik [15] for (ii)). Let d be a nonnegative integer. Then:
(i) there is a set of positive integers, A, such that:

A Sp (d + 1/)- Sp (d’);

(ii) there is a set of directed graphs, G, such that

G GenSp (d + 1’)- GenSp (d’).

Proof. (i) Clearly, {1} Sp (l’)-Sp(0/). So assume that d_> 1. A particular case
of the nondeterministic time hierarchy [4], 17] is that there is a set of positive integers

A NTIME (nd+I)-NTIME (rid(log n)2).
From Theorems 2.6 and 3.2, it immediately follows that

A Sp (d + 1’)- Sp (d’).

(ii) Let us consider a sentence q with d + 1 universal quantifiers only, such that
A Sp (0). Let be the type of q. Now let us regard q as a sentence of type
U {R}, R a new binary relation symbol. Let us define G(A)= GenSp (). G(A) is
the set of directed graphs on n vertices, such that n A. Let us assume that G(A)=
GenSp (’) where q’ has at most d universal quantifiers; then A Sp (’), a contra-
diction. Iq

Remarks. By the same proof, Corollary 4.1 holds not only for directed graphs,
but also for structures of any type.

Corollary 4.1 can be strengthened as follows" The sentence (with d + 1 universal
quantifiers) such that A Sp (0) (resp. G(A) GenSp (0)), has a type of arity d + 1.
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In analyzing the proof of Theorem 3.2(i), we clearly see that the only reason why
we assume d-> 2 is that we need two universal quantifiers to define a linear order. If
we suppose that a structure has a "built-in" linear ordering, then the restriction d -> 2
can be removed.

DEFINITION. Let be a sentence whose type includes <, a binary relation symbol.
Let Sp< (p) denote the set of integers n, such that there is a model of of domain
D, {0,..., n- 1}, where < is interpreted as the natural order of Dn.

LEMMA 4.2. There is a first-order sentence d/ such that:
(i) has only one universal quantifier;
(ii) 4 is of type 3- {<, Fsuc, Co, ct} where < is a binary relation symbol, Fsuc is a

unary function symbol and Co, ct are constant symbols;
(iii) Let J/[ be a structure of type on the domain D, where < is the natural order

of Dn. Then

:( d iff Co O, c n 1 and Fsuc(e) e + 1 for each e Dn,

except that Fsu(n 1) O.

Proof. Properties (ii) and (iii) clearly hold for the conjunction of

Vx 3yx =Fsu(y) and (Vx ct)x <Fsuc(X) ^Fsuc(C)=Co.

COROLLARY 4.3. Let A be a set of positive integers in NTIME (n ). Then there
are a type and a quantifier-free formula q(x) of type " LI {<}, such that:

(i) q has only one variable x;
(ii) A Sp< (Vxq(x));

(iii) the arity of is 1.
Proof. Let q’ be the conjunction of the sentence tO of Lemma 4.2 and of the

sentences qa,"’, q7 (of Theorem 3.2) in which each occurrence of Suc (v, v’) is
replaced by Fs,c(V)= v’^ v Cl. (Moreover q5 and q7 are modified as in case G
NTIME (m 2) of Theorem 3.2(ii).) Let p" be the equivalent form of q’ with only one
universal quantifier. /xp (x) is the sentence constructed from q" as in Lemma 2.1. U

Let Prime denote the set of prime numbers. The usual algorithm for testing
whether an integer n (written in base 2, for example) is prime, is to divide n by the
[x/J first positive integers. This algorithm works in time x/n f(log n), for a poly-
nomial fi (Pratt’s nondeterministic algorithm [8, p. 342], [14] works in time f(log n),
for a polynomial fi) From Lemma 1.1, it follows that Prime NTIME (n). Indeed it
seems that most "natural" sets of integers belong to NTIME (n).

COROLLARY 4.4. There is a type and a prenex sentence q of type {<} such
that:

(i) Prime Sp<(p);
(ii) q has only one variable (universally quantified);
(iii) the arity ofT is 1.

Appendix. We want to prove"
PROPOSITION 2.4. For each sentence q of universal depth d, there is a sentence o’

with d universal quantifiers only and no existential quantifier, so that Sp (q)= Sp (q’).
LEMMA 2.4’. For each formula q(YCk) Of type , such that V-depth (q)= d, there

is a quantifier-free formula q *(YCk, ]a) Of type -*
_ , so that (i) and (ii) are true:

(i) Any finite structure, t, of type -, has an expansion (:tt, .hr) of type *, such
that for each k-tuple k in D (l),

implies (At, Jr) VYa* ak, Yd ).
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(ii) Given any finite structures, [ and (J//, W), of respective types and -*, and
any k-tuple ak in D(J/t),

implies l o (tk ).

From Lemma 2.4’, we obtain Proposition 2.4 for each sentence rp, by taking
o’= V;u,*(;a).

Proof of Lemma 2.4’. By induction on the "complexity" of the formula rp. We
build rp* as follows"

Case 1. For a quantifier-free formula
For all formulas tt0(."k ), I//1 (3k ), tt (3k, Z )’
Case 2. (gto. ^ tl)* to A I//
Case 3. (/zg)* *;
Case 4. (goV gq)*=[R($k) v g’0*($k, Ya)]^[R($k) V gl*($k, Ya)], where R is a

new k-ary relation symbol and d V-depth (o v 1);
Case 5. (]Zg/(YCk, Z))*=g/*(fCk, F(Yk),]a), where F is a new k-ary function

symbol and d -depth
We shall prove (i) and (ii) only for the hardest case, Case 4, and shall give a

sketch of proof of (i) in Case 5. The reader can easily complete the proof for the
other cases.

Case 4. r gt0 v 1. Let be a finite structure of type (the type of 99, and
also of o and 1). Let (/,.Ago) and (,.Agl) be the expansions of , of respective
types 0 (the type of o*) and 1 (the type of gt *), given by the induction hypothesis.
We can suppose -0 fq -1 . Let R be the new k-ary relation on D(), defined as
follows: for any k-tuple tik.in D (///),

R (ak) is true iff (///, .Agl) VpdP* (a, 37d).

Now suppose that /9(k) for a k-tuple k in D(:///). By the induction hypothesis,
we have either ([/l,.AgO)VPdP*O(dk, Yd) or (,.Agl)VPd4’*l(dk, Yd), and then as
a consequence,

(A.1) (.[, Wo, .Agl, R)Vpd[[R (ak) V /*O (ak, ;d)] ^ [--R (ak) V / (gtk, 37d)]].

So (i) is proved.
Now we prove (ii). Let (, .Ago, Wa, R) be a finite structure of type -o (-J -1 LI {R }

and let ak be a k-tuple in D() for which (A.1) is true. Then according to whether
R (ak) is true or false, we have

either <, W,> VYag,l* (tik, Ya) or <, Vo> VYag,o* (ak,)Ta),

and so 0 (ak).
Case 5. O(YCk)= z(fgk, Z). Let / be a finite structure of type - (the type of

o and also of ) and let (,W> be the expansion of / of type if* (the type of
ff*(#k, Z, 37d)), given by the induction hypothesis. We construct a k-ary function F
on D() as follows: for each ak in D(J//), F(ak) is a chosen element b such that
<M,W)Vyag*(a, b, 37a) if there exists one, and if not, then F(tk) is any element
in D(). It is clear that (i) is true with the expansion (M, W, F).

Acknowledgments. Many thanks to Pascal Michel for helpful technical dis-
cussions. Thanks to Peter Clote for his help.
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RECURSIVE PROGRAMS AS DEFINITIONS
IN FIRST ORDER LOGIC*

ROBERT CARTWRIGHT?

Abstract. Despite the reputed limitations of first order logic, it is easy to state and prove almost all
interesting properties of recursive programs within a simple first order theory, by using an approach we call
"first order programming logic". Unlike higher order logics based on fixed-point induction, first order
programming logic is founded on deductive principles that are familiar to most programmers. Informal
structural induction arguments (such as termination proofs for LISP append, McCarthy’s 91-function, and
Ackermann’s function) have direct formalizations within the system.

The essential elements of first order programming logic are:
(1) The data domain D must be a finitely generated set that explicitly includes the "undefined" object

3_ (representing nontermination) as well as ordinary data objects.
(2) Recursive programs over D are treated as logical definitions augmenting a first order theory of

the data domain.
(3) The interpretation of a recursive program is the least fixed-point of the functional corresponding

to the program.
Since the data domain D is a finitely generated set, the first order axiomatization of D includes a structural
induction axiom scheme. This axiom scheme serves as the fundamental "proof rule" of first order program-
ming logic.

The major limitation of first order programming logic is that every fixed-point of the functional
corresponding to a recursive program is an acceptable interpretation for the program. The logic fails to

capture the notion of least fixed-point. To overcome this limitation, we present a simple, effective procedure
for transforming an arbitrary recursive program into an equivalent recursive program that has a unique
fixed-point, yet retains the logical structure of the original. Given this transformation technique, it is our
experience that first order programming logic is sufficiently powerful to prove almost any property of
practical interest about the functions computed by recursive programs.

Key words, programming logic, recursive programs, recursive definitions, rewrite rules, semantics,
verification, program transformations

1. Introduction. It is a widely accepted part of computer science folklore that
first order logic is too limited a formalism for stating and proving the interesting
properties of recursive programs. Hitchcock and Park [16], for example, claim that
the termination (totality) of a recursively defined function on a data domain D cannot
be expressed by a sentence in a first order theory of D augmented by the recursive
definition. As a result of this criticism, most researchers developing programming logics
for recursive programs have rejected first order logic in favor of more complex higher
order systems, e.g., Milner [19], [20], [21], Park [23], deBakker [11], Gordon et al.
[15], Scott and deBakker [25], Scott [26], deBakker and deRoever [12]. Nevertheless,
we will show that a properly chosen, axiomatizable first order theory is a natural
programming logic for recursive programs. In fact, we will present evidence which
suggests that first order logic may be a more appropriate formalism for reasoning
about specific recursive programs than higher order logics.

* Received by the editors September 1, 1978, and in final revised form July 15, 1983.
? Computer Science Program, Department of Mathematical Sciences, Rice University, Houston, Texas

77251. This research was partially supported by the National Science Foundation under grants MCS76-
14293, MCS78-05850, and MCS81-04209.

A brief synopsis of the important definitions from mathematical logic (such as theory) appears in the
.next section.

374
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2. Logical preliminaries. As a foundation for the remainder of the paper, we
briefly summarize the important definitions and notational conventions of first order
logic. Readers who are unfamiliar with the fundamental concepts of first order predicate
calculus are encouraged to consult Enderton’s excellent introductory text [14].

In first order programming logic, recursive definitions are expressed within a
conventional first order logical language L with equality determined by a countable set
of function symbols G, a countable set of predicate symbols R, and an associated
"arity" function 4 G U R Nat (where Nat denotes the set of natural numbers)
specifying the arity p (required number of arguments) for each function and predicate
symbol p. Nullary function symbols serve as constants. The function and predicate
symbols are the names of the primitive operations of the data domain. The first order
language L determined by G, R, and : contains two classes of strings: a set of terms
constructed from variables and function symbols G, and a set of formulas constructed
from predicate symbols {=} U R applied to terms (forming atomic formulas) and from
logical connectives {V, ^, v, --a} applied to simpler formulas. Each function and
predicate symbol p is constrained to take exactly 4p arguments.

A context free grammar defining the (context free) syntax of terms and formulas
appears below.

(term) (constant) (variable) (function-symbol) ((termlist))
(termlist) - (term) (term), (termlist)

(atomic-formula) - (predicate-symbol) ((termlist)) (term) (term)
(formula) (atomic-formula) (variable)(formula) -(formula)

((formula) ^ (formula)) ((formula) v (formula))

An occurrence of a variable v in a formula a is bound if the occurrence is contained
within a subformula of the form v/3 or lv/3. An occurrence of a variable is free itt
it is not bound. Terms and formulas containing no occurrences of free variables are
called variable-free terms and sentences, respectively. Let a(x) denote a formula
possibly containing, the variable x and let denote an arbitrary term. Then a (t) denotes
the formula obtained from a(x) by replacing every free occurrence of x by t.

The additional logical connectives {(R), =, =, :1, !!} are defined as abbreviations
for combinations of primitive connectives as follows

(a@/3) abbreviates ((a ^ /3) v (-a ^/3))
(a =/3) abbreviates (-aa v/3)
(c =/3) abbreviates ((c =/3) ^ (/3 = a))
:i va abbreviates -V
:i!va(v) abbreviates :lv(oz(v) ^ Vu(o(u) u v))

where a and/3 denote arbitrary formulas and v denotes an arbitrary variable.
A formula with elided parentheses abbreviates the fully parenthesized formula

generated by giving unary connectives precedence over binary ones, ranking binary
connectives in order of decreasing precedence: {^} > {v,}> {=} > {=}, and associat-
ing adjacent applications of connectives of equal precedence to the right. For the sake
of clarity, we will occasionally substitute square brackets {[, ]} for parentheses within
formulas. In place of a sentence, a formula a abbreviates the sentence V3a where 7
is a list of the free variables of a. Similarly, the forms Vx’p a and t’p, where p is a
unary predicate symbol, abbreviate the formulas /x[p(x) a] and p(t), respectively.

Let S denote a (possibly empty) set of function and predicate symbols (with
associated arities) not in the language L. Then L U $ denotes the first order language
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determined by the function and predicate symbols of L augmented by S; L U S is
called an expansion of L.

Although logicians occasionally treat first order logic as a purely syntactic system
(the subject of proof theory), we are interested in what terms and formulas mean. The
meaning of a first order language L is formalized as follows. A structure M compatible
with L is a triple ([M[, Mr;, M) where [M[ (called the universe) is a set of (data)
values; M, is a function mapping each function symbol g G into a # g-ary function
on IMI; and Ml is a function mapping each predicate symbol r R into a #r-ary
predicate on [M[--a function mapping [M[r into the set Tr of truth values
{TRUE, FALSE}. The universe [M[ must be disjoint from Tr. Given a structure M
compatible with L and a state s (often called an interpretation function) mapping the
variables of L into [M[, every term in L denotes an object in [M[ and every formula
denotes a truth value. The meaning of terms and formulas of L is defined by structural
induction in the obvious way; for a rigorous definition, consult Enderton’s text.

Let H be a subset of the function symbols of the first order language L. A structure
M compatible with the language L is called an H-term structure iff the universe [M[
consists of equivalence classes of variable-free terms in L constructed solely from the
function symbols in H. A structure compatible with L is finitely generated iff there
exists a finite subset H of the function symbols of L such that M is isomorphic to an
H-term structure.

Let M be a structure compatible with the language L and let S denote a set of
functions and predicates over [M[ interpreting a set S of function and predicate symbols
not in L. Then M S denotes the structure consisting of M augmented by the functions
and predicates S; M t_J S is called an expansion of M.

In mathematical logic, it is often important to make a clear distinction between
a function symbol and its interpretation. To cope with this issue, we will use the
following notation. Function symbols appear in ordinary type and stand for themselves.
In contexts involving a single structure M, a function or predicate symbol p written
in boldface (p) denotes MG(p) or Ms(p), the interpretation of p in M. In more general
contexts, M[p] denotes the interpretation of the symbol p in the structure M. Similarly,
M[a][s] denotes the meaning of the formula or term a in M under the state s. If a

is a variable-free term or a sentence, then its meaning in a structure is independent
of the particular choice of state s. In this case, the abbreviated notation M[a] denotes
the meaning of a in M.

Let T be a set of sentences in the first order language L. A model of T is a
structure M compatible with L such that every sentence of T is TRUE in M. We say
that a structure M satisfies T or alternatively, that T is an axiomatization of M, iff M
is a model of T. The set of sentences T forms a theory iff it satisfies the following two
properties:

(i) Semantic consistency: there exists a model of T.
(if) Closure under logical implication: every sentence that is TRUE in all models

of T is a member of T.
Given a structure M compatible with L, the set of sentences in L that are TRUE in
M (denoted Th M) obviously forms a theory; it is called the theory of M. Given an
arbitrary set A of sentences of L, the theory generated by A is the set of sentences
that are logically implied by A. A theory T is axiomatizable itt there exists a recursive
set of sentences A c_ T such that A generates T. In this case, the set of sentences A
is called an effective axiomatization of T.

A theory T typically has an intended model called the standard model Any model
that is not isomorphic to the standard model is called a nonstandard model. Two
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structures compatible with the same language L are elementarily distinct iff there exists
a sentence $ in L such that S is true in one structure but not in the other. A theory
is incomplete iff it has elementarily distinct models; otherwise, it is complete. For any
structure M, Th M is obviously complete.

Given a recursively enumerable set of axioms A, there is a mechanical procedure
for enumerating all of the sentences that are logically implied by A. A first order
deductive system F is a finite set of syntactic rules (often formulated as productions in
a phrase structure grammar) that generates a set of sentences from A. A proof of a
sentence a from A in the deductive system F is simply its derivation in F from A. A
deductive system F is sound iff every sentence derivable from an axiom set A is logically
implied by A. A deductive system F is complete iff every sentence in the theory
generated by A is derivable (provable) in F from A. A remarkable property of first
order logic is the existence of sound, complete deductive systems for arbitrary axiom
sets A. Higher order logics generally do not share this property.

There are many different ways to formulate a sound, complete deductive system
for first order logic. Two approaches that are well known to computer scientists are
resolution and Gentzen natural deduction [17]. Of course, every first order deductive
system that is sound and complete derives exactly the same set of sentences. In this
paper, we will leave the choice of deductive system unspecified, since we are not
interested in the syntactic details of formal proofs. In our examples, we will present
proofs in informal (yet rigorous) terms that readily translate into formal proofs in a
Gentzen natural deduction system.

Let A and B be two structures compatible with the languages LA and LB,
respectively, where LA LB (i.e., Ln is an expansion of LA). B is an extension of A
iff Inl-= IAI and every operation (function or predicate) of A is the restriction of the
corresponding operation of B to ]AI. If IB] is identical to ]AI, then B is obviously an
expansion of A. Otherwise, Inl properly contains IAI, and B is called a proper extension

of A.
Let S-{Sl,." ", s} be a finite set of function and predicate symbols not in the

language LA. A definition for S over the structure A is a collection of sentences h in
the language L U S such that A can be expandedby adding interpretations for the
new function and predicate symbols in Sto a model for A. An unambiguous definition
for S over A is a definition that determines a unique expansion of A.

A formula a(x,..., Xk) in LA defines the k-ary predicate r in A iff a

contains no free variables other than X,’’’,Xk and for all states s over [A[,
A[a(Xl,..., Xk)][S]--r(s(xl), , S(Xk)). Similarly, a formula a(Xl,"’’, x, y) in LA
defines the k-ary function g in A iff a contains no free variables other than Xl," , Xk
and for all states s over [A[, A[a(Xl,..., x, y)][s] =TRUE iff g(s(xl),’’’, S(Xk))
s(y). A set S= {s,..., s,} of predicates and functions interpreting the symbols S is
definable in A iff there exist formulas a,..., a defining s,..., s,, respectively.

Let T be a semantically consistent set of sentences in the language LA and let A
be a model of T. A definition for S augmenting T is a collection of sentences A in tle
language LA S such that every model of T can be expandedby adding interpreta-
tions for the new function and predicate symbols in Sto a model for T t_J A. An
unambiguous definition for S augmenting T is a definition that determines a unique
expansion in every model of T. Note that a definition for S over a model of T is not
necessarily a definition augmenting T. Similarly, an unambiguous definition for S over
a model of T is not necessarily an unambiguous definition augmenting T.

A set S {sl," , s,} of predicates and functions over IAI interpreting the symbols
S is implicitly definable in the theory generated by Tiff there an unambiguous definition
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A for S augmenting T such that S is interpretation of S determined by A in the
structure A. The set S is explicitly definable in Tiff there exists a set of formulas
eel,""" a in LA, defining sl,’’", sn, respectively, in A. One of the most important
results in the theory of definitions, Beth’s Definability Theorem [2], asserts that a set
$ of functions and predicates over IAI is implicitly definable in T if[ it is explicitly
definable in T. Hence, we are justified in dropping the modifiers "implicitly" and
"explicitly" when discussing the issue of definability in a theory.

In first order programming logic, we formalize data domains as structures in first
order logic. In this context, a recursive program is simply a particular form of logical
definition over the data domain. Before proceeding with the development of the formal
theory, we will first examine and refute a widely accepted argument asserting that first
order logic is incapable of expressing and proving that functions defined in recursive
programs are total.

3. ltitchcock and Park’s critique of first order logic. As motivation for developing
a higher order logic for reasoning about recursive programs, Hitchcock and Park 16]
claim that first order logic is too weak to express and prove that the functions defined
in a recursive program are total. As justification, they consider the following recursive
program over the natural numbers:

(1) zero (n) IF n 0 THEN 0 ELSE zero n 1

where IF-THEN-ELSE is interpreted as a logical connective (as in reference [17]).
This program (1) can be expressed within the usual language of first order number
theory (eliminating the special IF-THEN-ELSE connective) by the sentence"

(2) Vn[(n=Ozero(n)=O)^(n#Ozero(n)=zero(n-1))].

While they concede that it is very easy to prove informally by induction that the zero
function is total on the natural numbers they claim that no sentence provable in a first
order theory of the natural numbers augmented by (2) can state that zero is total. To
justify this claim, they propose the following argument.

Let N denote the structure consisting of the natural numbers, the constants (0-ary
functions) {0, 1}, the binary functions {+, ,-} and the binary predicates {=, <}. By
the upward Lowenheim-Skolem theorem, the theory (set of true sentences) of N has
a nonstandard model N that is a proper extension of N. The additional objects in the
universe I1 are "nonstandard" natural numbers that are greater than all standard
integers (the elements of the universe INI). Hitchcock and Park assert that the recursive
definition for zero obviously does not terminate for all elements of I)l, since the
nonstandard numbers in this model have infinitely many predecessors. Given this
assertion, no sentence 0 provable in a first order theory for N can state zero is total
since 0 must be true in N.

The flaw in Hitchcock and Park’s analysis is their assumption that the interpretation
of the function symbol zero in a nonstandard model must be obtained by applying
standard computation (reduction) rules to (1). In the theory of program schemes [15],
where the concept of program execution is embedded in the formalism (just as the
meaning of logical connectives such as ^ and v is embedded in first order logic), this
point of view makes sense. But in first order logic, there is no notion of execution
constraining the interpretation of recursively defined functions. Recursive definitions
are simply equations that introduce new function symbols; they do not necessarily
have a computational interpretation. In fact, they may have no interpretation at all
(see example (4) below). In first order programming logic, we prevent potential
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inconsistencies by restricting logical theories to a form that guarantees that arbitrary
recursive definitions have computational interpretations in the standard model.

We can gain additional insight into the difference between first order logic and
the theory of program schemes by examining Hitchcock and Park’s example in more
detail. Let A be the standard first order Peano axiomatization for the natural numbers
including an axiom scheme expressing the induction principle (such an axiomatization
appears in Appendix I). Given A and the recursive definition of zero, we can easily
prove the sentence

(3) n[zero (n) 0]

by induction on n2. Both the base case and induction step are trivial consequences of
(2). Consequently. the function zero defined by (2) is identically zero in every model
of Aincluding N. Furthermore, since the models of A do not contain an object
(usually denoted _t_) representing a divergent computation,3 all of them must, by
definition, interpret every function symbol by a (total) function on the universe of the
model (the set of standard or nonstandard natural numbers). Hence, no recursion
equation augmenting A can define a nontotal function in any model of A. For the
same reason, some recursion equations such as

(4) f(x)=f(x)+l
define no function at all because they are inconsistent with the original theory.

The situation is more interesting if we start with an axiomatization of the structure
N/ consisting of N augmented by the undefined object _t_, instead of an axiomatization
for N. In this case, the interpretation for a function symbol f may be partial in the
sense that it maps some elements of the data domain into _t_. Note that _1_ is an ordinary
constant which is forced by the axiomatization to behave like a "divergent" or
"undefined" data object. It is not a new logical primitive.

Within the first-order language for N+, we can assert that f is total on INI by
simply stating

Vx, x,[(x +/-) ^... ^ (x, _) = l’(x, x,) +/-].

Let A+ be an axiomatization (including an induction axiom scheme) for N+ analogous
to Peano’s axioms (in first order form) for N. A suitable formulation of A+ appears
in Appendix I. Given A+ and the recursive definition (2), we can easily establish that
the zero function is total on IN[ by proving the sentence

In[n _t_ zero (n) _1_].

The proof (which appears in Appendix II) is a direct translation of the informal
structural induction proof that Hitchcock and Park cite in their paper. Consequently,
we are forced to conclude that a careful analysis of Hitchcock and Park’s example
actually supports the thesis that the totality of recursively defined functions can be
naturally expressed and proven within first order logic. We will rigorously establish
this result in the next section.

4. Basic concepts of first order programming logic. As we suggested in the
previous section, the undefined object _t. plays a crucial role in first order programming

Note that adding new function symbols to L implicitly augments A by additional instances of the
induction axiom scheme (containing the new symbols).

No object in any model of A--including those within nonstandard integers--has the same properties
as the divergent object _t_. For instance, successor (_t_)= _t_, yet in any model of A, Vx successor (x) x.
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logic, just as it does in higher order logics such as LCF [15], [19], [20], [21]. If we fail
to include the undefined object _1_ in the data domain, recursive definitions like

[(x)

on the natural numbers N are inconsistent with the axiomatization of the domain; the
interpretation of f must be a (total) function on the natural numbers, yet no such
function exists.

Consequently, first order programming logic imposes certain constraints on the
data domain (and hence on any corresponding theory). In particular, the program data
domain must be continuous. The following collection of definitions defines this property
and several related concepts.

DEFINITION. A complete partial ordering c_ on a set S is a binary relation over S
such that:

(i)
__

is a partial ordering on S (a reflexive, antisymmetric, and transitive relation
on S).

(ii) The set S contains a least element +/- (under the partial ordering ).
(iii) Every chain (denumerable sequence ordered by _) Xo

_
x
_
xe__.., has a

least upper bound.
A set S with a corresponding complete partial ordering

_
is called a complete partial

order (abbreviated cpo); the partial ordering
_

is called the approximation ordering
for S.

DEFINITION. Given cpo’s A and B, a function f" A -> B is continuous iff the image
of an arbitrary chain X x0

_
x c_ x2 c_. in A is a chain in B and the image of the

least upper bound of X is the least upper bound of the chain image.
There are two standard methods for building composite cpo’s from simpler ones.

First, given the cpo’s Am,’"" ,am under the approximation orderings _,..., --m,
respectively, the Cartesian product A x... Am forms a cpo under the ordering

_
defined by

-Y= A [xi-,Yi].

Second, given the cpo A under A and the cpo B under n, the set of continuous
functions mapping A into B forms a cpo under the ordering defined by

g
__
h -= VX A[g($)

___
n h(X)].

DEFINITION. A structure D including the constant 2_ is continuous under the binary
relation

___
on IDI iff IDI forms a complete partial order under

___
and every function

f" IDI IDI in D is continuous.
DEFINITION. Given a continuous data domain D compatible with the language

Lo determined by the function symbols G and the predicate symbols R, a recursive
program P over ID[ has the form:

{fl($1) tl, f2($2)’- t2,""", fn ($,)= t.}

where n > 0; the set F of function symbols {fl, ]2,’", f} is disjoint from G U R;
$1, $2," ",$, are lists of variables; and tl, t2," , t are terms in the language LD U F
such that each term t contains no variables other than those in St. The intended
meaning of the n-tuple of function symbols If1,""", f,] introduced in the program P
is the least fixed-point of the functional

P All,""", f" [A$1" tl,""", A:n" t.]

corresponding to P.
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By Kleene’s recursion theorem (most broadly formulated by Tarski [27]), P must
have a least fixed-point [fl,’",fn], because it is a continuous mapping from the
cpo(IDI IDI)’" (IDI IDI) into itself. A proof that P is continuous can be
found in either Cadiou [5] or Vuillemin [28].

Although continuity ensures that recursive programs are well-defined, it does not
guarantee that they can be implemented on a machine. For this reason, program data
domains typically satisfy several additional constraints which we lump together under
the label arithmeticity. The most important difference between an arithmetic domain
and a continuous domain is that the former must be finitely generated. First order
programming logic critically depends on this property, because it presumes that the
domain obeys the principle of structural induction. The remaining properties that
distinguish arithmetic domains from continuous ones (items (i) and (iii) in the definition
below) are not essential; they are included solely to simplify the exposition.

DEFINITION. A structure D is flat iff it is continuous under the binary relation
_

defined by the identity

a b=[a b v a 3-].

DEFINITION. A continuous function f’Al" "Am-->B is strict iff
f(xl," , Xm) 3_ when any argument xi 3_.

DEFINITION. Let D be a data domain (structure) compatible with the language
Lo determined by the function symbols G and the predicate symbols R. D is an
arithmetic domain iff it satisfies the following three properties:

(i) D is flat.
(ii) D is finitely generated. Hence, every element d IDI has at least one name

consisting of a variable-free term c such that D[a] d. Note that the finite generation
property implies that D obeys induction on the structure of names (often called
"structural induction" or "generator induction"). We can formulate this principle as
follows. Let Gen {gl,""", gk} denote a minimal subset of G (the function symbols
of L) that generates IDI. Generator induction asserts that for every unary predicate
o(x) over D,

(*) [ A Vx,, x,,[(x) ^ ^ ,,(x,,) (gi(x, xe,,))]] Vx (x).

In the literature on programming languages, the generator symbols Gen are often
called constructors. Note that a minimal set of generators Gen for a domain D is not
necessarily unique.

(iii) The set of functions G includes the constants (lrue, false} and the special
function if-lhen-else which partitions ]D] into three nonempty disjoint subsets Dtrue,
Drains, D+/- such that

true Dtrue
false Dfalse
_t_ D+/-
if p then a else/3 a if p Dtrue
if p then a else/3 =/3 if p Dfals
if p then a else/3 3- if p D+/-.

All functions in G other than if-then-else must be strict.
With the exception of the induction principle (*) appearing in property (ii), the

preceding list of conditions on D can be formally expressed by a finite set of sentences
in the language Lr). The induction principle (*) cannot be expressed in Lo, because it
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asserts that induction holds for all unary predicatesman uncountable set with many
members that cannot be defined within LD. We will explore this issue in depth in 7.

Fortunately, confining our attention to arithmetic data domains does not sig-
nificantly limit the applicability of first order programming logic. With the exception
of domains including an extensional treatment of higher order data objects (such as
functions), the data domain of any plausible recursive programming language has a
natural formalization as an arithmetic structure. At the end of this section, we will
discuss how to extend an arbitrary, finitely generated domain D excluding _L to form
an arithmetic domain D’ with universe ID] {+/-}.

Before we state and prove the fundamental theorem of first order programming
logic, we must resolve a subtle issue concerning the status of induction in arithmetic
domains that are augmented by definitions. Formalizing induction in first order logic
requires an axiom scheme" a template with a free formula parameter. The scheme
represents the infinite recursive set of sentences consisting of all possible instantiations
of the template. Let 1) be a structure that is finitely generated by the function symbols
Gen {g,..., g}. Obviously, the corresponding induction principle (*) holds in D.
In a first order axiomatization AD for D, we typically include the following axiom
scheme formalizing the induction principle (*)

(**) [.N.N [Xl’ Xg’[(Xl) ^ ^ (Xgi) (gl(Xa’ X:g’))]] VX O(X)
k

where (x) is an arbitrary formula in LD defining a unary predicate. The scheme
asserts that structural induction holds for every definable unary predicate in the domain.
Any structure satisfying the structural induction scheme (**) is called an inductive
domain with generator set Gen. The only difference between an inductive domain and
a finitely generated domain is that induction may fail in an inductive domain for
predicates that are not definable.

When we augment a finitely generated domain D by a definition A introducing
new function and predicate symbols S, how should we interpret the induction scheme?
Does the formula parameter in the scheme range over formulas in the augmented
language or formulas in the original language? Assuming that we are interested in
constructing the strongest possible theory for the expanded structure, the answer to
the question is clear. Since the universe of the expanded structure is identical to the
universe of the original domain, the induction scheme must hold for all predicates that
are definable in ttie expanded structure (using the augmented language). Consequently,
we follow the convention that a definition A over a finitely generated domain D
implicitly includes all of the new instances of the structural induction scheme (**) for
D corresponding to the language extension. In this context, AD U A denotes the set
of axioms containing AD, A, and all new instances of the induction scheme (**). For
reasons that will become clear when we discuss nonstandard models, we follow exactly
the same convention for definitions over inductive domains" a definition A over an
inductive domain D implicitly includes all new instances of the induction scheme (**)
for D. To emphasize this convention, we will use the term arithmetic definition to refer
to any definition that implicitly includes new instances of the corresponding induction
scheme.

THEOREM (fundamental theorem). Let P be a recursive program

{fa(Zl) tl, f2()2) t2,’’’, fn(n)= tn}

over an arithmetic domain D, and let F denote the least fixed-point of the functional of
P. Then P is an arithmetic definition over D satisfying the model D U F.
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Proof. By Kleene’s recursion theorem [27], the functional for P has a least
fixed-point F If1," , f.]. Hence,

where ti denotes the interpretation of ti given that the primitive function symbols in
ti are interpreted by the corresponding functions in D and the function symbols
fl, ",fn are interpreted by f_, , f., respectively. This fact can be restated in the form

l<i<=n

where D? denotes the structure D tO F, and s is an arbitrary state over ID?[. Since the
universe IDWI is identical to the universe IDI, the induction principle (*) holds for all
unary predicates q(x) over Io*l including those defined by formulas in LoU
{fl,""", f,}. Hence, Dt is a model for PU (**) extending D.

This theorem formally establishes that we can interpret recursive programs as
definitions in first order logic. Consequently, given a recursive program P over an
arithmetic domain D, we can prove properties of P by applying ordinary first order
deduction to a suitable first order axiomatization Ao of D (including the structural
induction scheme (**) for D) augmented by the equations in P (which are simply first
order formulas). Using this approach, we can prove almost any property of practical
importance about P, including totality. Most proofs strongly rely on structural induction.

A minor impediment to the practical application of first order programming logic
is the fact that most axiomatizations appearing in the literature (e.g., the first order
formulation of Peano’s axioms) specify domains that exclude the special object _1_. In
structures that are not specifically intended to serve as domains for computation, an
object representing a divergent computation is superfluous.

Fortunately, it is easy to transform a first order axiomatization Ao for a finitely
generated data domain D that excludes _t_ into an axiomatization Ab for a correspond-
ing arithmetic domain D’ that includes _1_. Although the syntactic details of the
transformation are beyond the scope of this paper, the main features warrant discussion.
The transformation breaks down into three parts.

First, to satisfy the continuity property required by Kleene’s theorem, the transfor-
mation designates two distinct elements of Iol as the constants {true, false}, adds the
undefined object 2_ to IDI, and replaces the computable predicates of D (those that
can appear in program text) of the data domain by corresponding strict boolean
functions.

Second, the transformation extends each primitive function g in D to its strict
analog over D U {_l_ }. Specifically, for each axiom in the original set Ao, the transforma-
tion generates a corresponding axiom with restrictive hypotheses that prevent variables
from assuming the value _L. The transformation also generates new axioms asserting
that each function g is strict.

Third, to accommodate nontrivial recursive definitions, the transformation adds
the standard ternary conditional function if-then-else to the collection of primitive
functions. While if-then-else is not strict (since if true then x else _t_ x), it is continuous.
Without if-then-else, every recursive function definition (that actually utilizes recur-
sion) diverges for all inputs, because all the other primitive functions are strict.

The new data domain D’ retains the structure of the original one, yet it is clearly
an arithmetic domain. Appendix I presents a sample axiomatization for a data domain
(the natural numbers) that does not include _1_ and transforms it into one for an
arithmetic domain that does.
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5. A sample proof. As an illustration of the utility of first order programming
logic, consider the following simple example. Let fiat and flat1 be recursively defined
functions over the domain of LISP S-expressions defined by the following equations:

fiat (x) fiat 1 (x, NIL)
flatl (x, y)=if atom x then cons (x, y) else flatl (car x, flatl (cdr x, y)).

The function fiat returns a linear "in-order" list of the atoms appearing in the
S-expression x. For example

flat [(A. B)] (A B),
flat [(a. (B. a))] (a B a),
flat [(A)] =(A),
flat [((a. C). B)]= (A C B).

We want to prove that flat1 (x, y) terminates for arbitrary S-expressions x and y
(obviously implying flat (x) is total for all S-expressions x). In the theory of S-
expressions augmented by {_t_}, we can formally state and prove this property in the
following way, given that Sexpr (x) abbreviates the formula x _t_.

THEOREM. VX, y’Sexpr [flatl (x, y)’Sexpr].
Proof We prove the theorem by structural induction on x.
Basis" x is an atom.

Simplifying flatl (x, y) yields cons (x, y) which must be an S-expression since x and y
are S-expressions.

Induction step: x has the form cons (hd, tl) where hd" Sexpr and tl" Sexpr.
Given the hypotheses

(a) Vy’Sexpr[flatl (hd, y)’Sexpr], and
(b) Vy’Sexpr [flatl (tl, y)’Sexpr],

we must show

’y" Sexpr [flatl (cons (hd, tl), y) Sexpr].

Since hd, tl, and y are S-expressions,

flatl (cons (hd, tl), y) =flatl (hd, flatl (tl, y)).

By induction hypothesis (a), flatl (tl, y) is an S-expression. Given this fact, we
immediately deduce by induction hypothesis (b) that flatl (hd, flat(tl, y)) is an
S-expression. [3

Some additional examples appear in Appendix II.

6. Computations in first order programming logic. Although we have shown that
recursive programs can be interpreted as definitions over an arithmetic data domain,
we have not yet established that there is a plausible definition of computation that is
consistent with our logical interpretation. Since conventional first order logic does not
include any notion of computation (proof is the closest analogue), we must invent one
specifically for first order programming logic. Fortunately, there is a simple syntactic
definition of the concept based on "term rewriting systems" that makes sense in the
context of first order logic. The critical idea is that computation is a uniform (possibly
nonterminating) procedure for transforming a variable-free term into its meaning4 in
the standard model using ordinary first order deduction.

4 More precisely, into a "canonical" term denoting its meaning.
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Term rewriting systems for recursive programs have been extensively investigated
by Cadiou [4], Vuillemin [28], [29], Rosen [24], Downey and Sethi [13], and O’Donnell
[22], but not in the context of first order theories of program data. The following
formulation of first order computation is a distillation and adaptation of the work of
Cadiou [5] and Vuillemin [28], [29] recast in the terminology of first order logic.

DEFINITION. A structure D with function set G is effective iff it satisfies the
following two conditions:

(i) Every element d [D[ has a unique canonical name can (d) that is a variable-
free term denoting d in the first order language Lo excluding if-then-else. For simplicity,
we require that can (_t_) be _1_. In addition, the set of canonical names must be a recursive
subset of the set of all variable-free terms in L9.

(ii) The graph of every function g in G is recursive, given that we denote objects
of the universe ]D[ by their canonical names.
All data domains in conventional programming languages satisfy these constraints.

DEFINITION. Let P be an arbitrary recursive program over an effective, arithmetic
domain D defining the function symbols F {f,..., f}, and let Lp be the language
Lo F. A set of productions (or rewrite rules) over Lp is a set of ordered pairs u v
where u and v are variable-free terms of Le. Let Y denote the set of left-hand sides
of O: {ulu v O}. is effective itt the following three conditions hold.

(i) Every left-hand side in Y corresponds to a unique production in O.
(ii) Y is a recursive subset of Le.
(iii) Every noncanonical variable-free term in Lt, contains a subterm in Y.
DEFINITION. Let be an effective set of productions in the language Le. Given

an arbitrary variable-free term in Le, the O-reduction of is the countable (finite or
infinite) sequence of variable-free terms z to,’", t,. such that t0-t, each term
ti has a successor if and only if it is noncanonical, and each successor term t+ is
generated from its predecessor t by locating the left-most subterm that matches a
left-hand side of some production a in and replacing it by the right-hand side of
a. The result of a reduction - is the meaning in D of the last term t’ of z (D[t’]) if
is finite and _1_ otherwise.

Remark. A reduction z is finite itt the last term in z is a canonical name.

6.1. Call-by-name computation. The reduction scheme that directly corresponds
with the logical meaning of recursive programs (as defined in 4) is called call-by-name
computation.

DEFINITION. Let Le be the first order language corresponding to an effective,
arithmetic domain D augmented by a recursive program P defining the function symbols
F {f,..., f,}. The call-by-name production set fp for P is the set O t.J (F
where O, OF, and Or are defined as follows.

(i) O is the set of productions

{g(6) rig G-{if-then-else}; is a # g-tuple of canonical names;
v is the canonical name for g(:)}

where G denotes the set of primitive functions of D. Since D is an effective domain,
O is a recursive set.

(ii) 0 is the set of productions

{if then u else v u lt can (Dtrue); u, v are variable-free terms in Lp}
{if then u else v v lt can (Dfale); u, V are variable-free terms in Lp}
{if then u else v Lit can (D); u, v are variable-free terms in Lp}

where can (S) stands for {TdlYd is the canonical name for an element d
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specifies how to reduce conditional expressions where the first argument (the Boolean
test) is in canonical form. It is clearly recursive.

(iii) (I)F is the set of productions

{j](/2) --) ti()Ifi() ti() E P; is a :]-tuple of varialle-free terms in Lp}

specifying how to expand an arbitrary function application.
LEMMA. (p is effective.
Proof. Immediate from the definition of p and the fact that D is effective. The

proofs of conditions (i) and (ii) are trivial. Condition (iii) is a routine induction on the
structure of terms. ]

DEFINITION. The call-by-name computation (with respect to the program P) for
a variable-free term in Lp is the p-reduction of t.

The following theorem establishes that call-by-name computation transforms
variable-free terms in Lp into their meanings in the structure D F.

THEOREM. Let D be an effective, arithmetic domain, and let P be an arbitrary
recursive program over D defining function symbols F. For every variable-free term in
Lp, the result of the call-by-name computation for with respect to P is identical to
D F It] where F denotes the least fixed-point of the functional P for P.

Proof. See reference [9]. It is a straightforward but tedious induction on an
appropriate measure of the complexity of the term t. [3

6.2. Call-by-value computation. Up to this point, we have confined our attention
to program semantics consistent with call-by-name computation. However, most prac-
tical programming languages (e.g., LISP, PASCAL, C) employ call-by-value computa-
tion which has slightly different semantics. Call-by-value computation is identical to
call-by-name computation, except for the productions concerning the expansion of
program functions F.

DEFINITION. Let Lp be the first order language corresponding to an effective,
arithmetic domain D augmented by a recursive program P defining the function symbols
F {fl," fn}. The call-by-value production set (p+/- for P is the set U (I)F+/- -J (I)/f
where and i are defined exactly as they are in call-by-name computation, and

Fl is defined as the set of productions

{f(t) ti()lf()=t()EP; is a #f-tuple of
canonical terms excluding can (+/-) }.

LEMMA. tpl is effective.
Proof. Immediate from the definition of effective production set.
DEFINITION. The call-by-value computation (with respect to program P) for a

variable-free term in Lp is the p+/--reduction of t.
The main consequence of this change is that an application of a program function

1] is not expanded until all the arguments are reduced to canonical form. Fortunately,
there is a simple semantic relationship between call-by-value and call-by-name compu-
tations. In fact, it is trivial to transform a program P into a slightly different program
P_---called the strict transform of Psuch that the call-by-name meaning of P+/- is
identical to the call-by-value meaning of P.

DEFINITION. Let P be an arbitrary recursive program

{fl(.l)--tl,"""

over an arithmetic domain D. The strict transform Px corresponding to P is the program

{f,(g,) =if (gl) then else +/-,... ,fn(g.) =if 6(2.) then t. else +/-}
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where 6 is the primitive "is-defined" function5 such that:

true if +/- ,
6 (i)

+/- otherwise.

Given this transformation, the call-by-value functional P_L for P is simply the (call-by-
name) functional for P_"

fl,""", f," [A$1.if 6($) then tl else _L,..., A$,.if 6($,) then t, else _L].

The following theorem establishes that call-by-value computation transforms
variable-free terms in L. into meanings in the expansion of D determined by the
functional P..

TIaEOREM. Let D be an effective, arithmetic domain, and let P be an arbitrary
recursive program over D defining the function symbols F. For every variable-free term
in Le, the result of the call-by-value computation for is identical to D U F [t] where

F denotes the least fixed-point of the call-by-value functional P+/- for P.
Proof. A proof of this theorem, an induction on the complexity of t, appears in

[9]; proofs of similar theorems appear in [4] and [26]. [3

To avoid confusion between the call-by-name and call-by-value interpretations
for recursive programs, we will use the following terminology. Unless we specifically
use the qualifier "call-by-value", the intended meaning of a program P defining the
function symbols F is the least fixed-point of the (call-by-name) functional P for
Pmthe call-by-name interpretation for F. In contrast, the intended meaning of a
call-by-value program P is the least fixed-point of the call-by-value functional PI for
Pmthe call-by-value interpretation for F.

6.3. Proving properties of call-by-value programs. Since it is trivial to translate
call-by-value recursive programs into equivalent (call-by-name) recursive programs,
first order programming logic obviously accommodates call-by-value semantics. Given
a first order axiomatization Ao for the domain D and a call-by-value recursive program
P over D, we augment Ao by the recursion equations P. and the definition of the
function 6

[x +/- 6(x)=true]^ 6(+/-)= +/-.

A logically equivalent but conceptually simpler approach is to directly augment Ao
by a set of axioms Pax characterizing P; it eliminates the function 6 and the construction
of the strict transform P_. In the direct approach, each function definition

fi(i)=ti

in the original program P, generates two axioms

Xi +/- ^" ^ Xfi +/- fi(i) ti,
X +/- V’V Xf +/- 22)fi(i): +/-

defining f in Pax. Note that Pax and P are logically equivalent sets of formulas. A
proof that the expanded domain D U F, where F denotes the least fixed-point of the
call-by-value functional P., is a model for the augmented axiomatization Ao U Pax
appears in reference [7].

Call-by-value programs are an attractive alternative to call-by-name programs
because they are easier to implement and programmers seem more comfortable with

Technically, 8 is a countable family of functions i,,, m 1, 2,... where ,, is the m-ary version of
the "is-defined" function. It should be obvious from context which instance of i is required.
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their semantics. In addition, we will show in 8 and Appendices III and IV that the
complete recursive program corresponding to an arbitrary call-by-value program is
easier to describe and understand than the equivalent construction for a call-by-name
program.

7. Metamathematics of first order programming logic. Although the fundamental
theorem of first order programming logic clearly establishes that recursive programs
are arithmetic definitions over an arithmetic domain D, it ignores two important issues.
First, can recursive programs be ambiguous (as definitions over the domain D)? Second,
do recursive programs have a plausible interpretation in nonstandard models (of a
first order theory for D)?

The answer to the first question is significant. In fact, it motivates one of the major
technical results of this paper" the complete recursive program construction. Assume
that we are given a recursive program P over the domain D defining the function
symbols F {f1,""", fn}. If we augment D by any fixed-point F of the functional P
for P, the expanded structure D UF is a model for P U (**). Interpreting P as an
arithmetic definition for F over D captures the fact that F is a fixed-point of P, but
not the fact that it is the least fixed-point.

What are the implications of this form of incompleteness? If every function in the
least fixed-point of the functional for P is total, the problem does not arise because
the least fixed-point is the only fixed-point. On the other hand, if some function in
the least fixed-point is partial, there may or may not be additional fixed-points. In the
former case, we cannot prove any property of the least fixed-point that does not hold
for all fixed-points. For example, we cannot prove anything interesting about the
function f defined by

(5) f(x) -f(x)

since any interpretation for f over the domain satisfies (5), not just the everywhere
undefined function.

In contrast, the program

(6) f(x)--f(x)/ 1,

which determines exactly the same function , is unambiguous. Consequently, given
program (6), we can easily prove that

Vxf(x)=2_

in first order programming logic.
There are several possible solutions to this problem. John McCarthy [18] has

suggested adding a "minimization" axiom scheme pp (containing a free function
parameter for each function symbol) to the definition of a program P. The scheme
asserts that approximates every definable set of functions F’ satisfying the equations
P (P_ if P is a call-by-value program). In this paper, we will develop a more direct
approach to the problem: a method for mechanically translating an arbitrary recursive
program into an equivalent recursive program with a unique fixed-point.

DEFINITION. A (call-by-name or call-by-value) recursive program P over the
domain D is complete if[ the corresponding functional has a unique fixed-point.

In the next section of this paper, we will prove that every recursive program can
be effectively transformed into an equivalent complete recursive program. As a result,
we can reason about recursive programs that define partial functions by first transform-
ing the programs into equivalent complete programs. Fortunately, the transformation
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process leaves the logical structure of the original program intact--so that the program-
mer can understand it.

The answer to the second metamathematical question raised at the beginning of
this section is even more interesting than the first one, although its practical significance
is less apparent. The behavior of recursive programs in nonstandard structures does
not concern programmers interested in proving properties of recursive programs over
the standard arithmetic domains supported by language processors. Regardless of the
meaning of recursive programs in nonstandard models, first order programming logic
provides a sound, yet intuitively appealing formal system for deducing the properties
of recursive programs. On the other hand, as computer scientists interested in the
deductive and expressive power of various logics, we can gain insight into the relative
strength of first order programming logic by settling the question of how to interpret
recursive programs over nonstandard structures.

Before we can make precise statements about nonstandard models, we need to
introduce some additional terminology.

DEFINITION. Assume that we are given an arithmetic domain D generated by the
finite set of unction symbols Gen. A set T sentences in the language LD compatible
with D is an arithmetically complete axiomatization of D iff

(i) D is a model of T.
(ii) T logically implies all the sentences expressing the arithmetic properties of

D (listed in the definition of arithmetic domain in 4) except the structural
induction principle (*) (which cannot be expressed within a first order theory).

(iii) T logically implies that the structural induction axiom scheme (**) for D
(stated in 4), holds for every formula p(x) in Lb.

(iv) For every pair of variable-free terms u and v in Lo, either the sentence u v
or the sentence u v is derivable from T.6

Remark. The axiomatization of N+ in Appendix I is arithmetically complete.
Given an arithmetic domain D, it is a straightforward but tedious (and error-prone)
exercise to devise an effective, arithmetically complete axiomatization for D. Note that
Th D is an arithmetically complete axiomatization for D. Unfortunately, G6del’s
incompleteness theorem implies that for nontrivial domains D, Th D is not recursively
enumerable.

An arithmetically complete axiomatization T for an arithmetic domain D has
many distinct (nonisomorphic) models. The nonstandard models (models other than
D) are not necessarily arithmetic, since induction may fail for unary predicates that
are not definable. On the other hand, they are inductive, because they satisfy the
structural induction scheme (**) for D.

DEFINITION. A structure D’ is weakly arithmetic iff it is a model of an arithmetically
complete set of sentences T.

The only difference between an arithmetic and a weakly arithmetic model of T
is that induction may fail in a weakly arithmetic model for predicates that are not
definable in T. Obviously, the nonstandard models corresponding to an arithmetic
domain D are weakly arithmetic. Given a recursive program P defining the function
symbols F over the arithmetic domain D, we can interpret P as a definition over an
arbitrary nonstandard model D’ if we can find an interpretation F’ for F such that
D’tA F’ is a model for P t2 (**).

Although none of the theorems that we prove in this paper depend on this property, it ensures that
an arithmetically complete axiomatization has a unique (up to isomorphism) arithmetic model. In addition,
it guarantees that arithmetically complete axiomatizations for nontrivial arithmetic domains support elemen-
tary syntax (see below).
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At first glance, the proof of the fundamental theorem appears to generalize without
modification to nonstandard models, because it does not explicitly rely on the fact that
the domain D is arithmetic rather than weakly arithmetic. Let P be a recursive program
over an arithmetic domain D defining the function symbols F, let D’ be a nonstandard
model corresponding to D, and let P’ denote the functional for P over D’. Then the
least fixed-point F’ of P’ obviously satisfies the equations P, implying that D’t.J F’ is a
model for P. Hence, the only remaining step in confirming that the proof generalizes
to nonstandard models is to show that the induction scheme (**) holds for definable
predicates in the extended language Lo t..J F--a property that appears plausible, if not
obvious.

Nevertheless, there is a simple counterexample to this conjecture. Consider the
following program defined over a nonstandard model gl7 of the natural numbers
augmented by _t_ (axiomatized as in Appendix I):

(7) zero(n) if n equal 0 then 0 else zero(n 1).

This program is essentially identical to the one that Hitchcock and Park [16] used to
argue that first order logic was incapable of expressing and proving that the function
defined by (7) is total. The least fixed-point of the corresponding functional is the
function zero defined by:

f0 if x is a standard natural number,
zero(x)

_1_ otherwise (x is _t_ or nonstandard).

Yet, we have already established the fact in refuting Hitchcock and Park’s argument
( 3 and Appendix II) that we can prove (using structural induction) that the zero
function defined in equation (7) is identically zero everywhere except at _1_.

Clearly, our naive approach to generalizing the proof of the fundamental theorem
to nonstandard models will not work. Our assumption that a recursive program P over
a weakly arithmetic structure D’ can be interpreted as a definition introducing a set
of functions F’ that

(i) forms the least fixed-point of the functional for P, and
(ii) obeys the structural induction principle (**)

leads to a contradiction. Where did we go wrong?
Ironically, we made essentially the same mistake as Hitchcock and Park: we

assumed that a recursive program over a nonstandard structure should be interpreted
as the least fixed-point of the corresponding functional. In the preceding example, the
least fixed-point of the functional for equation (7) over N is not definable in N. For
this reason, it need not obey the structural induction principle.

In order to generalize the fundamental theorem to nonstandard models, we must
develop a more sophisticated interpretation for recursive programs than the least
fixed-point of the corresponding functional. Since first order programming logic formal-
izes recursive programs as arithmetic definitions over the data domain, we must find
an interpretation for recursive programs over nonstandard models that satisfies the
structural induction principle. From the preceding example, it is obvious that the least
fixed-point interpretation does not. What is a reasonable alternative? For induction
to hold, the interpretation must be definable in the original domain D. Hence, we
must limit our attention to definable fixed-points of the functional for a recursive
program--abandoning our reliance on the familiar least fixed-point construction from
Kleene’s recursion theorem. In its place, we must develop a new approach to construct-
ing fixed-points of functionals that always determines definable functions.

A model containing an element with infinitely many predecessors.



RECURSIVE PROGRAMS AS DEFINITIONS IN FIRST ORDER LOGIC 391

A detailed, systematic development of the subject of definable fixed-points is
beyond the scope of this paper (the interested reader is encouraged to consult reference
[10]). However, the correct formulation of the generalized fundamental theorem rests
on a single lemma which is easy to explain and to justify. The critical lemma is a
generalization of Kleene’s recursion theorem; it asserts that every continuous functional
over an appropriate domain D has a least definable-fixed-point. The lemma applies
to weakly arithmetic domains that support what John McCarthy calls elementary syntax.
Fortunately, nonstandard models of nontrivial, arithmetically complete theories possess
this property.

Elementary syntax is a definition that introduces functions for encoding finite
sequences over the universe as individual elements of the universe. We formalize the
notion as follows.

DEFINITION. An arithmetically complete axiomatization T supports elementary
syntax iff there exists an unambiguous definition Elem augmenting T introducing a
set of functions and predicates Seq including the constant 0; unary functions last,
mkseq, length, and sue; the binary function (append); and unary predicates seq and
nat satisfying the following sentences:

(a) suc (+/-)= _t_

(b) ’x[x:nat (x=O::!!y[x=suc (y) ^ y :nat])]
(c) 0(0) ^ Vx :nat [q(x) = q(suc (x))] = Vx:nat 0(x)

for every formula 0(x) in Lo t_J Seq
(d) mkseq (_1_)= _1_

(e) x[x seq--- ::!!d(d +/- ^ [mkseq (d)= x:l!y:seq x =mkseq (d) y])]
(f) Vx, y, z:seq [x (y z) (x y) oz]
(g) /x, y[x= Z v y= Z = x y=_t.]
(h) /d[last (mkseq (d))= d]
(i) Vy:seq /d[d _1_ =last (mkseq (d)o y) =last (y)]
(j) ’d[d +/- = length (mkseq (d)) =suc (0)]
(k) ’y :seq /d[d +/- =length (mkseq (d) y)=suc (length (y))]
(1) ’q’y[q(mkseq (y))] ^ lx:seq[q(x)=fy 0(mkseq (y)o x)] =’’x:seq q(x)

for every formula q(x) in Lo t.J Seq.
Remark. Elem implicitly determines a representation function embedding the

finite, nonempty sequences over IDI in IDI. In the sequel, we will denote the element
of IDI representing the sequence Is1,’’’, Ski by (Sl,""",

DEVINITION. A weakly arithmetic domain D’ supports elementary syntax iff there
exists a corresponding arithmetically complete axiomatization Ao that supports
elementary syntax.

Given this terminology, we can succinctly state the lemma as follows.
LEMMA (generalized recursion theorem). For every recursive program P over a

weakly arithmetic domain D’ supporting elementary syntax, the corresponding functional
P’ has a least definable-fixed-point.

Proof A detailed proof of this lemma appears [10]; we will only sketch the main
ideas. Let D and T be the arithmetic domain and the arithmetically complete axiomatiz-
ation, respectively, corresponding to D’. By Kleene’s least fixed-point theorem for
continuous functionals, the functional P for P in D has a least fixed-point [Ix,’", f].
It is a straightforward, but tedious exercise to construct formulas (called program
formulas) 1($1, Y),""", .($., Y) in Lo kJSeq such that D[i(gl, y)][s] is TRUE itt
f(s(g)) s(y). The key idea underlying the construction of the program formulas is
that for each pair (, b) in the graph of a program defined function f, there exists a
set of finite graphs G c Graph (f), , G. c Graph (f.), such that:
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(i) (, b) Gi.
(ii) The collection of graphs G1," ", Gn is computationally closed under P: for

each pair (tT, v) in a graph Qj, every reduction of a function application fk(’i)
in the (call-by-name) computation reducing f.(a) to v (according to the
definition presented in 6) has the property that (i, fk(t)) appears in Gk.

Since a finite graph {(al, bl)," , (a,, b,)} can be represented by the sequence
(al) b,’’., (a,,), b,), the formula g’(gi, Y) can be expressed in the form

:iga, , gn(Closp (g,. , g) ^ member ((xi), y, gi))

where each gj is a sequence ((ti), bl,""" (am), bin), Closp (g,..., gn) is a formula
expressing the fact that g,..., g represent a set of finite graphs that are computa-
tionally closed under P, and member ((:), y, g) is a formula expressing the fact that
((), y) is an element of the graph represented by the sequence g. Roughly speaking,
the formula Closp is generated from the text of P by replacing all references to program
function symbols f by corresponding references to finite graphs g.

In the standard model D, the formulas tl(gl, y),’’’, n(gn, y) characterize the
least fixed-point of P. What do they mean in the weakly arithmetic model D’?
From T, we can prove that the n-tuple of functions [fl,... ,Vn] determined by
l()n, y),’’’, bn(gn, y) satisfies the definition P. Moreover, given another collection
of formulas 0(g, y),..., ,(g,, y) determining an n-tuple of functions [,..., ’n]
over ID’l.that satisfies the definition P, we can prove that [tl,..., V,,] approximates
[i,..., f’]. Hence, the n-tuple of functions determined by 1(.1, y),’’’, n(,n, y)
must be the least definable-fixed-point of P’. [q

Given the generalized recursion theorem, the following generalization of the
fundamental theorem is a simple consequence.

THEOREM (generalized fundamental theorem). Let P be a recursive program

{fl(.’l) t,, f2(2) t2,""", f,(,)= t,}

over a weakly arithmetic domain D’ supporting elementary syntax, and let F’ denote
the least definable fixed-point of the functional for P. Then P is an arithmetic definition
over D’ satisfying the model D’t.J F’.

Proof. By the generalized recursion theorem, the functional P’ over D’ for P has
a least definable fixed-point [f,..., f’]. Hence, the relationship

/ [1-" A.i" |

l<=i<_n

holds where t denotes the interpretation of t given that the primitive function symbols
in ti are interpreted by the corresponding functions in D’ and the function symbols
f,. , f are interpreted by f, , t’, respectively. We can restate this fact as follows

A D’f[f(:i)][ s] D’’[t,][s]
l<=i<_n

where D’f denotes the structure D’t.J F’ and s is an arbitrary state over ID’fl. By the
same construction used in the proof of the generalized recursion theorem, every formula
over D’f can be translated into an equivalent formula over D’. Consequently, the
induction principle (**) holds for all formulas over D’, implying D’f is a model for
P t_J (**) extending D’. [3

8. Construction of complete recursive programs. In this section, we will show
how to construct a complete recursive program P* equivalent to a given call-by-value
program P. We will also verify that the constructed program P* actually is complete
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and equivalent to P. We relegate the analogous construction and proof for call-by-name
programs to Appendix III, since they are similar but somewhat more complex.

The intuitive idea underlying the construction is to define for each function f in
the original call-by-value program a corresponding function f* such that f*(xl," , xn)
constructs the computation sequence for the call-by-value evaluation of f(xl,. , Xn).
In fact, constructing the actual computation sequence really is not necessary; the values
of the elements in the sequence, except for the final one (the value of f(x,:.., xn)),
are irrelevant. It is the expanding structure of the sequence that is significant, because
it prevents an arbitrary fixed-point solution from filling in points where the computed
(least) fixed-point diverges.

For example, consider the trivial program

(8) f(x) =if x equal 0 then 0 else f(g(x))

over the domain of LISP S-expressions where g is any unary function with fixed-points
(i.e., g(y)=y for some S-expression y). The corresponding functional obviously has
multiple fixed-points, although the intended meaning of the definition is the least
fixed-point f. If we define f* by the program

(9) f*(x) =if x equal 0 then cons (0, NIL) else cons (g(x), f*(g(x))),

then f* constructs a sequence containing the argument for each call on f in the
call-by-value evaluation of f(x), assuming that f(x) terminates. If f(x) does not
terminate (e.g., g(x) x), then every fixed-point f* of the functional for definition (9)
must be undefined (_1_) at x. Otherwise, f*(x) has length greater than any integer which
contradicts the fact that every sequence in the data domain is finite. 8 Given (9), we
can redefine f by the recursion equation

(10) f(x) last (f*(x))
where last is the standard LISP function that extracts the final element in a list. Now,
by substituting the definition consisting of equations (9) and (10) for the original
program (8), we can force f to mean f. We generalize this idea to arbitrary recursive
programs as follows.

DEFINITION. Let P be a call-by-value recursive program defining the function
symbols F over the arithmetic domain D supporting elementary syntax. Let Le and
Lo. denote the first order languages Lo U F and Lo U Seq, respectively, and let D*
denote domain D U Seq. Let be an arbitrary term in the language Le. The call-by-value
computation sequence term t* (in the extended language Le.=Lo.U{f*, f*n })
corresponding to is inductively defined as follows"

(i) If is a constant or a variable x,

t* mkseq (x).

(ii) If has the form g(ua,..., u.g) where g e G-{if-then-else},

t* u* u**go mkseq (g(last (u*),..., last (u*g))).

(iii) If has the form fi(u,"’, u.i),
t*= u* u**i of* (last (u*),... ,last (u**i)).

Although this argument is cast in terms of standard S-expressions, it generalizes to arbitrary models
of a simple first order theory of S-expressions. Given the usual recursive definition for |ength, the sentence
’qy:list 3n :integer [length (y) < n] is a theorem of the theory. Hence it must hold for arbitrary models--
including those with infinite objects.
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(iv) If has the form if u0 then U else U2,

t*= Uo* (if last (Uo*) then u* else u*).

The call-by-value complete recursive program P* equivalent to P is the call-by-value
program

{fl* (gl) tl*,""", f* (g,) t*
over D*.

A similar construction generates the complete recursive program equivalent to
an arbitrary call-by-name recursive program; it appears in Appendix IV. The following
theorem, called the fixed-point normalization theorem, shows that the complete recursive
program construction preserves the meaning of the original program and produces a
program that is in fact complete.

THEOREM (fixed point normalization theorem). Let P be a call-by-value recursive
program over an arithmetic data domain D supporting elementary syntax and let
If1,"" ", f,] denote the least fixed-point of the call-by-value functional P+/- for P. The
complete recursive program P* equivalent to P has the following properties:

(i) P* is complete, i.e. the corresponding call-by-value functional P has a unique
fixed-point Ill*,""", f*].

(ii) For i= 1,..., n, last(i*(a)) fi(a)) for all fi-tuples overlO].
Proof. See Appendix III.
The corresponding theorem for call-by-name programs and a sketch of its proof

appear in Appendix IV.
The fixed-point normalization theorem has an important corollary relating com-

plete recursive programs to first order theories. In informal terms, the corollary asserts
that a complete recursive program over an arithmetic domain D is an unambiguous,
arithmetic definition augmenting a suitable first order theory for D (a theory closely
resembling Peano arithmetic9).

COROLLARY. Let Ao be an arithmetically complete first order axiomatization for
the arithmetic domain D. Then for every call-by-value program P over D, the equivalent
complete recursive program P* (expressed in the form P*ax) is an unambiguous, arithmetic
definition augmenting Ao [-J Elem.

Proof. The key idea underlying the proof of the corollary is to generalize the
fixed-point normalization theorem to cover programs defined over weakly arithmetic
(not just arithmetic) domains. Since all the models of Ao LI Elem are weakly arithmetic,
the generalized normalization theorem implies that Pa*x determines a unique expansion
of every model of Ao t.J Elem--immediately establishing the corollary.

The only obstacle to extending the fixed-point normalization theorem to weakly
arithmetic domains is the same complication that we encountered in generalizing the
fundamental theorem of first order programming logic in 7: the least fixed-point of
the functional corresponding to a recursive program may not be definable. We overcame
this problem in 7 by substituting the notion of least definable fixed-point for the
standard notion of least fixed-point. The same strategy works here.

TIaEOREM (generalized fixed point normalization theorem). Let P be a call-by-
value recursive program over a weakly arithmetic data domain D supporting elementary
syntax and let If1,..., f,] denote the least definable fixed-point of the call-by-value
functional P_ for P. The call-by-value complete recursive program P* equivalent to P
has the following properties"

The first order theory generated by Peano’s axioms for the natural numbers.



RECURSIVE PROGRAMS AS DEFINITIONS IN FIRST ORDER LOGIC 395

(i) P* is complete, i.e. the corresponding call-by-value functional P has a unique
definable-fixed-point [t*,. .,

(if) For i= 1,..., n, last (t*())= fi(a)) for all f-tuples over IDI.
Proof. The proof of the generalized fixed-point normalization theorem is essen-

tially identical to the proof of the original one, except that it must invoke the generalized
recursion theorem described in 7 instead of Kleene’s recursion theoremwsubstituting
the notion of least definable-fixed-point for least fixed-point. 1-1

We will use the term extended first order programming logic for P to refer to
conventional first order programming logic for P augmented by Elem (the definition
of functions Seq), the axioms defining the equivalent complete program P*, and the
axioms asserting that each function f is identical to last f*.

9. Simplifying complete recursive programs. If we carefully examine the proof
of the fixed-point normalization theorem, it is clear that we can simplify the structure
of the constructed program without affecting the proof of the theorem. It is easy to
verify that the same proof works if we substitute the following definition of computation
sequence term for the original one.

DEFINITION. Let be arbitrary term in the language Lo. The simplified computation
sequence term t* corresponding to is given by the inductive definition:

(i) If is a constant or a variable x,

t* mkseq (x).

(if) If has the form g(ul,"’", Ug) where g G-{if-then-else},

t* u ui’ mkseq (g(last u 1" ), last u* g ))),

where u,. , uare all the arguments containing invocations of some pro-
gram function f.

(iii) If has the form f(ul,’’’, u,,),
t*= u u of/*(last(ul*),... ,last(u*)),

where ui,"’, u are all the arguments containing invocations of some
program function f, except when this list is empty. In this case, k 1 and u
is mkseq (true).

(iv) If has the form if Uo then u else u2,

t* =if last (Uo*) then Ul* else u2*,

when Uo* does not contain invocations of some program function f. Otherwise,
t*- Uo* (if last (Uo*) then u* else u*).

In subsequent examples, we will always use this construction since it produces
simpler translations.

10. Sample proofs involving complete recursive programs. To illustrate how
complete programs can be used to prove theorems about partial functions, we present
two examples.

10.1. Example 1. A divergent function. Let f be the partial function on the
natural numbers defined by the recursive program

(11) f(x)=f(x+l).

We want to prove the following theorem.
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THEOREM. Vx[f(x)-- 3-].
Proof. Although the intended meaning of f (the least fixed-point of the functional

for the program (11)) is everywhere undefined, we cannot establish this property using
conventional first order programming logic since f is total in many other models. On
the other hand, in extended first order programming logic, we can prove the theorem
by using the equivalent complete program

d*(x) mkseq x + 1 )o f* x + 1

and the axiom

Vx f(x) last (f*(x))

relating it to the original program (11). Since last is strict, the theorem is an immediate
consequence of the following lemma. E]

LEMMA. [x[f* x 3-].
Proof. We prove the lemma by structural induction on the (possibly 3_) sequence

*(x).
Basis: f x 3_.

In this case, the theorem is true by assumption.
Induction step: f*(x) 3_.

By induction, we may assume that the lemma holds for all Xo such that f*(xo) is
a proper tail of f*(x). Since xN, f*(x) expands into the expression mkseq (x)o
f*(x + 1). Instantiating the induction hypothesis for x0 x + 1 yields f*(x + 1) 3_,
implying f*(x) 3_. [3

10.2. Example 2. Equivalence of two program schemes. A more interesting
example is the proof that the following two iterative program schemes are equivalent.

Program A Program B
{
x -f(x); repeat x f(x) until p(x);
while -rip(x) do x*-f(x); return (x)
return (x)

} }

Expressed as recursive programs, program A and program B have the following form"

progA (x),-whileA (f(x))
whileA (x)-if p(x) then x else whileA (f(x))
progB (x)-repeatB (x)
repeatB (x)-if p(f(x)) then f(x) else repeatB (f(x)).

We wish to prove the following formal theorem.
THEOREM. Vx[progA (x)- progB (x)].
Proof. By simplification, the theorem trivially reduces to the statement

(12) Vx[whileA (f(x))= repeatB (x)].

If f(x) is not total, this statement is not provable in conventional first order program-
ming logic, because the recursive definitions of whileA and repeatB may have
extraneous fixed-points. However, in extended first order programming logic, the proof
is straightforward. Given the equivalent complete programs

whileA* (x) ,- if p(x) then mkseq (x) else cons (x, whileA* (f(x)))
repeatB* (x),-if p(f(x)) then mkseq (f(x)) else cons (x, repeatB* (f(x)))
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and the axioms (from extended first order programming logic)

cons (x, y)= mkseq (x) y
last (mkseq (x)) x
x _L last (cons (x, y)) last (y)
whileA (x)= last (whileA* (x))
repeatB (x)= last (repeatB* (x))

relating the complete program to the original one, statement (12) reduces to the
sentence:

(13) ’’x[last (whileA* (f(x)) last (repeatB* (x))].

As in higher order logics based on fixed-point induction (e.g., Edinburgh LCF),
the proof of (13) breaks down into two parts:

(13a) Vx[last (whileA* (f(x))_ last (repeatB* (x))]

(13b) Vx[last (repeatB* (x)) whileA* (’(x))]

where a ___/3 intuitively means "a approximates/3" (as defined in 8) and formally
abbreviates the formula

a=_Lva=fl.

The proof of (13a) proceeds as follows.
First, we can assume that last (whileA* (f(x)))#_L; otherwise, (13a) trivially

holds. Given this assumption and the fact that last is strict (which follows immediately
from the definition of last), we can apply structural induction on whileA* (f(x)). As
the induction hypothesis we assume that

last (whileA* (f(x’)))_ last (repeatB* (x’))

for all x’ such that whileA* ([(x’)) is a proper subtail of whileA* (f(x)). By the
definition of while/k*,

while/k* (f(x)) =if p(f(x)) then mkseq (f(x)) else cons (f(x), while/k* (f(f(x)))).

A three-way case analysis on the value of p(f(x)) completes the proof of (13a).
Case (a). p(.f(x)) D+/-.

In this case, whileA* (](x))= _L, which is a contradiction.
Case (b). p(f(x)) Otrue.

By simplification,

last (while/k* (f(x)))=f(x) and last (repeatB* (x))=f(x)

establishing (13a).
Case (c). e(f(x)) Dfalse.

Obviously,

whileA* (f(x))= cons (f(x), whileA* (f(f(x))))

and

repeatB* (x)=cons ([(x), repeatB* (f(x)))

implying that whileA* (f(f(x))) is shorter than whileA* (f(x)). Consequently, the
induction hypothesis holds for x’= f(x), yielding the following chain of simplifications:
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last (whileA* (f(x)))= last (cons (f(x), whileA* (f(f(x)))))
last (whileA* (f(f(x))))
last (repeatB* (f(x))) (by induction)
last (repeatB* (x)),

which proves (13a).
Since the proof of (13b) is nearly identical, it is omitted. 13
An interesting property of proofs based on complete recursive programs is their

similarity to the corresponding proofs based on fixed-point induction in higher order
logics. Although fixed-point induction is an awkward rule for reasoning about total
functions, it appears well suited to proving many properties of partial functions.

11. Advantages of first order programming logic. Although first order program-
ming logic is narrower in scope than higher order logics (since it does not accommodate
functions that take functions as arguments), it is a powerful, yet natural formalism for
proving properties of recursive programs. The primary advantage of first order pro-
gramming logic is that it relies on the familiar principle of structural induction, the
most important proof technique in discrete mathematics. In first order programming
logic, programmers can develop proofs that are direct formalizations of familiar
informal structural induction arguments. In contrast, higher order logics for recursive
programs (e.g. Edinburgh LCF 15]) typically rely on fixed-point induction, a rule that
is more obscure and difficult to use.

A particularly troublesome aspect of fixed-point induction is that it is valid only
for admissible formulas.1 Edinburgh LCF [15], for example, restricts the application
of fixed-point induction to formulas that pass a complex syntactic test ensuring admissi-
bility. Unfortunately, it is often difficult to predict whether a particular formula will
pass the test. Moreover, the test does not necessarily produce consistent results on
logically equivalent formulas.

As an illustration, consider the sample proof presented in 5" the termination of
the recursive program fiat. The proof using first order programming logic is a direct
translation of the obvious informal proof. In contrast, a proof of the same theorem in
Edinburgh LCF (or similar higher order logic) must introduce a retraction characteriz-
ing the domain of S-expressions and simulate structural induction by performing
fixed-point induction on the retraction. In the fixed-point induction step, the program-
mer (or theorem prover) must check that the formula is admissible (by applying the
syntactic test) before applying the rule.

For the reasons cited above, we believe that first order programming logic--rather
than a higher order logic--is the appropriate formal system for proving properties of
recursive programs. Both Boyer and Moore [3], [4] and Cartwright [6], [7] have
successfully applied first order programming logic to prove the correctness of sophisti-
cated LISP programs with relative ease. On the other hand, the practical utility of
extended first order programming logic for reasoning about non-total functions (such
as interpreters) has yet to be determined. Moreover, it is not obvious that the particular
complete recursive program construction presented in this paper is the best way to
translate an arbitrary program into an equivalent complete program. There are many
different equivalence preserving program transformations that generate complete
programs. The few examples that we have done manually are encouraging, but we

10 The formula air] in the language Lo t_J {f} is admissible with respect to f over the continuous domain
Ditt for every ascending chain to - tl g" g tk" over D, D t.J [a[f]] is TRUE for all functions in the
chain implies that Dr_J1 [a[f]] is TRUE for defined as lul {tk[k =>0}.
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cannot reach a firm conclusion until we build a machine implementation and experiment
with various schemes for translating arbitrary programs into complete ones.

12. Related and future research. A group of Hungarian logicians--Andreka,
Nemeti, and Sain--have independently developed a programming logic 1 with meta-
mathematical properties similar to first order programming logic, although the prag-
matic details are completely different. Their logic formalizes flowchart programs as
predicate definitions within a first order theory of the data domain excluding _L. Given
a flowchart program P, they generate a formula re(x, y) that is true (in the standard
model of the data domain) iff y is the output produced by applying program P to
input x. In contrast to first order programming logic, the notion of computation
embedded in their logic applies to all models of the data domain theory. 11 We are
confident that an analogous result holds for first order programming logic; we intend
to formulate and prove it in a subsequent paper.

As a formal system for reasoning about recursive programs, the major limitation
of first order programming logic as formulated in this paper is that it does not
accommodate "higher order" data domains--structures that are not fiat. In practice,
this restriction may not be very important since higher order objects can always be
modeled by intensional descriptions (e.g., computable functions as program text).
Nevertheless, we believe that an important direction for future research is to extend
first order programming logic to "higher-order" domains. With this objective in mind,
we are exploring the implications of allowing lazy (nonstrict) constructors (e.g., lazy
cons in LISP) in the data domain.

Appendix I. Sample first order axiomatizations. A conventional first order
axiomatization A for the structure N, the natural numbers with functions {0, suc, +, },
is:

(1) Vx[x =0@:l!yx =suc (y)].
(2) Vy[0+ y y].
(3) Vx, y[suc (x)+ y suc (x + y)].
(4) Vx, y[0 y 0].
(5) Vx, y[suc(x)x y=y+(xx y)].
(6) (a(0) ^ Vx[a(x) = a(suc (x))]) Vxa(x) for every formula a(x).

The corresponding axiomatization A/ for the arithmetic domain N/, consisting of the
universe IN[ U {_L} and functions {0, true, false, sue, equal, +, x, if-then-else}, is:

(1) Vx Nix O ::t! y Nx suc (y)].
(2) Vy:N[O+ y= y].
(3) Vx, y:N[suc(x)+y=suc(x+y)].
(4) Vx, y:N[0xy=0].
(5) Vx, y :N[suc (x) x y y + (x x y)].
(6) a(O) ^ Vx:N[a(x) = a(suc (x))] = Vx:Na(x) for every formula a(x).
(7) 0:N.
(8) Vx:N[suc(x):N].
(9) sue (+/-)= _t_.

(10) Vy[+/- + y= +/- ^ y+ 3_ +/-].
(11) Vx[x X _L _L A _L X x _L ].
(12) true sue (0) ^ false 0.

11 Presumably, their notion of nonstandard computation is closely related to the concept of least
definable-fixed-points presented in this paper.
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(13) Vx, y:N[(x=y=(x equal y) =true) ^ (x# y=(x equal y) =false)].
(14) /x[(_L equal x)= _L ^ (x equal _1_)= +/-].
(15) X/y, z[if false then y else z z].
(16) tx:N Vy, z[if suc (x) then y else z y].
(17) /y, z [if _L then y else z _L].

where x:N abbreviates the formula x # _L.

Appendix If. Sample proofs in first order programming logic.
Example 1. Termination of the countdown function. Let the function zero over

the natural numbers N augmented by {+/-} be defined by the (call-by-name) recursive
program:

zero (n) if n equal 0 then else zero (n 1),

which is logically equivalent (on IN]) to the definition for zero in 3:

/n[( n 0 zero (n) 0) ^ n # 0 = zero (n) zero n 1))].

We will prove a theorem asserting that the function zero equals 0 for all natural
numbers.

THEOREM. ’n[n +/- = zero (n) 0].
Proof. The proof proceeds by induction on n.
Basis: n O.

This case is trivial by simplification: zero (n) =if 0 equal 0 then 0 else zero (n- 1) =0.
Induction step: n > O.

We assume by hypothesis that the theorem holds for all n’< n. Since n > 0

zero (n) if n equal 0 then 0 else zero (n 1) zero (n 1)

which is 0 by hypothesis.
Example 2. Termination of an Ackermann function. Let the function ack over

the natural numbers N augmented by {+/-} be defined by the call-by-value recursive
program:

ack (x, y) if x equal 0 then suc (y)
else if y equal 0 then ack (pred (x), 1)
else ack (pred (x), ack (x, pred (y))).

We will prove that ack is total.
THEOREM. VX, y[x #. _1_ A y # I ack (x, y) # _L].
Proof The proof proceeds by induction on the pair [x, y].
Basis: x O.

By assumption, y # _1_. Hence, ack (x, y)= sue (y)# _L.

Induction step: x > O.
By hypothesis, we assume the theorem holds for all [x’, y’] such that either x’ < x or
x’ x and y’ < y. Since y _1_ by assumption,

ack (x, y)=if y equal 0 then ack (pred (x), 1)
else ack (pred (x), ack (x, pred (y)))

Case (a). y 0.
In this case, ack (x, y) --ack (pred (x), 1) which by hypothesis is a natural number (not
_t_).

Case (b). y > O.
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In this case,

ack x, y ack (pred (x), ack x, pred y ).

By hypothesis, ack (x, pred (y)) is a natural number implying (by the induction
hypothesis) that ack (pred (x), ack (x, pred (y))) is a natural number. E]

Example 3. McCarthy’s 91-function. Let the function f91 over the integers
augmented by {_L} be defined by the (call-by-name) recursive program

f91(n) =if n> 100 then n-10
else f91(f91(n + 11)).

We will prove the following theorem implying f91 is total over the integers.
THEOREM. fn[n _L f91(n) =if n > 100 then n- 10 else 91].
Proof. The proof proceeds by induction on 101 n where the binary operator

(monus) is defined by the equation

x y if (x- y) > 0 then x- y else 0.

Basis: 101 n O.
Clearly, n > 100, implying f91 (n) n 10, which is exactly what the theorem asserts.

Induction step: 101 n > O.
By hypothesis, we assume the theorem holds for n’ such that 101 n’ < 101 < n,
i.e. n’> n. By the definition of f91,

f91(n)=f91(f91(n+ll))=f91(if n+ll > 100 then n+l else 91)
(by induction since n + 11 > n).

By assumption, n <-100. Consequently, there are two cases we must consider.
Case a). n + 11 > 100.

Obviously, 100 -> n > 89, implying

f91(n)=f91(n+l)=if n+l> 100 then n-9 else 91=91 (since n=< 100).
Case (b). n + 11 <= 100.

By assumption, n <= 89, implying

f91(n) =f91(91)=if 91< 100 then 91-10 else 91
(by induction since 91 > n)= 91. E]

Appendix III. Proof ot call-by-value fixed point normalization theorem.
THEOREM. Let P be a call-by-value recursive program over an arithmetic data

domain D and let F (abbreviating If1,"" ,,]) denote the least fixed-point of the
call-by-value functional P_ for P. The complete recursive program P* corresponding to
P has the following properties"

(i) P* is complete, i.e. the corresponding call-by-value functional P’ as a unique
fixed-point [*1," ",

(ii) For i= 1,..., n, last(i*(aT))= ii(aT) for all # f-tuples over IDI.
Proof. By definition, F is the least upper bound of the chain of approximating

n-tuples of functions

F()
_
F(1)

___ ___
F()

_
where Fk [fk,..., fk)] is inductively defined ’k >- 0 by

F<k+I) pl(F<k)).
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Let D(k) denote the structure D [..J F(k). In informal terms, D(k is D augmented by the
call-by-value evaluation of P to depth k. Similarly, let D*(k denote the structure
D* U F*(k where F*(k is the depth k approximation for P* analogous to F(k).

In the course of this proof, we will frequently employ the following lemma without
explicitly citing it.

LEMMA 0. For every term in Lp, every state s over [DI, and all k->_O,
D*(k[seq (t*)][s] =TRUE, i.e., t* denotes a sequence code in D*.

Proof of Lemma 0. A routine induction on the structure of t. Omitted.
Property (ii) of the main theorem is an immediate consequence of the following

lemma.
LEMMA 1. For every term in Lp, every state s over IDI, and all k >-O, D(k)[t][s]

D*(k[last (t*)][S].
Proof of Lemma 1. The proof proceeds by induction on the pair [k, t]. By

hypothesis, we may assume that the lemma holds for all [q, u] where either q < k and
u is arbitrary, or q k and u is a proper subterm of t.

Case (a). is a constant or a variable x. Then t* has the form mkseq(x) implying
D*(k)[last (t*)][s] D*(k)[x][s]- D(k)[t][S] for arbitrary k _-> 0.

Case (b). has the form g(ul,’’’, Ug), g G U Seq. Then

t*= U*l u* mkseq (g(last (ul*) last(u*g))).g

By hypothesis, D*(k)[last(u*)][s]=D(k)[ui][s], for all s,i=l,..., #g. If for some
i, D k)[ ui ][ s] +/-, then D*( k)[last u* )] +/-, implying D k)[ t][ S] D*( k)[last (t*) ][ s] +/-,
since g, o, and last are all strict functions. On the other hand, if D(k)[u][s] +/- for all
i, we conclude by the induction hypothesis and the definition of last that D*(k)[u* ][s]
+/- for all i, implying

D*(k)[last (t*)][s] D*(k[g(last (u/*),’’’, last (U*g))][s]
=D(k[g(ul, u.g)][s] (by induction)

D(k[t][s].

Case (c). has the form f(ul,’", ur,). If k =0, the proof is trivial. For positive
k, the proof breaks down into two cases. First, if D(k)[u][s] +/- for some j, then the
lemma holds by exactly the same reasoning as in case 2. On the other hand, given
D*(k)[U][S] # +/- for all j, we deduce that

D*(k)[last (t*)][s] D*(k)[last (f/* (last (u*),’’’, last (u*y,)))][s]

D*(k[last (f/* ($))][S*]

where s* is a state binding each variable x to D*(k)[last (u’f)][s]=D(k)[u][s], j=
1," , #f. Since no xi is bound to +/-, we can expand f* ($) to produce

D*(k)[last (t*)][s*] D*(k-1)[last (t/*)][s*]

D(k-1)[ti][S*] (by induction)

D[/()][s*]

O(k[t][s].

Case (d). has the form if Uo then Ul else U2. By definition t* Uo* (if last (Uo*)
then Ul* else u2*). If D(k)[uo][S] +/-, then by induction D*(k)[last (Uo*)] +/-, implying
D*(k)[last (t*)][s] +/- and D(k[t][s] +/-. On the other hand, if D(k)[uo][S] +/-, then it



RECURSIVE PROGRAMS AS DEFINITIONS IN FIRST ORDER LOGIC 403

denotes either "true" or "false". If D)[Uo][S] is a "true" element of D then D[t][s]
D[u][s]. By induction,

D[Uo][S] D*)[last (Uo*)][s]

implying

D*)[t*][s] D*)[last (Ul*)][s]

=D[u][s] (by induction)

D(k)[t][s].
An analogous argument proves the "false" case. [3 (Lemma 1)

We prove property (ii) of the theorem as follows. By Lemma 1,

D[(x, x,)][s]
D*(k)[last (mkseq (xl) mkseq (x,) f*

(last (mkseq (xa)),.. ", last (mkseq (x ,))))][ s

for all k => 0, all states s over IDI. Simplifying the right-hand side of the preceding
equation yields

D(k)[fi(Xl,’’’, X:fi)][S] D*<k)[last (f/* (Xl,""",

for all states s over IDI. Since D and D* are both flat domains, the functions fi and
f* have the following property. For any :-tuple d over IDI there exists p _-> 0 such that

flP)(d)
and

fT(P)(d) f*(d).

Let s be a state mapping $ into d. Then

f,(d) flP)(d)= D(P)[f/(’)][s]
D*P)[last (f*($))][sa] last (f*(P)(a)) last (f*(ff))

proving property (ii).
To prove property (i), we must introduce some new definitions. Let It be an

n-tuple of strict functions [ha," , h,] over D corresponding to the n-tuple of function
symbols [f*, , f* ]. We define Dk) for all k => 0 as the structure corresponding to
L*p that is identical to D*(k) except that I)k) interprets [fl*,""", f* by F*H(k) where
Fk) is inductively defined by

F*> =H,

Informally f*(k) is the function computed by applying call-by-value evaluation to theiH
recursion equation for f where invocations of ), ] 1,. , n, at depth k are interpreted
by the function h instead of ordinary evaluation. If all the functions h in It are
everywhere undefined, then F*,(k) F,(k).

Property (i) is a simple consequence of the following lemma.
LZMMA 2. Let be any term in Lp. Let It be an n-tuple ofstrictfunctions [ha, , h,]

corresponding to [f* ., f*, ]. Thenfor any k >-_ 0 and any state s over [D[, D*[t*][s] _t_

implies either D*n(k)[t*][S] _k, or length (Dk)[t*][s]) >--_ k.
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Proof of Lemma 2. In the course of the proof, we will use the following lemmas
which are easily proven by structural induction on t.

LEMMA 2a. For any term in Lp., D*(k)[t][s] +/- implies D*(k)[t][s] D*(k)[t][s].
LEMMA 2b. For any term in Le. not containing any recursive function symbol f’i,

D*(g)[t][s] D*(k)[t][s] for arbitrary state s.

Proof of Lemmas 2a and 2b. Omitted. []

To prove lemma 2, we apply induction on the pair [k, t].
Basis" k- 0. In this case, the lemma is a trivial consequence of the definition of

length and the fact that the meaning of any computation sequence term t* under any
state s in the structure D* is either +/- or a sequence code.

Induction step" k > 0. We perform a case split on the structure of t.
Case (a). is a constant or variable x. Then t*= mkseq (x), implying by Lemma

2b that D*H(k)[t*][S] D*(k)[ t*][ S] which is +/- by assumption.
Case (b). has the form g(ul,"’,Ug) where gG. In this case, t*=

u* U*g omkseq(g(last(u*),...,last(U*g))). If D*(k)[uf][s]=+/-, then by
induction, either D*n(k)[uf][s] +/- or length (D*n(k)[uf ][s])>= k, implying the lemma
holds (since is strict). On the other hand, if D(k)[u][s] +/- for all L then by Lemma
2a, D*n(k)[u][s]=D*(k)[u][S] for all ]. Consequently,

D*n(k)[t*][S] D*n(k[u* U*gO mkseq (g(last (u*),..., last (U*g)))][s]

-D*(g)[u* U*g omkseq (g(last (u*) last (u*)))][s]g

D*(g[t*][s].

implying the lemma holds.
Case (c). has the form fi(ul,’", ui,). If D*(g)[uf][s] +/- for some j, the proof

is identical to the analogous section of the previous case. On the other hand, when
D*(g)[uf ][s] +/- for all L

D*(g[t*][s] D*(g)[u* ]Is] D*(g)[u*

[s]o t*(k)(lasti,_, (D*(g)[u * ]Is]) last (D*(g)[ u*f., ][s]))
D*([u* ]Is] D*g[u*i, ][s]o D*(g)[f/* (g)][s*]

I)*(g)Eu* ][S] I)*(g)[u*, ]Es] D4(-l)[t/* ][s*]

where s* maps xj into last (D*(g)[u ][s]), =1,..., #fi. By induction, either
D*,(g-)[t* ][s*] +/- or length (D(-[t* ][s*]) => k- 1. Hence the lemma clearly holds
(since length(u’)=> 1 for all j).

Case (d). has the form if Uo then u else u2. If D*(g[Uo*][s] +/-, the proof is
identical to the analogous section of case (b). On the other hand, when D()[Uo][S]
+/-, D(g)[u0][s] is either a "true" element of [DI or a "false" one. In the former
case, D*(k)[t][s]=D*(g[u*][s] and D*([t*][s]=D#[u*][s]. By induction,
D*()[Ul* ][s] +/-, simplying either D*,()[u* +/- or length (D *,( k)[ u * ]) -> k. Hence the
lemma holds in this case. An analogous argument holds for the "false" case.
(Lemma 2)

Given Lemma 2, we prove that property (i) holds by the following argument. Let
lt=[hl,..’ ,h,] be any fixed-point of the call-by-value function P+/- for the complete
recursive program P*, i.e., for all

* (g,)][s]
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By induction on [k, t] we can easily show for all k _-> 0, all terms in Lp., and all states
s that

D*n(k)[t*][S]- l)*()[t*][s].
Now assume It is not the least fixed-point of Pz, i.e., f*(a) _L but hi(d) " _L for

some and some fi-tuple a over [D I. Then,
Vk >-O[l)*H(k)[f* (i)][Sd]--" l)/__/(O)[f (i)][Sd] hi()]

where Sd binds $i to d. By Lemma 2, the length of hi(d) is greater than any number
k, contradicting the fact that

lk[length (D*n([f* (Z,)](se))-<_ k]. tO

Appendix IV. Call-by-name complete reeursive programs. The call-by-value
recursive program construction described in 8 exploited the idea of defining a new
function f/* for each function ) in the original program such that f* constructs the
call-by-value computation sequence for l. We will utilize essentially the same idea to
construct complete call-by-name programs.

Unfortunately, call-by-name computation sequences have a more complex struc-
ture than their call-by-value counterparts. The chief complication is that the collection
of arguments in recursive call f() that are actually evaluated depends on the particular
arguments . To accommodate this complication, we adopt the convention that the
new functions f* in the complete recursive program take computation sequences
corresponding to the arguments of f as inputs instead of the arguments themselves.
Hence, the original functions f,..., f are related to the new functions f*,...,
by the equations

](Xl, ", x,) last (f* (mkseq (xa), ., mkseq (x,))), i= 1,. ., n

instead of

f/(Xl, ", X#fi) --last (f*(xx, x,)), i= 1,..., n,

which hold for call-by-value complete recursive programs.
This convention gives the body of each new function f* control over the process

incorporating particular argument evaluations into the output computation sequence.
If a particular argument is never evaluated, its computation sequence is discarded.
Recall that in the call-by-value construction, the computation sequences for the
arguments of a function call are unconditionally inserted in the computation sequence
by the calling expression.

We construct the call-by-name complete recursive program P* corresponding to
P as follows.

DEFINITION. Let D, Lo, P, Lp, F, I)(k), and D* (including Seq) be defined as in
8 except that P is a call-by-name program and, consequently, F is the least fixed-point

of the (call-by-name) functional P for P over D. Let be an arbitrary term in the
language Lp. The call-by-name computation sequence term t* (in the extended language
Lp.) corresponding to is inductively defined by:

(i) If is a variable v,

t*=v.

(ii) If is a constant symbol c,

t* mkseq (c).
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(iii) If has the form g(ua,’", U.g) where ge G,

t*=Ul*O...ou*gomkseq(g(last(ul*) last(u* )))4g

(iv) If has the form ](Ul,’’’, uy,),
t* mkseq (true) f/* (u*, , u*, ).

(v) If has the form if Uo then U else

t* u0* (if last (Uo*) then Ul* else u2*).

The complete recursive program P* corresponding to P is the (call-by-name) program

{f* (a) tl*,’’’, f* (,,) t,* }

over D*.
THZOREM (call by-name fixed point normalization theorem). Let P be a call-by-

name recursive program over an arithmetic data domain D supporing elementary syntax
and let If1,""" ,fn] denote the least fixed-point of the corresponding (call-by-name)
functional P. The complete recursive program P* corresponding to P has the following
properties:

(i) P* is complete, i.e. the corresponding (call-by-name) functional P* has a
unique fixed-point [f,. ., f.*].

(ii) For i= 1,..., n, last (f*(mkseq (dl),. ,mkseq (dr,)))-fi() for all 4f-
tuples d over

Proof The proof follows the same outline as the proof of the corresponding
theorem for call-by-value fixed-points in 8. Recall that F is the least upper bound
of the chain of function n-tuples

F(0) F(1)
__
F(k)

where Fk) [fk),..., fk] is defined Vk -> 0 by

Fk+l) p(Fk)),

and that Dk) denotes the structure D I,.J Fk). Let Dk)* denote the structure D I,,J F*k)

for the call-by-name program P* over D* analogous to D(k) for the program P
over D.

Property (ii) is a simple consequence of the following lemma.
LEMMA 1. For every term in Lp, every state s over [D* I, and all k >- O, D(k)[t][s]

D*(k)[last (t*)][s].
Proof (ofLemma 1). The proof is essentially identical to the proof of the corres-

ponding lemma in 8, which proceeds by induction on the pair [k, t]. The details are
left to the reader.

Property (ii) follows immediately from Lemma 1 by the following argument. For
any function fi and 4-tuple d =[dl,""", d.r,] over D there exists p->0 such that

and

Ip)( d) =//(d)

|*(P)(mkseq (dl),""", mkseq (dr,))= f*(mkseq (dl),""", mkseq (d.,)).

Let s be a state mapping : into d, and Smkseq be the state mapping each variable xj
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into mkseq (s(xj)). Then

D<P)[f/(X)][s]
D*(P)[last (mkseq (d*) f* (.’))][Smkseq]
D*(P)[last (f* (.l))][Smkseq]

=last (/*<P)(mkseq (dl),’"’, mkseq

last (t*(mkseq (dl),. ", mkseq (d,)))
proving property (ii).

To prove property (i), we must utilize the definitions introduced in the analogous
proof in Appendix II. Let H, D*k), and F*,k) be defined exactly as in 8, except
substitute call-by-name semantics for call-by-value semantics in the definition of F*,k)
and Dk). In other words,

F*() H,

F(k+l) p(F(k)).

Since the remaining details of the proof of property (i) are nearly identical to those
found in the corresponding proof in Appendix III, they are omitted. [3

It is a straightforward exercise to formulate and prove call-by-name analogues to
the corollary and the generalization of the fixed-point normalization theorem presented
in 8 for call-by-value programs. The details are left to the reader.
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SIMULATION OF PARALLEL RANDOM ACCESS MACHINES
BY CIRCUITS*

LARRY STOCKMEYERf AND UZI VISHKIN

Abstract. A relationship is established between (i) parallel random-access machines that
allow many processors to concurrently read from or write into a common memory including
simultaneous reading or writing into the same memory location (CRCW PRAM), and (ii) combina-
tional logic circuits that contain AND’s, OR’s and NOT’s, with no bound placed on the fan-in of
AND-gates and OR-gates. Parallel time and number of processors for CRCW PRAM’s are shown to

correspond respectively (and simultaneously) to depth and size for circuits, where the time-depth
correspondence is to within a constant factor and the processors-size correspondence is to within a
polynomial. By applying a recent result of Furst, Saxe and Sipser, we obtain the corollary that
parity, integer multiplication, graph transitive closure and integer sorting cannot be computed in
constant time by a CRCW PRAM with a polynomial number of processors. This is the first

nonconstant lower bound on the parallel time required to solve these problems by a CRCW PRAM
with a polynomial number of processors. We also state and outline the proof of a similar result, due
to W. L. Ruzzo and M. Tompa, that relates time and processor bounds for CRCW PRAM’s to

alternation and space bounds for alternating Turing machines.

Key words, synchronous parallelism, parallel time complexity, circuit complexity, relating
complexity measures, alternating Turing machines

1. Introduction and statements of results. Our main motivation for this work
was the goal of proving nontrivial lower bounds on the time required by a parallel
random-access machine to solve certain problems when the parallel RAM model
allows simultaneous reading from and writing into a common memory. Following
Snir [25], we call this model a CRCW PRAM (for concurrent-read concurrent-
write parallel RAM). A CRCW PRAM has a sequence of RAM’s R1, R2, R3,
operating synchronously in parallel. Each individual RAM is similar to a stand-
ard one-processor RAM (cf. [1, Chap. 1]). Eich RAM has its own local infinite
random-access memory and has instructions for addition, subtraction, conditional
branches based on the predicates and <, and reading and writing into its local
memory. (For the moment we assume that there are no multiplication, division
or Boolean instructions.) The RAM’s also have access to a common memory, and
each RAM has instructions for reading from and writing into the common
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memory using one of its local registers to specify the common memory address.
If more than one processor attempts to write into the same location in common
memory at the same time, the lowest numbered processor succeeds. Each
processor R has an instruction which loads its number into a specified local
register. All processors have the same program. Without loss of generality we
assume that instructions are of the following forms, where M1, M2, M3, denote
local memory registers, and res (result), opl and op2 (operand 1 and 2) are
positive integers.

Mre constant

Mre - processor number

Mre - Mop
Mre Mop @Mop2, @ E {+,-}
Mres - *Mop1 {local,common} (indirect memory READ)

The contents of the {local,common} location whose address is in regis-
ter Mop is read into local register Mres.

*Mres - Mopl {local,common} (indirect memory WRITE)
The contents of local register Mopl is written into the {local,common}
register whose address is in Mres.

GOTO label
GOTO label if Mop @ Mop2, @ {=, <
HALT

By convention, zero is the value read by an indirect READ using a nonpositive
address. An indirect WRITE using a nonpositive address has no effect. In
addition to the program, another part of the specification of a particular CRCW
PRAM is a function P(n) from positive integers to positive integers called the
processor bound. An input of size n consists of n binary words, each of length at
most n. A CRCW PRAM is given an input of size n by placing the n words in
the first n locations of common memory, and the first P(n) processors
R1,...,Rp(n) are started. Each instruction takes one time unit (uniform cost
criterion). The computation halts when R1,...,Rp(n) have all halted. The
machine operates in time T(n) if it halts within T(n) steps on any input of size n.
Output conventions are not critical, but we assume that when the computation
halts, the output is in an initial contiguous block of common memory of length at
most n locations.

This definition is based largely on the definition of Shiloach and Vishkin
[24] (simultaneous writing as defined above is defined in [11], [26]); they use
this model to give upper bounds on parallel time for several problems. [24]
contains many references to other papers that give algorithms that can be imple-
mented on a CRCW PRAM or restricted versions of it. The model is essentially
identical to the SIMDAG of Goldschlager [11] and similar to the P-RAM of
Fortune and Wyllie [9]. The P-RAM of [9] allows simultaneous reading but no
simultaneous writing to the same common memory location; we call this model a
CREW PRAM (for concurrent-read exclusive-write). (Whereas [9] and [11]
characterized the power of these models when the number of processors grows
exponentially in n, we are concerned mainly with the case of a polynomially
bounded number of processors.) The model is also mentioned by Schwartz [23];
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although he notes the physical difficulties of implementing large fan-in, he does
state that such models "can play a useful role as theoretical yardsticks for
measuring the limits of parallel computation."

For some models of parallel computation, fan-in considerations lead easily to
a lower bound of (logn) on parallel time. For the CREW PRAM, the fan-in
argument is considerably subtle, but Cook and Dwork [7] and Reischuk [19]
succeed in proving f(log n) lower bounds for problems such as computing the OR
of n bits or the minimum of n numbers. For the CRCW PRAM, arguments based
on bounded fan-in no longer work. For example, Shiloach and Vishkin [24]
show that a CRCW PRAM with O(n2) processors can find the minimum of n
numbers in constant time. However, Vishkin and Wigderson [28] recently
proved nonconstant lower bounds in the case where the size of the common
memory is limited. In fact, they prove a trade-off of mT2 f(n) for problems
such as parity of n bits in the CRCW PRAM, where m is the size of the common
memory, T is the parallel time and the input is in a read-only common memory.
This result holds for any number of processors.

To aid our understanding of the power of CRCW PRAM’s and to facilitate
proofs of lower bounds, a characterization in terms of circuits would seem useful.
There is considerable precedent for circuit characterizations of other computa-
tional models. Pippenger and Fischer [16] show a correspondence between serial
(e.g., Turing machine) time and circuit size, and Borodin [2] shows a correspon-
dence between serial space and circuit depth. Correspondences involving simul-
taneous resource bounds are given by Dymond and Cook [8], Hong [12], Pippen-
ger [15], and Ruzzo [20]. Lev [13] shows a correspondence between time on a
parallel RAM that does not allow simultaneous writing and circuit depth (unlike
our result, the time-depth correspondence involves a log n factor, rather than a
constant factor). Whereas these correspondences use circuits with fan-in bound-
ed by 2, the "correct" circuit analogue for CRCW PRAM’s is the unbounded
fan-in circuit studied by Furst, Saxe and Sipser [10]. These are acyclic circuits
containing AND-gates, OR-gates, and NOT-gates.

More precisely, a circuit is an acyclic directed graph. Each node of the
graph is labeled as either an input node, an AND-gate, an OR-gate, or a NOT-
gate. Input nodes must have fan-in zero, and NOT-gates must have fan-in one.
In addition, certain nodes are designated as output nodes. An assignment of
Boolean values to all input nodes extends, in the obvious way, to Boolean values
associated with all nodes. The size of a circuit is the number of edges (i.e.,
wires). The depth of a circuit is the length of a longest path from some input to
some output.

Our main result is the following:
THEOREM 1. There is a constant c and a function q(P, T, n) bounded above by

a polynomial in P, T, n, such that the following holds. Let R be a CRCW PRAM
with processor bound P(n) that operates in time T(n). There is a constant dR and,

for each n, a circuit Cn of size dg.q(P(n), T(n), n) and depth c.T(n) such that Cn
realizes the input-output behavior of R on inputs of size n.

Remarks.
1. q(P, T, n) O(PTL(L2 + PT)) where L O(n + T + log P).
2. Theorem 1 remains true if the PRAM has instructions for bitwise Boolean

operations and, or, negation, etc., as in vector machines 17].
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3. Theorem 1 is not true if the individual RAM’s have a unit cost multiplica-
tion instruction, since 10] shows that multiplication of n-bit numbers cannot be
realized by a circuit of polynomial size and constant depth. However, Theorem 1
is true (with a different polynomial q) if multiplication and division are restricted
to O(log n)-bit numbers.

4. As noted above, concurrent write conflicts into the same common memory
location are resolved by allowing the lowest numbered processor to write. One
can imagine other reasonable alternatives. For example, one can assume that the
program works correctly no matter which processor succeeds in writing, or that
the program is such that whenever more than one processor attempts to write
into the same location concurrently they are all writing the same thing (this latter
assumption is used in [24]). Clearly Theorem 1 holds for CRCW PRAM’s with
either of these alternate assumptions. Theorem 1 holds for the CREW PRAM as
well.

One advantage of circuits is that lower bounds may be easier to prove in the
context of the fixed structure of circuits rather than the dynamic nature of a
program. In this regard, since Furst, Saxe, and Sipser [10] have shown that
polynomial-size and constant-depth circuits cannot compute parity, an immediate
corollary is that a CRCW PRAM with a polynomially-bounded number of
processors cannot compute parity in constant time. The same corollary holds for
any function to which parity is reducible by a polynomial-size constant-depth
circuit. Two examples of such functions from 10] are integer multiplication and
graph transitive closure. Other examples from [5], [6] are determining whether a
graph has a perfect matching and sorting (binary representations of) positive
integers.

COROLLARY 1. A CRCW PRAM with a polynomially-bounded number of
processors that operates in constant time cannot compute parity, multiply integers,

find the transitive closure of a graph, determine whether a graph has a perfect
matching, or sort integers.

Even given the elegant proof technique of [10], a direct proof of Corollary 1
would probably be very cumbersome.

To provide evidence that we have found the "correct" circuit analogue of
CRCW PRAM’s we can give a converse to Theorem 1. To avoid the usual
mismatch of uniform programs with nonuniform circuits, we now allow programs
to be nonuniform. In the nonuniform case, each R can have a different pro-
gram, and the programs can depend on the size of the input. Theorem 1 remains
true for nonuniform CRCW PRAM’s although the polynomial q now depends
also on the size of the programs, where the size of a program is the number of
bits needed to write the program when constants and indices of registers men-
tioned in the program are written in binary.

THEOREM 2. There are constants c l, c2 and c3 such that the following holds.
Let C be a circuit of size S and depth T that computes a function f having n inputs
and at most n outputs. There is a nonuniform CRCW PRAM with cl(S+n)
processors and program size c21og(S+n) that runs in time c3(T+ 1) and computes f.

Remark. Theorem 2 remains true under the two alternate concurrent write
assumptions for CRCW PRAM’s mentioned in Remark 4 above. However, we
do not see how to prove Theorem 2 for the CREW PRAM. Since [7], [19]
shows that an n-bit OR requires time f(logn) on a CREW PRAM, Theorem 2
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does not hold literally for the CREW PRAM; however, a time bound of
O(T + log n) would not contradict [7], [19]. We leave circuit characterizations of
the CREW PRAM and EREW PRAM [14], [25] as interesting open questions
(the EREW PRAM allows neither simultaneous reading nor writing to the same
location). If natural circuit characterizations of the CREW PRAM and EREW
PRAM cannot be found, this may strengthen [26], [27] in supporting the CRCW
PRAM model of computation if some kind of simultaneous access to a common
memory is to be allowed.

Before giving the proofs, a few remarks on our view of the significance of
this work should be made. First, a few words should be said about how realistic
is the CRCW PRAM model. Certainly any physically realizable computer using
current technology cannot have completely unbounded fan-in. On the other
hand, fan-in bounded by 2 is probably too restrictive. For example, a realistic
situation could have many processors writing onto a bus; this would be, in effect,
an OR with fan-in equal to the number of processors. Lower bounds on CRCW
PRAM time are very strong since the model is so powerful. Second, it should be
noted that Furst, Saxe, and Sipser were led to unbounded fan-in circuits by the
desire to separate the polynomial-time hierarchy from PSPACE by an oracle.
Starting from a quite different motivation, we were led to exactly the same type
of circuits. This provides further evidence that lower bounds on the depth and
size of unbounded fan-in circuits is an important area of study. Finally, a
common thread running throughout the history of theoretical computer science is
the search for the "right" computational models. One way to support a model or
models as being right is to show equivalence of seemingly different models. This
has occurred in attempts to model "effective computation" (Turing machines,
recursion equations, RAM’s, etc. are equivalent), "serial time" (Turing machine
time, serial RAM time, and circuit size are equivalent to within a polynomial),
and "parallel time" (vector machine time, SIMDAG time, alternating Turing
machine time, and circuit depth are equivalent to within a polynomial). By the
equivalence between CRCW PRAM’s and circuits stated in Theorems 1 and 2,
these two models support each other as being right models of unbounded fan-in
parallelism.

Another model of parallelism is the alternating Turing machine [4], although
when viewed as a model of parallelism the fan-in is bounded. Ruzzo and Tompa
[22] have shown that if one considers the alternation depth of the alternating
machine, that is, the number of times that the machine switches from an existen-
tial state to a universal state or vice versa along any computation path, then this
complexity measure corresponds quite closely to parallel time in the unbounded
fan-in sense. Specifically, if T(n) and S(n) are suitably well behaved functions
with S(n) > log n and log T(n) < S(n) < T(n), then the class of languages accept-
ed by alternating Turing machines that are simultaneously O(T(n)) alternation
bounded and O(S(n)) space bounded is precisely the class of languages accepted
by CRCW PRAM’s that are simultaneously O(T(n)) time bounded and 20(S(n))
processor bounded. An advantage of this result, as compared to Theorems 1 and
2, is that both models are uniform. A disadvantage is that the relationship does
not hold for constant T(n); the parity function is computable by a deterministic
Turing machine in space log n (i.e., T(n)_= 1 and S(n)= log n), but as noted in
Corollary 1 above, parity is not computable in constant time by a CRCW PRAM
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with a polynomial number of processors. In 3, we review the definition of
alternating Turing machines, state Ruzzo and Tompa’s result more precisely, and
outline the proof.

2. Proofs of Theorems 1 and 2.
Proof of Theorem 1. We give the proof for a nonuniform CRCW PRAM.

We have made no special attempt to control the size of the constant c or the
polynomial q in the statement of the theorem; we have opted instead for a simple
description. Fix an input size n. Let P, T and S be the processor bound, running
time and program size, respectively. We can take the word length, i.e., the
maximum length of the binary representations of all addresses of registers and
values stored in registers, to be

L max(n, S, log P) + T + 1.

This is true because initially the length of all words in the memory or the pro-
gram is max(n, S, logP), and each instruction can at most double the magnitude
of a value (i.e., add one to its length). One extra bit is added to L to allow for
negative numbers. So that addition and subtraction can be treated uniformly,
arithmetic is done modulo 2L+I and a negative number-z is stored as
(2L+l -z) mod 2L+l.

In our circuit simulation we represent local and common memories by sets of
triples

(ae(p,k,t), ve(p,k,t), we(p,k,t)) and (ac(k,t), vc(k,t), wc(k,t))

where ae(p,k,t), ve(p,k,t), ac(k,t) and vc(k,t) are L-bit binary words, and we(p,k,t)
and wc(k,t) are single bits. If we(p,k,t)--- 1, the triple (ae(p,k,t),ve(p,k,t),we(p,k,t))
means that the register with address ae(p,k,t) in the local memory of processor p
contains the word ve(p,k,t) at step t. If we(p,k,t) 0, the triple means nothing.
The triples (ac(k,t),vc(k,t),wc(k,t)) mean the same for common memory. If for
some a0, p and there is no k such that we(p,k,t)= 1 and ae(p,k,t)= ao, then
local register a0 of processor p contains zero at step t, and similarly for common
memory triples. Since a processor can write into at most one local or common
register at each step, we can take 1 < k < T for local triples and 1 < k < n+PT
for common triples. Let s(p) be the number of instructions in the program of
processor p (certainly s(p) < S). The circuit simulation also computes, for each
processor p, each step t, and each j with 1 < j < s(p), a bit ic(p,j, t) (instruction
counter) which is 1 iff processor p should execute the jth instruction of its
program at step t. Let X ,Xn be the input words stored in the first n locations
of common memory, each padded out to L bits. At the start of the computation
(t 0) set

(ac(k,O), vc(k,O), wc(k,O)) (k, xk, 1) for 1 <k <n,

1 if j-- 1
ic(p, j, O)

0 if j # 1.

All other memory triples with t 0 are set to (0,0,0).
The proof will be completed by showing that changes to the memory triples

and ic bits caused by one step of the PRAM can be computed by a circuit of
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constant depth and size polynomial in P, T, S and n. The inputs to this circuit
are the local and common memory triples and the ic bits before the step and the
outputs are the same information after the step. We restrict our description to a
"projection" of the general circuit on one processor. The general outline of the
circuit for one processor is shown in Fig. 1. We now describe the pieces of Fig.
1 and explain how each can be implemented by a constant-depth polynomial-size
circuit. A subcircuit that is used often is the circuit EQ that takes two L-bit
binary words, say y and z, and produces 1 (true) iff y z. This circuit has depth
4 and size O(L) since

L
EQ(y, z) / (YiZi V (’yi)("zi)).

i=1

IC LOCAL

\ /
COMPUTE

OPiRAiD.I LOCAL COMMON

IC

OAk

Cl N UPDATE
w-BITS OF

LOCAL TRIPLES

IC’

FIG. 1. The high level outline of the circuit that simulates one step of one processor.

Fix a processor p, 1 < p < P, and a step t, 0 < < T.

(1) Compute operands.
The outputs of this circuit are the values contained in local registers Mop1

and Mop2 for the instruction to be executed next. Let opl(p,j) be the L-bit
binary representation of opl in the jth instruction of the program of processor p;
for an instruction with no opl (e.g. HALT) we can take opl(p,j)= 0. The first
operand is computed as

s(p) T
V V ic(p,j,t) A EQ(opl(p,j), ae(p,k,t)) A we(p,k,t) A ve(p,k,t).
j=l k=l
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The rightmost A of this expression is computed bitwise over the bits of ve(p,k,t).
This expression can be implemented as a circuit of constant depth and size
O(STL). The second operand is computed similarly.

After the operands are computed, the various operations are applied to the
operands.

(2) Addition and subtraction.
Addition of two L-bit numbers y= YL...YPYl and z 2L...2221 can be comput-

ed by a circuit of size O(L3) and constant depth. First compute the carry
generate and propagate bits as gi yiAzi and Pi yiVgi, respectively. The ith carry
bit ci is 1 iff there is a j < such that gj= 1 and p/ 1 for all k with j < k < i.
Therefore, all the carry bits can be computed by a circuit of size O(L3) and
constant depth. Finally, the ith bit of the sum is Yi @ zi ( ci. For subtraction,
y-z, the binary representation of 2L+ 1-z mod 2L+ can be computed by comple-
menting the bits of z and then adding 1. (Recently, Chandra, Fortune and
Lipton [3] have significantly improved the O(L3) upper bound for the constant
depth computation of addition.)

(3) Read from memory.
Let a0 be the first operand computed in (1) above. The value read from

common memory is

n+PT
V
k-1

EQ(a0, ac(k,t)) A wc(k,t) A vc(k,t).

The size is O(L(n+PT)). Reading from local memory is similar; the size is
O(LT).

(4) Comparison.
For nonnegative numbers y and z (i.e., YL--’--ZL----0), y < z iff there is an

such that zi--1 and Yi-’- 0 and yj--zj for all j > i. This can be computed by a
circuit of size O(L2) and constant depth. There are three other cases depending
on whether y or z or both are negative. Testing whether y-- z is done by EO.
(5) Update instruction counter.

An example should suffice. If part of the program is

5" GOTO 7 if Mop < Mop2
6" not a GOTO,

if 7 is not mentioned in any other GOTO’s, and if c is the output of the
<-comparison circuit, then

ic(p, 7, t+ 1) (ic(p, 5, t) A c) V ic(p, 6, t).

The total size is O(S).

(6) Select result.
Based on which ic(p,j, t) is 1, the correct L-bit result v(p, t) is selected from

the outputs of (1), (2) or (3). For instructions that load a constant or load the
processor number, the proper constant is selected. The constant-depth imple-
mentation should be obvious at this point. The size is O(LS).
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(7) Compute address of result.
For instructions other than memory writes, the L-bit address a(p, t) is given

by the number "res" in the instruction being executed at step t. For memory
writes, the address is computed as in (1). The size is O(STL).

(8) Local change? and common change?
The local (common) change bit A(p, t) (3’(P, t)) is 1 iff processor p changes

the local (common) memory at step t. Let C(p) be the set of instruction num-

bers of common memory WRITE instructions in the program of processor p. Let
POS(a) be a circuit that computes 1 iff the L-bit a is positive. Recall the
convention that an indirect WRITE using a nonpositive address has no effect.
Then

(p, t) /
jC(p)

ic(p, j, t) ) A POS(a(p, t)).

h(p, t) is computed similarly. The size is O(S + L).

(9) Update local memory.
Local memory of processor p is updated by setting

ae(p, t+ l, t+ l ) a(p, t),
ve(p, t+ 1, t+ 1) v(p, t),
wg(p, t+ l, t+ l ) ,(p, t),

ae(p, k, t+ l ae(p, k, t)
ve(p, k, t+ l ve(p, k, t)

for 1 <k <t,
for 1 <k <t.

Also, for each 1 < k < t, we(p, k, t+ 1) should be set to 0 if processor p is chang-
ing its local memory at this step (?,(p,t)= 1) and the address ae(p,k,t) matches
the address a(p,t) being changed at this step. Each we can be updated by a
constant depth circuit of size O(L), or O(TL) in all.

The circuitry of (1)-(9) must be replicated for each processor, so this gives
size O(P(STL + L3 + L(n + PT))).

(10) Update common memory.
Next, the common memory triples are updated using a(p,t), v(p,t) and

,(p, t) from all the processors. First, 3’(P, t) must be set to 0 if there is a proc-
essor q, with q < p, attempting to write into the same address.

y (p, t) y(p, t) A / y(q, t) A EQ(a(q,t), a(p, t))
q<p

The total size for updating the 3,’s is O(p2L). The updating of common memory
triples is similar to (9) except that a new block of P triples comes into play. For
l<p<P,

ac(n+tP+p, t+ 1) a(p, t),
Vc(n+tP+p, t+ 1) v(p, t),
Wc(n+te+p, t+ 1) 3/(p, t).
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The computation of wc(k,t+l) for k < n+tP is similar to (9). The size is
O(PL(n + PT)).

Since all the circuitry must be replicated T times, the total size of the
simulating circuit is O(PT(STL + L3 + L(n + PT))).

Finally, in order to assign output nodes in the circuit, the contents of the ith
location of common memory, 1 < < n, is computed as in (3) where now a0 is the
L-bit representation of i. Output nodes are now assigned to the results of this
final computation depending on the output conventions of the particular problem
being solved by the CRCW PRAM. [-!

As mentioned in Remark 3 above, Theorem 1 remains true if the PRAM has
instructions for multiplication and division of O(log n)-bit numbers. In fact, any
Boolean function with d.log2n inputs and m outputs can be computed by a circuit
of depth 3 and size O(mnd+l) by computing each output from its disjunctive
normal form.

Proof of Theorem 2. By DeMorgan’s laws we can assume that the circuit
contains only OR-gates and NOT-gates. Given a circuit with S wires and N
nodes, number the nodes from 1 to N such that the n input nodes are numbered
from 1 to n. Let C1, C2 denote the common memory registers. Initially the
ith input bit is placed in Ci for 1 < < n. In general, the Boolean value computed
by node number in the circuit is computed by the CRCW PRAM in register Ci,
and the values of all nodes at a fixed depth d in the circuit are computed in
parallel. There is a processor associated with every wire. Say that a wire is
directed from node to node j, and node j is at depth d in the circuit. The
processor associated with this wire waits cd steps, where the constant c is large
enough that the values computed by all nodes at depth < d have already been
computed by the PRAM before step cd. The waiting is done by incrementing
and testing a counter. If node j is an OR-gate, the processor writes 1 in Cj if Ci
contains 1, or does nothing if Ci contains 0. If node j is a NOT-gate, the proc-
essor writes the negation of the contents of Ci into Cj. Other processors are
assigned to output nodes. After waiting cT steps, these processors in parallel
move the output bits to an initial contiguous block of common memory.

Regarding the first sentence of the remark following the statement of
Theorem 2, note that if several processors write into Cj at the same step, then j
is an OR-gate and all these processors are writing 1.

3. Alternating Turing machines and CRCW PRAM’s. In this section, some
familiarity with the concept of alternation is assumed; see, for example, [4]. An
alternating Turing machine (ATM) is like a nondeterministic Turing machine
except that the states are partitioned into existential states, universal states,
accepting states and rejecting states. Accepting and rejecting states are halting
states. We consider ATM’s with a read-only input tape and one read/write
worktape. A configuration of an ATM consists of the state, the positions of the
heads on the input tape and worktape, and the nonblank contents of the work-
tape. We let - denote the one-step transition relation on configurations. Let
INITM(x) denote the initial configuration of machine M on input x. An ATM M
accepts input x iff there is a tree, called an accepting computation tree of M on

input x, such that the root of the tree is INITM(X), all leaves are accepting
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configurations, if the existential configuration a is a node of the tree then a has
one son and a l-/3, and if the universal configuration a is a node of the tree
then the sons of a are all those/3 with a I--/3. If L is a set of words, M accepts L
if, for all x, M accepts x iff x E L. With no loss of generality we assume that
transitions from existential configurations to universal configurations, or vice
versa, occur only when the machine is in one of a distinguished class of states
called switching states. If/3 is an existential switching (resp., universal switching)
configuration then there is exactly one a such that a i--/3 and a is a universal
(resp., existential) configuration; moreover, /3 is the only configuration such that
a I--/3. An ATM M is S(n) space bounded if any configuration reachable from
INITM(x) uses at most S( xl ) cells on the worktape. An ATM M is T(n)
alternation bounded if any computation path

INITM(x) ]- a ]- a2 I--... [’- Ctm

has at most T( Ix 1 switching configurations. We let

ATM-ALT-SPACE(T(n), S(n))

be the class of languages L c_ {1,2}* accepted by ATM’s that are simultaneously
T(n) alternation bounded and S(n) space bounded.

A CRCW PRAM M accepts input x {1,2}* iff, when started with the ith
digit of x in common register for 1 <_ <_ Ix I, M halts with 1 in common
register 1. Let

CRCW-TIME-PROC(T(n),P(n))

be the class of languages L_c {1,2}* accepted by CRCW PRAM’s that are
simultaneously T(n) time bounded and P(n) processor bounded.

The pair (T(n), S(n)) is suitable if
(1) S(n) > log n and log T(n) < S(n) < T(n),
(2) there is a deterministic Turing machine which, when given an input of

length n, lays off a block of S(n) tape cells and computes the binary representa-
tion of T(n), and

(3) there is a (serial, uniform cost criterion) RAM which, when given an
input of length n, halts within O(T(n)) steps with S(n) and T(n) in two registers.

For example, letting log n abbreviate [ log2(n+ 1)-I, the function log n is computa-
ble by a RAM in time O(log n)" starting with I---1, the RAM successively doubles
the variable I until the ith common location contains a zero. Therefore,
(log n, log n) is suitable.

THEOREM 3 (Ruzzo, Tompa [22]). Let (T(n), S(n)) be suitable.

ATM-ALT-SPACE(O(T(n)), O(S(n)))
CRCW-TIME-PROC(O(T(n)), 20(S(n))).

Proof. Our goal is just to outline enough of the proof to allow the interested
reader to complete the details. (The following proof, which uses the results of
the previous section as a foundation, is due to the first author. Ruzzo and
Tompa’s original proof does not use unbounded fan-in circuits per se.)

1. (_c) Let M be an ATM which is O(T(n)) alternation bounded and
O(S(n)) space bounded. If the constant d is such that dS(n) is an upper bound
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on the number of configurations of M on inputs of length n, then M accepts
within time dS(n) [4, Thm. 2.6]. Fix an input x. A timed configuration (on input
x) is a pair (a, t) where a is an S(Ixl) space bounded configuration of M and
is an integer with 0 < < dS(n). The relation I-- is extended to timed configura-
tions by

(a,t) 1-- (fl, t’) iff a[-- /3 and t’= + 1.

The CRCW PRAM that simulates M first constructs the adjacency matrix A
of an acyclic directed graph whose nodes are the timed configurations. If u and v
are timed configurations, there is an edge directed from v to u (i.e., A(v,u)= 1)
iff u - v. The matrix A is computed and stored in common memory. To compute
A, each processor views its processor number as a pair (u,v) of timed configura-
tions. Since u and v are strings of length O(S(n)), time O(S(n)) is sufficient for
each processor to "decode" its number to a pair (u,v) and check whether u - v;
the processor then writes 1 in A(v,u) iff u [-- v. Note that 20(S(n)) processors are
sufficient for this, and recall that S(n) <_ T(n).

A timed configuration (u,t) is special if u is halting, u is switching, or
(u, t) (INITM(x), 0). The next step is to partially transitively close the graph so
that A(v,u)= 1 iff there is a sequence Wl, Wm of nonspecial timed configura-
tions such that

(*) U - W W2 - " Wm " V.

To compute this closure, each processor decodes its processor number to a triple
(u,w,v) of timed configurations and checks whether w is special; this takes time
O(S(n)). If w is special, the processor does not participate in computing the
closure. If w is not special, the processor executes a sequence of phases. During
a given phase, the processor writes 1 in location A(v,u) iff both A(v,w)---1 and
A(w,u) 1; each phase takes constant time. After phases, all paths (*) of
length < 2 will have been discovered, so log2ds(n) O(S(n)) phases suffice.

Next, it is easy to transform this graph to a circuit as follows. Remove all
nonspecial nodes, view halting configurations as input nodes, view existential
switching (resp., universal switching) configurations as OR-gates (resp., AND-
gates), and view (INITM(x), 0) as the single output node. This circuit has size
20(S(n)) and depth O(T(n)). If input nodes corresponding to accepting (resp.
rejecting) halting configurations are given value 1 (resp., 0), the value computed
at the output node is 1 iff M accept x. As shown in the proof of Theorem 2, a
CRCW PRAM with 2(S(n)) processors can simulate this circuit within time
O(T(n)).

2. (_=). Let M be a CRCW PRAM which is O(T(n)) time bounded and
P(n) 20(S(n)) processor bounded. For a given input x, consider the circuit
described in the proof of Theorem 1. By the well known trick of computing, for
each gate, both the value computed by the gate and the negation of that value,
we can assume that the circuit does not contain NOT-gates. Removing NOT-
gates in this way does not increase depth and at most doubles size. This circuit
has depth O(T(n)), and since it. has size polynomial in P, T, and n, the nodes of
the circuit can be named by binary strings of length

O(logP(n) + log T(n) + log n) which is O(S(n)).
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The construction of this circuit is sufficiently uniform that, for a particular
naming of the nodes, there is an O(S(n)) space bounded deterministic Turing
machine which, when given x and the names of nodes u and v, determines
whether there is an edge (i.e., wire) of the circuit from u to v, and determines the
types of u and v, that is, input node assigned value 0, input node assigned value
1, output node, AND-gate, or OR-gate. This Turing machine is used as a sub-
routine in the following ATM program for simulating the circuit.

v - the output node of the circuit;
while v is not an input node do

begin
if v is an AND-gate (resp., OR-gate) then universally (resp., exis-
tentially) choose a node u such that there is an edge from u to v in
the circuit;
k’ - U,

end
if the input node v is assigned value 0 (resp., 1) then reject (resp., accept).

This ATM is O(T(n)) alternation bounded and O(S(n)) space bounded, and it
accepts x iff M does. l-]

Whereas Theorem 1 was useful in proving nonconstant lower bounds on
CRCW PRAM time, Theorem 3 appears to be more useful in proving upper
bounds. An interesting class is the class of languages accepted by CRCW
PRAM’s in time O(logn) with a polynomial number of processors. By Theorem
3, this class is precisely

ATM-ALT-SPACE(O(log n), O(log n)).

It is implicit in a paper of Ruzzo [21, Example 1, Thm. 2] that any context free
language is in ATM-ALT-SPACE(O(logn), O(logn)). The following corollary is
immediate.

COROLLARY 2 (Ruzzo). If L is context free then L is accepted in time O(logn)
by a CRCW PRAM with a polynomial number of processors.

It is interesting to compare this corollary with the result of Reif [18] that
any deterministic context free language is accepted by a CREW PRAM (i.e., no
concurrent writing to the same location) in time O(logn) using a polynomial
number of processors.

Acknowledgment. We thank Larry Ruzzo and Martin Tompa for allowing us
to include their result relating alternating Turing machines to CRCW PRAM’s.
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CONSTANT DEPTH REDUCIBILITY*
ASHOK K. CHANDRAf, LARRY STOCKMEYER AND UZI VISHKIN

Abstract. The purpose of this paper is to study reducibilities that can be computed by
combinational logic networks of polynomial size and constant depth containing AND’s, OR’s and
NOT’s, with no bound placed on the fan-in of AND-gates and OR-gates. Two such reducibilities are

defined, and reductions and equivalences among several common problems such as parity, sorting,
integer multiplication, graph connectivity, bipartite matching and network flow are given. Certain
problems are shown to be complete, with respect to these reducibilities, in the complexity classes
deterministic logarithmic space, nondeterministic logarithmic space, and deterministic polynomial
time. New upper bounds on the size-depth (unbounded fan-in) circuit complexity of symmetric
Boolean functions are established.

Key words, circuit complexity, unbounded fan-in circuits, reducibility, complete problems

1. Introduction. Reducibility is a key concept in the theory of computation.
In recursion theory, effective reducibility is useful in proving problems decidable
or undecidable. In complexity theory, polynomial-time reducibility is central to
the concept of NP-completeness [5], [14], [9] and permits one to show that the
complexities of different problems are related even though the exact complexities
of the problems are unknown. Similarly, reducibility can be used to establish
upper or lower bounds on computational complexity: If problem A is reducible to
problem B, then a lower bound on the complexity of A translates to a similar
lower bound on the complexity of B, and an upper bound on B translates to an
upper bound on A; this requires that the computational resources uaed in comput-
ing the reducibility function be negligible compared to the upper or lower bounds
being proved. For investigating certain problems such as the relationship be-
tween deterministic and nondeterministic logarithmic space, polynomial-time
reducibility is too weak so it has been strengthened to logspace reducibility [13],
[21].

The purpose of this paper is to study reducibilities that can be computed by
combinational logic circuits containing AND’s, OR’s and NOT’s with no bound
placed on the fan-in of AND-gates and OR-gates (call these simply circuits)
where the circuit has polynomial size and constant depth. We define two such
reducibilities and investigate how several common problems such as parity,

*Received by the editors September 14, 1982, and in revised form July 25, 1983. Portions
of this paper have been reprinted, with permission, from "A complexity theory for unbounded fan-in
parallelism" by A. K. Chandra, L. J. Stockmeyer and U. Vishkin, appearing in the Proceedings of the
23rd Annual Symposium on Foundations of Computer Science, 1982, pp.l-13, (C) 1982 IEEE. This
paper was typeset at the IBM San Jose Research Laboratory.

’Mathematical Sciences Department, IBM Thomas J. Watson Research Center, Yorktown
Heights, New York 10598.

Computer Science Department, IBM Research Lab. K51/281, San Jose, California 95193.
Work performed in part at the IBM Thomas J. Watson Research Center.

Department of Computer Science, Courant Institute of Mathematical Sciences, New York
University, New York, New York 10012. Work performed while the author was visiting the IBM
Thomas J. Watson Research Center, while on leave from the Department of Computer Science,
Technion, Haifa, Israel.

423



424 ASHOK K. CHANDRA, LARRY STOCKMEYER AND UZI VISHKIN

sorting, integer multiplication, graph connectivity, bipartite matching and network
flow, are related by these reducibilities. There are two motivations for studying
constant-depth reducibility. Interest was drawn to size-depth complexity for
circuits by a recent result of Furst, Saxe and Sipser [8] showing that the parity
function cannot be computed by any polynomial-size constant-depth circuit.
Furst, Saxe and Sipser also give a few polynomial-size constant-depth reductions
from parity to other problems, thus showing that these other problems cannot be
computed by polynomial-size constant-depth circuits. By giving a more detailed
classification of a larger collection of problems, our results contribute toward the
theory of size-depth complexity for circuits. It should be expected that constant-
depth reducibility will refine and expose more structure in low-level complexity
classes such as deterministic polynomial time and nondeterministic logarithmic
space than do the commonly used polynomial-time and log-space reducibilities.

Another motivation is that circuits with unbounded fan-in can be viewed as
a model for unbounded fan-in parallelism, where circuit depth corresponds to
parallel time and circuit size corresponds to the number of processors in the
parallel machine. This view was strengthened by a recent result of Stockmeyer
and Vishkin [22] giving a correspondence between circuits and the concurrent-
read concurrent-write parallel random-access machines of Goldschlager [10] and
Shiloach and Vishkin [19], [23] (CRCW PRAM or, for short, WRAM) which
have many random access machines operating in parallel and communicating via a
shared common memory, with appropriate conventions for resolving writing
conflicts into the common memory. Stockmeyer and Vishkin show that time and
number of processors for WRAM’s correspond respectively (and simultaneously)
to depth and size for circuits, where the time-depth correspondence is to within a
constant factor and the size-processors correspondence is to within a polynomial.
(Technically, for the simulation of circuits by WRAM’s, the WRAM is allowed to
be nonuniform.) By this correspondence, our results can also be viewed as
contributing toward the theory of time-processors complexity for (nonuniform)
WRAM’s.

Section 2 of the paper contains definitions, including definitions of our
constant-depth reducibilities. In 3, we establish several reductions and equiva-
lences among problems using these reducibilities. We also show certain problems
to be complete, with respect to these reducibilities, in the complexity classes
deterministic logarithmic space, nondeterministic logarithmic space, and determin-
istic polynomial time. In 4 we give upper bounds on the size-depth circuit
complexity of symmetric functions and graph transitive closure that improve the
obvious upper bounds.

2. Definitions. A Boolean function is a function of the form
f: {0,1 }n

_
{0,1 }m where 0 and 1 denote Boolean values false and true, respec-

tively; n i’ the number of variables or inputs, and m is the number of outputs. A
problem is an infinite sequence of Boolean functions {fn n > 1 such that fn
has n variables. For some of the specific problems discussed herein, we define fn
only for certain values of n; in this case we assume that any fn not defined
explicitly is identically zero.

A circuit is an acyclic directed graph. Each node of the graph is labeled as
either an input node, an AND-gate or an OR-gate. Input nodes must have fan-in
(i.e., in-degree) zero. In addition, certain nodes are designated as output nodes.
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An assignment of Boolean values to the input nodes extends, in the obvious way,
to Boolean values associated with all nodes; an AND-gate (resp., OR-gate) with
fan-in zero is assigned value 1 (resp., 0). The size of a circuit is the number of
edges (i.e., wires). The depth is the length of a longest path from some input to
some output. The circuit C computes the function f: {0,1 }n .. {0,1 }m if C has 2n
input nodes and m output nodes and there is a 1-1 correspondence between input
nodes and Xl,l Xn,n (i denotes the negation of xi) and a 1-1 correspon-
dence between output nodes and Yl ,Ym such that, for all (Xl,...,Xn)e {0,1}n,
the assignment Xl,l, Xn,’n to the input nodes extends to the assignment
Yl,...,Ym to the output nodes where f(xl,...,Xn) (Yl Ym). (When input
variables and their negations are available as inputs, it is well known that NOT-
gates can be eliminated from circuits without increasing depth and at most
doubling size, so we do not need NOT-gates in our formal definition of circuits.
However, for convenience we sometimes use negations in describing circuits.)

DEFINITION. Let S(n) and D(n) be functions from positive integers to positive
reals. The problem F {fn} is in the complexity class SIZE-DEPTH(S(n),D(n))
if, for every n _> 1, fn is computed by a circuit with both size _< S(n) and depth _<
D(n). Also define

SIZE-DEPTH(poly, constant) LI SIZE-DEPTH(cn/c, d).
c,d,k > 0

Similarly, SIZE-DEPTH(poly, D(n)) is the union of SIZE-DEPTH(cnk, D(n))
over all constants c and k, and SIZE-DEPTH(S(n),constant) is the union of
SIZE-DEPTH(S(n), d) over all constants d.

A fan-in 2 circuit is a circuit such that all AND-gates and OR-gates have
fan-in 2.

Our first reducibility is the projection reducibility studied by Skyum and
Valiant [20]. A problem F {fn] is projection reducible to a problem G {gn}
(F <proj G) if there is a function p(n) bounded above by a polynomial in n, and
for each fn e F a mapping

an:{Yl ,Yp(n) " { Xl,l, ...,Xn,’n, O, 1

such that fn(Xl, ...,Xn) gp(n)(onOYl) on(Yp(n))). We also use a weaker reduci-
bility, constant-depth truth-table reducibility: F <cd-tt G if there is a polynomial
p(n) and a constant c such that each fn is computed by a circuit of depth _< c and
size < p(n) containing "black boxes" which compute members gj of G or their
negations j with j < p(n), where the size and depth of black boxes are counted
as unity, and such that there is no path in the circuit from an output of one black
box to an input of another black box.

We write F=x G if both F <x G and G <xF.
The following proposition is obvious.
PROPOSITION 2.1. (1) <proj and <cd-tt are transitive relations.
(2) F <proj G F < cd-tt G.
(3) If F <projG or F <cd-tt G, and G e SIZE-DEPTH(S(n),D(n)) where S

and D are monotone nondecreasing, then

F e SIZE-DEPTH(p(n).S(p(n)), c.D(p(n)))

for some polynomial p and constant c. In particular,

G e SIZE-DEPTH(poly, constant) => F SIZE-DEPTH(poly, constant).
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(We are interested primarily in the case D(n) O((log n)k) for some con-
stant k, and c.D(p(n))= O((logn)k) in this case, justifying the name "constant
depth reducibility".)

We use certain complexity classes defined by time or space bounded Turing
machines (see, for example, [9], [12]). Let (resp., ,//r) be the class of
languages L __. {0,1}* which are accepted by deterministic (resp., nondeterminis-
tic) Turing machines with a read-only input tape and a log n bounded worktape.
A language L

_
{0,1 }* is in the class NONUNIF-. (NONUNIF-o4") if there is

a polynomial p(n) and a log n space-bounded deterministic (nondeterministic)
Turing machine M, such that for every n there is a binary word an with
an] < p(n), such that for all x with xl n, M accepts X#an iff x L; an is

called the advice (for inputs of length n). Let be the class of languages
L
_

{0,1 }* accepted by polynomial time-bounded deterministic Turing machines.
A problem F is a one-output problem if every fn F has one output. The com-
plexity classes , atr, NONUNIF-., etc. can be viewed as classes of one-
output problems by making the obvious correspondence to binary languages,
namely, x e L iff fix I(x) 1. If < is a reducibility, F is a one-output problem,
and is a class of binary languages, then < F if G < F for all G e ’; F is
<-complete in c if both < F and F e .

For several of the specific problems considered, inputs are natural numbers
or graphs. Natural numbers are sometimes represented in unary notation and
sometimes in binary. The m-bit unary representation of k (0 < k < m) is the
binary word l kom-k. Graphs are represented by adjacency matrices. An undi-
rected graph with m vertices Vl,...,Vm is represented by m(m-1)/2 Boolean
variables aij for 1 < i, j < m and < j such that aij 1 iff there is an edge between
vi and vj. A directed graph is represented by m2 variables aij for 1 < i,j < m such
that aij= 1 iff there is a directed edge from vi to vj. An undirected bipartite
graph with 2m vertices u l, urn, Vl, Vm is represented by m2 variables aij for
1 < i,j < m such that aij 1 iff there is an edge between ui and vj. In describing
graph constructions we let {u,v} denote the undirected edge between vertices u
and v and we let (u,v) denote the directed edge from u to v.

Define the function
lg(n) [ log2(n+ 1) q;

note that lg(n) is the length of the binary representation of n.

3. Constant depth reducibility among problems. Our results are summarized in
Fig. 1; see the Appendix for precise definitions of the various problems.

THEOREM 3.1. All the problems enclosed as a group in Fig. 1 are in the same

--ct-tt equivalence class. Groups with -=proj written to the left are in the same --proj
equivalence class. A problem in a group fg is reducible to all problems in the group
above fg via the indicated reducibility. Problems in the lowest group in Fig. 1 are in
the class SIZE-DEPTH(poly, constant).

(We note that Furst, Saxe and Sipser [8] previously showed that PARITY is

<cl-tt to THRESHOLD, MULTIPLICATION, and UNDIR-ST-CONNEC-
TIVITY.) Problems that are --proj are, in a fairly strong sense, the "same"
problem. Since Furst, Saxe and Sipser [8] show that PARITY is not in the class
SIZE-DEPTH(poly, constant), we know that this class lies strictly below the class
containing PARITY in the <cO-tt ordering. We do not know that any of the
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proj

proj

CIRCUIT-VALUE

proj

BIPARTITE-MATCHING
BIPARTITE-PERFECT-MATCHING

NETWORK-FLOW

1 proj

DIR-ST-CONNECTIVITY

STRONG-CONNECTIVITY

proj

UNDIR-ST-CONNECTIVITY

CONNECTIVITY

UNDIR-CYCLE

EULERIAN-CYCLE

l cd-tt

MULTIPLICATION
SORTING

MULTIPLE-ADDITION

THRESHOLD

MAJORITY
BINARY-COUNT

UNARY-COUNT

cd-tt

PARITY
ZERO-MOD-2

<cd-tt

ADDITION

COMPARISON

MAXIMUM
MERGING

BINARY-TO-UNARY

UNARY-TO-BINARY

SlZE-DEPTH(poly,constant)

FIG. 1.

other relationships in Fig. 1 are strict in the <cd-tt ordering. Several of the
reductions in Fig. 1 are not surprising. However, we can single out

UNDIR-ST-CONNECTIVITY proj CONNECTIVITY

MULTIPLICATION ----cd-tt SORTING

as being nonobvious.
Shortly we prove Theorem 3.1 by giving a series of reductions. We first

prove the following completeness results; these results immediately yield most of
the projection-equivalences for graph connectivity problems.

THEOREM 3.2.
(1) UNDIR-ST-CONNECTIVITY, CONNECTIVITY, and UNDIR-CYCLE

are < proj-complete in NONUNIF-.
(2) UNDIR-CYCLE is <proj-complete in ..
(3) DIR-ST-CONNECTIVITY and STRONG-CONNECTIVITY are

< proj-complete in NONUNIF-,JF. and in ,/F..

(4) CIRCUIT-VALUE is <proj-complete in .
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Proof. The reductions are very similar to the known log-space reductions
[111, [13], [15], [17].

(1) By a result of Aleliunas et al. [1], it easily follows that all three problems
mentioned in part (1) belong to NONUNIF-; for inputs of length n
re(m-l) corresponding to adjacency matrices for undirected graphs with m
vertices, the advice an encodes a universal traversal sequence for such graphs.
For the other direction we first show that

NONUNIF- <proj UNDIR-ST-CONNECTIVITY.
Let M be a deterministic lg(n) space-bounded Turing machine. Fix an input

length n, let an be the advice, and let n anl. The configurations of M are
4-tuples (q,i, fl, j) where q indicates the state of the finite control, with
0 < < n+n+2 is the position of the input head in the string X#an$ (where
and $ are left and right endmarkers), the word/3 with 1/31 lg(n) is the content
of the worktape, and j is the position of the head on the worktape. The machine
has a unique initial configuration co (q0, 0, #1g(n), 1) where q0 is the unique
initial state and # is the blank tape symbol. Assume that M has a unique accept-
ing configuration Ca (qa, O, #1g(n), 1) where qa is the unique accepting state.
Modify M so that it never halts, and that if configuration Ca is entered then M
cycles forever in Ca. Let p be the number of configurations of M; p is bounded
above by a polynomial in n. The number p can also be taken as an upper bound
on the time for M to accept; i.e., if M accepts x of length n then M will be in
configuration Ca at step p.

For each input x of length n we describe a graph G(x) such that the adjacen-
cy matrix of G(x) is obtained from x by a projection reduction. The vertices of
G(x) are all pairs (c, t) where c is a configuration of M and 0 < < p. Consider a
vertex (c, t) with c (q, i,/3, j) and 0 < < p. If 0 or > n, then the configura-
tion c reached in one move of M is determined and G(x) will have the edge
{(c,t), (c,t+l)}. If 1 < < n, there will be two configurations c and c" such
that c (c’) is the configuration reached in one move if xi 0 (xi 1). Thus, i
is the entry in the adjacency matrix corresponding to the edge {(c,t), (c,t+l)},
and xi is the entry corresponding to the edge {(c,t), (c’,t+l)}. If c= c" then
the entry corresponding to edge {(c, t), (cr, t+ 1)} is 1. Let m p(p+ 1) be the
number of vertices of G(x). Number the vertices so that Vl (c0,0) and
Vm (Ca, p). Since M is deterministic, for each fixed x and each vertex v of the
form (.,p), the connected component of G(x) containing v is a tree which can be
rooted at v such that the sons of (., t) in the tree are all of the form (.,t-l) for
all t. Therefore, M accepts x iff there is a path from Vl (co, 0) to Vm (ca,P).

For CONNECTIVITY, we form G(x) from G(x) by adding the edges of a
spanning tree among the vertices

{ (c,p) C Ca LI {(C0,0)}.
Recalling that M never halts, it is easy to see that Gt(x) is connected iff there is
a path from (co, 0) to (Ca, p). For UNDIR-CYCLE, we add to G(x) the edge
between (co, 0) and (Ca, p).

(2) Since Hong [11] shows that UNDIR-CYCLE e , the result is immedi-
ate from part (1).

(3) Obviously DIR-ST-CONNECTIVITY and STRONG-CONNECTIVITY
belong to aft. The proof that
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NONUNIF-alr- < proj DIR-ST-CONNECTIVITY
is very similar to the undirected case in (1). For example, if from configuration
c (q, i,,j) with xi 0 (xi--1) M can reach any configuration in the set Co
(C1) in one move, and if B Co n C1, then the entry of the adjacency matrix
corresponding to the directed edge ((c, t), (cr, t+ 1)) is i if c Co- B, xi if
c e C1-B, 1 if ce B, or 0 otherwise. So there is a directed path in G(x) from
Vl (co, 0) to Vm (Ca, p) iff M accepts x.

For STRONG-CONNECTIVITY, form G(x) from G(x) by adding the
directed edges

(Vm, U), (U, Vl) U V and u Vm }.
Then Gt(x) is strongly connected iff there is a directed path from Vl to Vm in
G(x).

(4) As Ladner [15] points out, it is well known that for any deterministic
Turing machine M there is a polynomial-size fan-in 2 circuit which takes as input
a (binary representation of a) configuration of M and outputs the next configura-
tion after one step. If M is p(n) time-bounded, one places p(n) copies of this
circuit in series. By choosing the binary representation of tape symbols properly,
the bits of the binary representation of the initial configuration are either con-
stants or depend directly on the bits of the input x to M. Therefore, this is a
projection reduction. !!

The following useful lemma is proved by computing f from its disjunctive
normal form.

LEMMA 3.3. If f is a Boolean function with n inputs and m outputs, then f is

computed by a circuit of size < (m+n).2n and depth 2.

Proof of Theorem 3.1. We first show that the problems in the lowest group in
Fig. 1 are in SIZE-DEPTH(poly, constant).

ADDITION
The well known carry look-ahead method for the addition of m-bit numbers

can be implemented as a circuit of size O(m3) and constant depth (see, e.g., the
proof of Theorem 1 in [22]). This size bound is greatly improved in [4].

COMPARISON
Given two m-bit binary numbers y Ym...Y2)’I and z Zm...Z2Zl, y < z iff there

is an such that Yi O, z 1, and yj =zj for all j > i. This can be computed by a
circuit of size O(m:) and depth O(1).

MAXIMUM
Given m m-bit binary numbers a 1,..., am, let cij 1 if a > aj, or 0 otherwise.

Using COMPARISON, all the cij can be computed in size O(m4) and depth O(1).
Letting di be the AND of cij over all j i, ai is the maximum iff d 1. The
maximum number can be computed as

/ a A d
l<i<m

where the A is computed bitwise over the bits of ai.
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MERGING
Let a l,...,am and bl,..., bm be the lists of m-bit binary numbers, each list

sorted in nondecreasing order. (Using COMPARISON, a polynomial-size
constant-depth circuit can check that the lists are indeed sorted and can set all
bits of the output to zero if not.) Let cij 1 iff bi < aj. For each j, CljC2j...Cmj is
a unary representation of the number of b’s less than aj. Let cj be this unary
representation with j l’s appended on the left and m-j O’s appended on the right,
so cj is a 2m-bit unary representation of aj’s position in the merged list. Similar-
ly, let dij-- 1 if ai <_ bj. Appending j l’s to the left of dljd2j...dmj and m-j O’s to
the right gives bj’s position in the merged list as a unary number dj. For each k
with 1 <_ k <_ 2m, let EQk(z) be a one-output circuit whose output is 1 iff z is a
unary representation of k; letting z glZ2...g2m and g2m+l--’--0, EQk(z)
z/ AT// 1. Finally, the kth number in the merged list is

V, (EQk(cj) A aj) V V (EQk(dj) A bj).
15j<2m 15j52m

Remark. Shiloach and Vishkin [19] show that MAXIMUM and MERGING
can be computed by a WRAM in constant time with a polynomial number of
processors. Therefore, an alternate proof that MAXIMUM and MERGING are
in SIZE-DEPTH(poly, constant) follows from this result and the Stockmeyer-
Vishkin [22] simulation of WRAM’s by circuits mentioned in the Introduction.

UNARY-TO-BINARY
Let X=Xl...xn be the given unary representation. (A polynomial-size

constant-depth circuit can check whether x1...xn E 1"0" and set the output to zero
if not.) Let x0 1, Xn/ ----0 and d -’-xi/i+ for 0 _< _< n, so d 1 iff x is the
unary representation of i. For 1 <_ j <_ lg(n), the jth bit of the binary representa-
tion is the OR of d over all such that the jth bit of is 1.

BINARY-TO-UNARY
Since the output depends only on the first lg(n) inputs, the polynomial-size

constant-depth circuit is immediate from Lemma 3.3.

The remainder of the proof of Theorem 3.1 is a series of reductions.

PARITY _<proj ZERO-MOD’2c
PARITY on n variables X xn is reduced to ZERO-MOD-2c on 2C-in

variables Yij for 1 < < n and 1 < j < 2c-1. The projection reduction is On(Yij)
xi for all j.

ZERO-MOD-2C <cd-tt PARITY
We show that ZERO-MOD-2c <cd-tt ZERO-MOD-2C-1 for all c > 2. This

suffices since c is constant and <cd-tt is transitive. Let Xl,...,Xn be the input bits
and lets Exi. Computeyij=xiAxjforalliandjwithi<j. Lett EYijand
note that t=s(s-1)/2. It is easy to verify that s=0 (mod2c) iff both s=0
(mod 2c- 1) and 0 (mod 2c- 1).
PARITY <proj MULTIPLICATION

This reduction is given in [8]. Given x,...,Xn, let k lg(n) and form the
two binary numbers
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n n

A ,
xi2k(i-1), B Z 2k(i-1)

i=1 i=1

Writing AB E Ci2k(i-1), where the c are k-bit numbers, the parity of Z x is the
low order bit of cn.

The next seven reductions form a cycle showing ----cd-tt for the seven prob-
lems in the group containing MULTIPLICATION in Fig. 1.

MAJORITY -<cd-tt MULTIPLICATION
The first stage of this reduction is identical to PARITY -<proj MULTIPLI-

CATION described above. The binary representation of E xi is On. These k bits
are then compared with the k-bit binary representation of [ n/2 ].

MULTIPLICATION -<cd-tt MULTIPLE-ADDITION
Multiplication of m-bit numbers y and z E zi2i is reduced to addition of rn

2m-bit numbers ao, am-1. For each i, a zi2iy, so each bit of each a is the
AND of a bit of y and a bit of z.

MULTIPLE-ADDITION <cd_tt BINARY-COUNT
Let A1, Am be the rn m-bit binary numbers to be added, and for 1 < < rn

let
m-1

A ., aij2j where aij E {0,1}.
j=0

Let L m + lg(m) and let g lg(m). Note that L bits are sufficient for the sum
S Y A i. We describe the reduction as a sequence of stages.

The first stage. For 0 < j < m, let bj be the g-bit result of alplying BINARY-
COUNT with inputs a lj, a2j,...,amj. Note that S bj2j. Since each bj has
only bits, the numbers bj2J can be "packed" into L-bit numbers B1,...,Be
whose sum is S; that is for each with 1 < < let

B , bi_l+kg2i-l+kg.
k>O

The second stage. Let g(2)=lg(g) (=lg(lg(m))). Similarly, by applying
BINARY-COUNT to each bit position in B1 Be and then packing the g(2)-bit
results into (2) L-bit numbers C1, Ce(2), we have reduced the original prob-
lem to the problem of adding (2) L-bit numbers. Since each use of BINARY-
COUNT in the second stage has only lg(m) inputs, each application of BINARY-
COUNT is implemented directly by a circuit of polynomial size and constant
depth (see Lemma 3.3) rather than by a "black box" as in the first stage.

The remaining stages. For > 3, let g(i)= lg(g(i-1)). By the same method
of counting followed by packing, the ith stage produces g(i) L-bit numbers whose
sum is S. Let i* be the smallest such that g(i)= 2. The i* stage produces two
L-bit numbers, say Y and Z, which can be added directly by a circuit of polyno-
mial size and constant depth to obtain S. If implemented as described, this
would give a circuit of depth > i* (not constant). Actually, only the first two
stages are implemented as described. For > 3, note that each bit of each L-bit
number produced at the ith stage depends on at most (i-1) bits of the numbers
produced at the (i-1)th stage. Therefore, each bit of Y and Z depends on at
most g(2)g(3)...g(i*-l) bits of the numbers C1,... Ce(2) produced at the
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second stage. Since O(lgn), Lemma 3.3 says that Y and Z can be computed
from the C by a circuit of polynomial size and constant depth.

BINARY-COUNT <cd_tt SORTING
Let Xl,...,xn be the input bits. Let a be an n-bit number whose highest

order bit is xi (the lower order bits of the ai can be chosen to make the ai distinct
if desired). The highest order bits of the a in sorted order give an n-bit unary
representation of ,xi, from which the binary representation of E xi can be
computed in polynomial size and constant depth.

SORTING <cd-tt UNARY-COUNT
Let a l, ...,am be the numbers to be sorted. Let cij= 1 iff either a <aj or

(ai =aj and < j). For each fixed j, applying UNARY COUNT with inputs cij
for all gives a unary representation of aj’s position in the sorted list. The sorted
list is then computed as in the proof that MERGING is in
SIZE-DEPTH(poly, constant).

UNARY-COUNT <cd-tt THRESHOLD
Given x l, Xn, the ith bit of the unary representation of E xi is the result of

applying THRESHOLD to x l, ...,Xn with threshold i.

THRESHOLD <cd-tt MAJORITY
Let xl,...,Xm be the input bits to the threshold function and let k l...km be

the m-bit unary representation of the threshold k. Let Yi xi and Ym+i ki for
1 <i<m. Now

rn 2m
,X >_ k iff ’Yi >- m.
i=1 i=1

This completes the cycle for the --=cd_tt-class containing MULTIPLICATION.

MAJORITY <proj CONNECTIVITY
Since MAJORITY e , this is immediate from Theorem 3.2(1).

UNDIR-ST-CONNECTIVITY --=proj CONNECTIVITY
UNDIR-ST-CONNECTIVITY --=proj UNDIR-CYCLE

These are immediate from Theorem 3.2(1).

EULERIAN CYCLE <proj CONNECTIVITY
An undirected graph G has an Eulerian cycle iff G is connected except for

isolated vertices and every vertex of G has even degree [2]. Since [1] shows that
the connectivity test is in NONUNIF-, it follows that EULERIAN-CYCLE is
in NONUNIF-, so the reduction follows from Theorem 3.2(1).
CONNECTIVITY <proj EULERIAN-CYCLE

Given an undirected graph G, we describe an undirected graph G such that
G is connected iff G has an Eulerian cycle. If G has vertices F {Vl,..., Vm},
then G has vertices

F tJ uij 1 < < j < m tJ { yi, zi 1 < < m }.
The edges {vi, Yi] {Vi, 7.i} and {yi, Zi} are in G’ for all i. The edges {Vi, Uij}, {Uij, Vj}
and {vi, vj} are present in G iff the edge {vi, vj} is present in G. Note that every
vertex of G has even degree, and G is connected (except for isolated vertices)
iff G is connected.
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UNDIR-ST-CONNECTIVITY <proj DIR-ST-CONNECTIVITY
DIR-ST-CONNECTIVITY -=proj STRONG-CONNECTIVITY

These are immediate from Theorem 3.2(3).
DIR-ST-CONNECTIVITY <proi NETWORK-FLOW

There is a directed path from vertex Vl to vertex Vm in G iff there is a flow
of > 1 from Vl to Vm when all edges of G have unit capacity.

The next three reductions form a cycle.

BIPARTITE-PERFECT-MATCHING <proj BIPARTITE-MATCHING
This is trivial.

BIPARTITE-MATCHING <proj NETWORK-FLOW
This reduction is given in [6, Thm. 6.11]. Let G be the given bipartite graph

with vertices Ul,...,Um, Vl, Vm. Form a directed flow network G with vertices
s, t, Ul, Um, Vl, Vm. The directed edges (s, ui) and (vi, t) in G have capacity
1 for all 1 < < m. The directed edge (ui, vj) in G has capacity 1 (resp., 0) if the
edge {ui, vj} is present (resp., not present) in G. All other edges of G have
capacity 0. There is a flow of f from s to tiff G has a matching of size f.
NETWORK-FLOW <proj BIPARTITE-PERFECT-MATCHING

Many of the details of this reduction were pointed out to us by N. Pippen-
ger; the reduction was observed independently by T. Feather. A few additional
details needed to make the reduction a projection are due to the authors. Let G
be the given directed flow network with vertices Vl,..., Vm. Assume for the
moment that the edge capacities c(i,j) and the flow f are valid unary representa-
tions. It is convenient to describe the reduction as a composition of two projec-
tion reductions. In the first reduction, we transform G to a directed graph G
with 2m3-m vertices. For each vertex v of G, G has m2 "copies" of vi, namely
Vip for 1 <p<m:z. For all 1 <p<m2, the vertices Vlp are called sources of G
and the vertices Vmp are called targets of G. For each pair (i, j) with 1 < i, j < rn
and ij, G also has vertices eijc for 1 <k<m. For each i,j, k,p and q with
1 < i, j, k < m and 1 < p, q < m:z, the directed edges (vip, eijk) and (eijk, Vjq) are
present in G iff k < c(i,j). Since c(i,j) is represented in unary, this is a projec-
tion reduction; that is, the entries of the adjacency matrix corresponding to the
edges (Vip, eijk) and (eijl, Vjq) are simply the kth bit of c(i,j). There is a flow of f
from V to Vm in G iff

(*) There are f vertex disjoint paths in G, each path being from some source
to some target, with the sources and targets of the paths also being
disjoint.

In the second step we transform G to an undirected bipartite graph G.
Replace each source u of G by a vertex Ub. Replace each target u of G by a
vertex ug. Replace each other vertex u of G by the pair of vertices Ub and ue,
with an edge between Ub and ug. The edge {Ub, Wg} is present in G iff the
directed edge (u, w) is present in G. Let flf:z...fr be the unary representation of
the flow f, where r me. If Ub is the replacement for the source Vlp and wg is the
replacement for the target Vmp, then the edge {Ub, wg} is present in G iff fp O.
Thus, for each p with 1 < p < f, the replacement Ub for Vlp cannot be matched
with the replacement wg for Vmp, but for f < p < m, Ub can be matched with wg.
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It is not difficult to verify that (*) holds in G iff there is a perfect matching in
G’. The correspondence between vertex disjoint directed paths in G and perfect
matchings in G is as follows" If (u, w) is not a source-target pair, the edge (u, w)
of G is used in one of the directed paths iff the edge {Ub, wg} of G" is used in
the matching; if the vertex u of G is neither a source nor a target, then u does
not appear on any of the directed paths iff the edge {Ub, Ug] is used in the
matching. Details are left to the reader.

Finally, for each word c(i,j) and f we add a new component to G" such that
the added components all have perfect matchings iff all c(i,j) and f are valid
unary representations. In general, let w Wl...Wm be a binary word. We de-
scribe a bipartite graph H(w) with vertices al am+l, bl bm+ such that
H(w) is obtained from w by a projection reduction and H(w) has a perfect
matching iff w e 1"0". The edge {am+l, bm+l} and the edges {ai, hi} are in H(w)
for all with 2 < < m+l. For 1 < < m, the edge {ai, hi+l} is in H(w) iff

wi= 1, and the edge {ai, bi} is in H(w) iff wi= O. If w 1"0" then wi= 0 and

Wi+l 1 for some i; this means that the vertex bi+l has no edges adjacent to it,
so H(w) cannot have a perfect matching. Conversely, if w= lPOq then the
perfect matching is {ai, hi+l} for 1 < < p, {ap+ l, bl}, and {ai, bi} for
p+2 < < m+l.

BIPARTITE-MATCHING <proj CIRCUIT-VALUE
Since BIPARTITE-MATCHING e , this is immediate from Theorem

3.2(4).
This completes the proof of Theorem 3.1.

4. Upper bounds. It is not hard to show that BINARY-COUNT is in
SIZE-DEPTH(poly, O(logn)) and that DIR-ST-CONNECTIVITY is in
SIZE-DEPTH(O(2n),constant). These upper bounds can be improved. Regard-
ing DIR-ST-CONNECTIVITY, Schorr [18] gives a simulation of nondeterministic
Turing machines by circuits; the following Theorem 4.1 is implicit in the simula-
tion.

TrIEOREM 4.1 (Schorr). There is a constant b such that for any integer k > 0
there is a constant c such that

1/k
DIR-ST-CONNECTIVITY SIZE-DEPTH(2cn ,bk).

Proof. We sketch the proof for completeness. Let G be the given directed
graph with m vertices. Let n m2 be the number of bits in G’s adjacency matrix.
A circuit of constant depth b and size exponential in n 1/c can compute the
adjacency matrix of a new m-vertex directed graph G such that, for each pair of
vertices vi and .vj,. the edge (vi, vj) is present in G iff there is a directed p,ath of
length < [ ml/k-I from V to vj in G. Fix an and j, and let r [ml/k-I. A
possible path is any sequence wo Wr of r+l vertices such that w0--vi and
Wr= vj. For each possible path p (w0,...,Wr), let z(tg) be the AND of the
entries in G’s adjacency matrix corresponding to the edges (wt, Wt+l) for 0 < < r.
Assume that all (i, /)-entries have been set to 1. Now the i, j)-entry in the
adjacency matrix of G is the OR of ,(p) over all possible paths t9 from vi to vj.
By placing k copies of this adjacency matrix transformation in series, the
(1, m)-entry in the final matrix is 1 iff there is a path (necessarily of length < m)
from
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THEOREM 4.2. If F BINARY-COUNT or F is a family of one-output
symmetric Boolean functions, then for any e > 0,

F e SIZE-DEPTH(O(n.2(lg n)e), O(log n/e.loglog n)).

Define 2-SIZE-DEPTH(S(n),D(n)) to be the class of problems F such that
each fn e F is computed by a fan-in 2 circuit of size _< S(n) and depth _< D(n).
Since Muller and Preparata [16] show that BINARY-COUNT and all families of
one-output symmetric Boolean functions are in 2-SIZE-DEPTH(O(n), O(logn)),
Theorem 4.2 is immediate from the following"

THEOREM 4.3. For any e > O,

2-SIZE-DEPTH(S(n), D(n))
SIZE-DEPTH(O(2(lg n) S(n)), O(D(n)/e.loglog n)).

Proof. Any fan-in 2 circuit with one output and depth _< (e/2).loglogn can
depend on at most (log n) e/2 inputs, so by Lemma 3.3 it can be replaced by a
circuit of depth 2 and size O(2(lgn)e). Given a fan-in 2 circuit of depth D,
partition its nodes into levels L1, L2, such that level L has nodes whose depth
is between (i-1)(e/2)loglogn and i(e/2)loglogn. View each node in L as the
output node of a fan-in 2 circuit. By the observation above, each such circuit
can be replaced by a circuit of size O(2(lgn)e) and depth _< 2. Regard the
output nodes of these new circuits as the "inputs" to level L2. Apply this
process to L2, L3, in sequence, so each level is compressed to depth 2. [-1

1/k
By our reductions, the upper bound SIZE-DEPTH(2cn constant) holds for

any problem F <-cd-ttDIR-ST-CONNECTIVITY, and the upper bound
SIZE-DEPTH(poly, O(logn/loglogn)) holds for any problem F <-cd-tt BINARY-
COUNT (e.g., MULTIPLICATION and SORTING). Theorems 4.1 and 4.2
could serve as an avenue for proving that certain of the --cd_tt-classes in Fig. 1
are distinct. For example, if

DIR-ST-CONNECTIVITY t/SIZE-DEPTH(poly, O(log n/loglog n))
then the class containing BINARY-COUNT and the class containing DIR-ST-
CONNECTIVITY are different. The following result shows that if these two
classes are equal then Savitch’s theorem [17] can be improved in the nonuniform
case.

THEOREM 4.4. If BINARY COUNT cd-tt DIR-ST-CONNECTIVITY, then

NONUNIF-aF. NONUNIF-.

Proof. In the constant-depth circuit that performs the reduction DIR-ST-
CONNECTIVITY <-cd-tt BINARY-COUNT, replace each gate with fan-in r > 2
by a tree of depth O(log r); since r is bounded above by a polynomial in n, log r

O(logn). Now replace each "black box" computing some member of
BINARY-COUNT by a Muller-Preparata [16] fan-in 2 circuit of depth O(logn)
and polynomial size. Thus

DIR-ST-CONNECTIVITY e 2-SIZE-DEPTH(poly, O(logn)).

The conclusion NONUNIF-,JF. NONUNIF- now follows easily from two
facts"

(1) NONUNIF-alr. -<proj DIR-ST-CONNECTIVITY (Theorem 3.2(3));
(2) The circuit value problem for fan-in 2 circuits of polynomial size and
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depth D(n) (> log n) can be solved by a deterministic Turing machine in space
O(D(n)) (see [3, Lemma 1]).

Details are left to the reader. I]

5. Conclusion. One direction for future work is to add other problems to the
classification begun in Fig. 1. A more fundamental open question is whether any
two of the groups in Fig. 1 can be collapsed into one _--cd_tt-class, or conversely
whether the -<cd-tt relation between the two groups is strict. In proving the
latter, a stronger result would be obtained by replacing -<cd-tt with constant-
depth Turing reducibility, -<cd-T, defined like -<cd-tt except that now in the circuit
that performs the reduction there can be directed paths from the output of one
black box to the input of another black box. (We did not define -<cd-T above
since we needed at most the power of -<cd-tt for our specific reductions.)

Another interesting area is to improve the known lower bounds on size-
depth circuit complexity. Furst, Saxe and Sipser [8] show that unbounded fan-in
circuits can possibly be used as a tool to separate the polynomial-time hierarchy
from PSPACE by an oracle. However, the lower bound for PARITY proved in
[8], that any constant depth circuit must have size at least nc’lg*n for some
constant c, is not sufficient to imply the existence of such an oracle. Our reduci-
bilities suggest that an improved lower bound might be easier for a problem, such
as CONNECTIVITY, that lies above PARITY in the -<cd-tt ordering.

Appendix. In several of the following problems we require the input to be of
a particular form. For example, in MERGING, the two input lists must be
sorted, and in BIPARTITE-MATCHING, NETWORK-FLOW, THRESHOLD
and UNARY-TO-BINARY, certain parts of the input must be valid unary
representations, i.e., words in 1"0". If the input is not of the correct form, all
bits of the output are defined to be zero.

ADDITION (MULTIPLICATION)
INPUT: Two m-bit binary numbers (n 2m).

OUTPUT: Their sum (product).

BINARY-COUNT (UNARY-COUNT)
INPUT: n bits Xl Xn.

OUTPUT:’ lg(n)-bit binary representation of their sum Y. xi
(n-bit unary representation of xi).

BINARY-TO-UNARY
INPUT: n bits Xl, Xn.

OUTPUT" 21g(n)-bit unary representation of the number whose binary repre-
sentation is XlX2...Xlg(n).

BIPARTITE-MATCHING
INPUT" Adjacency matrix of a 2m-vertex bipartite graph and an m-bit unary

number k.
OUTPUT" Does the graph have a matching with > k edges?

BIPARTITE-PERFECT-MATCHING
INPUT: Adjacency matrix of a 2m-vertex bipartite graph.

OUTPUT: Does the graph have a perfect matching?
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CIRCUIT-VALUE
INPUT: Binary representation of a fan-in 2 circuit (i.e., every gate has fan-in

at most 2) with one output node, and an assignment of Boolean
values to all input nodes (the details of the binary representation are
not crucial).

OUTPUT: The Boolean value computed by the output node.

COMPARISON
INPUT: Two m-bit binary numbers g and Z2 (n 2m).

OUTPUT" Is Zl > z2?
CONNECTIVITY (STRONG-CONNECTIVITY)

INPUT" Adjacency matrix of an undirected (directed) graph.
OUTPUT" Is the graph connected (strongly connected)?

DIR-ST-CONNECTIVITY (UNDIR-ST-CONNECTIVITY)
INPUT: Adjacency matrix of an m-vertex directed (undirected) graph.

OUTPUT: Is there a directed path (a path) from Vl to Vm?
EULERIAN-CYCLE

INPUT: Adjacency matrix of an undirected graph.
OUTPUT: Is there a cycle that traverses every edge exactly once?

MAJORITY
INPUT: n bits Xl, Xn

OUTPUT: Is Z X >_ n/2?

MAXIMUM
INPUT:

OUTPUT:

MERGING
INPUT:

OUTPUT:

A list of m m-bit binary numbers (n m2).
The largest number in the list.

Two lists of m m-bit binary numbers, each list sorted in nonde-
creasing order (n=2m2).
The merged list (a number which appears k times in the input lists
will appear duplicated k times in the output list).

MULTIPLE-ADDITION
INPUT: A list of m m-bit binary numbers A1, ...,Am.

OUTPUT: The (m + lg(m))-bit binary representation of the sum Ai.
MULTIPLICATION (see ADDITION)

NETWORK-FLOW
INPUT: m-bit unary numbers c(i,j) for each 1 < i,j < m with j, and an

m2-bit unary number f (n m3).
OUTPUT" Is there an integral flow of > f from Vl to Vm in the directed flow

network with m vertices and capacity c(i,j) on edge (vi, vj) for each
and j?

PARITY (ZERO-MOD-2c, for constant c)
INPUT: n bits Xl, Xn"

OUTPUT: IsExi Omod2 (mod2C)?
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SORTING
INPUT:

OUTPUT:
A list of m m-bit binary numbers (n m2).
The same list sorted in nondecreasing order (a number which
appears k times in the input list will be duplicated k times in the
output list).

STRONG-CONNECTIVITY (see CONNECTIVITY)

THRESHOLD
INPUT: m bits Xl, ...,Xm, and m-bit unary number k.

OUTPUT: IsYxi> k?

UNARY-COUNT (see BINARY-COUNT)

UNARY-TO-BINARY
INPUT: n-bit unary representation of a number k.

OUTPUT: lg(n)-bit binary representation of k.

UNDIR-CYCLE
INPUT: Adjacency matrix of an undirected graph.

OUTPUT: Is there a cycle in the graph?

UNDIR-ST-CONNECTIVITY (see DIR-ST-CONNECTIVITY)

ZERO-MOD-2c (see PARITY)

Acknowledgment. We thank Amir Schorr for allowing us to include his proof
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of network flow to bipartite perfect matching.
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AN ALGORITHM FOR THE GENERAL PETRI
NET REACHABILITY PROBLEM*

ERNST W. MAYRq

Abstract. An algorithm is presented for the general Petri net reachability problem. It is based on a
generalization of the basic reachability tree construction which is made symmetric with respect to the initial
and final marking. Sets of transition sequences described by finite automata are used for approximations
to firing sequences, and the approximation error is assessed by Presburger expressions. The approximation
algorithm is iterated until a sufficient criterion for reachability is satisfied. The exact computational
complexity of our algorithm is an open problem.

Key words. Petri net, vector replacement system, reachability problem, decidability

1. Introduction. Petri nets (due to C. A. Petri [34]) are a mathematical model
for the representation and the analysis of parallel processes. This model has been
widely generalized and investigated [4], [13], [16], [17], [21]. Especially in [13], the
connections between different variants of the basic model--which can also be formu-
lated in a purely algebraic way as vector addition systems or vector replacement
systems--were investigated. Summaries can be found in [29] and [33] exhibiting the
relation of Petri nets to numerous other models of parallel computation.

Petri nets and their equivalent concepts can be a convenient model if only a finite
number of types of objects have to be considered, and if in addition the transitions
in such a system are possible whenever some minimal number of objects of every
type are present.

Problems analyzed in modelling parallel systems by Petri nets therefore usually
deal with dynamic aspects of the control structure, since Petri nets tend to abstract
away the individuality of data objects. Examples of such problems include (partial or
total) deadlock freeness, and liveness of the system. Solutions to these example
problems proclaim, in a sense, the absence of "difficulties" for all states that are
reachable in the system. Another question is whether some arbitrary state can be
reached from a fixed initial state, or whether there is some reasonable effective
description of the set of all reachable states. The former, the so-called general
reachability problem, is of basic importance for many others. It is, for instance,
recursively equivalent to the liveness problem [12]. Hence, an algorithm for one of
these two problems automatically solves the other. Moreover, a number of other
problems in the representation of parallel and concurrent systems, in language generat-
ipg systems, in algebra and in number theory can be shown to be effectively reducible
or equivalent to the reachability problem. We note that the proof of the undecidability
of the inclusion problem for Petri net reachability sets [2J--extended in [14] to the
equality problem--implies that there cannot be any reasonable closed effective rep-
resentation for reachability sets in general. For restricted classes of Petri nets, however,
such representations have been given [1], [9], [27], [30].

For the reachability problem, restricted subclasses of Petri nets have been investi-
gated (a summary of results can be found in [9]), and heuristic methods have also
been proposed to simplify specific Petri nets to obtain sufficient conditions [3], [15],
[23], [25]. In [37], the decidability of the reachability problem for Petri nets with at

* Received by the editors July 2, 1981, and in final revised form May 27, 1983. This work was supported
in part by the Deutsche Forschungsgemeinschaft, under grant 13 Ma 870/1-1.

f Department of Computer Science, Stanford University, Stanford, California 94305.
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most three places was established, and in [18], this result was extended to up to five
places. These methods fail for the general case since they rely on semilinear reachability
sets, and there are Petri nets with six places that have nonsemilinear reachability
sets. The general reachability problem was claimed to be decidable in [36], but no
complete or convincing proof was given.

The undecidability of the reachability set inclusion problem suggests (at least to
the author) not to proceed by trying to find a representation for the set of all states
reachable from the initial state, and then trying to determine whether the desired
final state was in that set. Rather, a treatment of the reachability problem has been
chosen which is symmetric with respect to the initial and final state. After giving the
notation and basic concepts, a generalization of the fundamental reachability tree
construction [20] is introduced which uses finite automata to restrict the set of transition
sequences possible in the original construction, and which can be symmetrized in the
above sense. These finite automata could actually be coded into the Petri nets. We
avoid this encoding, however, for reasons of notational convenience and presentational
clarity. In the iterative main algorithm, each successive automaton is a refinement of
its predecessor, and is used to carry over from one step of the iteration to the next
the information obtained so far about potential firing sequences. The firing sequences
from the initial to the final state are thus approximated by the regular sets of transition
sequences as determined by the more and more restrictive finite automata. The
approximation error is evaluated by effectively constructible Presburger expressions.
Whenever the iteration terminates successfully, the resulting regular set of transition
sequences is guaranteed to contain a firing sequence.

The algorithm is formulated nondeterministically. In a deterministic implementa-
tion, every nondeterministic choice has to be replaced by a branching to all possibilities.
The number of such branches will always be finite, and we show that any branch of
the nondeterministic computation terminates.

The presentation is structured as follows. In 2, we introduce some basic notation
about Petri nets and related concepts, as well as some essential facts about Presburger
Arithmetic and semilinear sets. We also present a slightly modified version of the
original reachability tree construction due to Karp and Miller, which helps us find
maximal covering markings. This algorithm is subsequently used as a subroutine. In

3, we introduce the concept of regular constraint graphs. They play the role of
controlling nondeterministic finite automata, and they contain information about
reachable states. We first define more and more restrictive properties of these regular
constraint graphs without actually detailing how to construct them. Some of the
properties are used for mere technical convenience, whereas others guarantee better
and better approximations for the description of firing sequences by the regular
constraint graphs. In 4, we show that the strictest such condition, which we call
consistency, in fact suffices to construct firing sequences from a regular constraint
graph. Section 5 deals with the construction of consistent regular constraint graphs.
The construction is achieved by an iterative algorithm where each iteration refines
the regular constraint graph obtained by the previous iteration, subject to certain
conditions. These conditions are given by expressions in Presburger Arithmetic (resp.,
a restricted subset thereof). They describe, in a sense, how far away the current regular
constraint graph is from being consistent.

The algorithm is composed of steps which clearly show that the nondeterministic
computation will actually produce a final output if there is a firing sequence. Hence,
a deterministic implementation of our algorithm provides a decision procedure for
the general Petri net reachability problem. In the last section, we list some decision
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problems reducible or equivalent to the reachability problem. We also mention some
open questions in connection with the reachability problem and the complexity of the
algorithm.

An earlier version of this paper was presented in [28]. While it was being refereed,
another algorithm for the reachability problem was published in [22].

2. Notation and basic properties.
2.1. Petri nets and related concepts. Let Z denote the set of integers, N the

subset of nonnegative integers, and, for n N, let In be the (index) set {1,..., n}.
Further, let N=,tefNI..J {o} stand for the set N augmented by the "infinite" number
o with the additional rules +n + o w + n --w and n < w for all n N.

A Petri net P is a triple (S, T, K) with
(i) S {sl,’’’, sv} a finite set of places;

(ii) T {t l, ., w} a finite set of transitions, disjoint from S;
(iii) K a mapping from (S T) (T S) into N, indicating the multiplicity of

directed edges between places and transitions.
A Petri net hence is a directed bipartite multigraph.
A marking (resp., pseudomarking) of a Petri net P =(S, T,K) is a mapping

m" S --, N (resp., fi" S --> Iq). It is naturally represented as a vector m N
and will, for notational convenience, be written as a row vector m =(ml,...,
Of course, every marking is also a pseudomarking. We call a Petri net together with
a marking or pseudomarking a marked Petri net.

We shall make use of the following relations defined for markings and
pseudomarkings:

(i) fi -< fi’ :>def fii--< thi for all I.
The relation -< is the usual partial orcler on vectors, given by the natural com-

ponentwise ordering. The relation < will be its irreflexive subset.
In general it will be helpful to look at w informally as a big but otherwise

unspecified "number" or as a "wild card". Hence we may use another partial order
based on the amount of lacking information’

(ii) fi <-fi <:::def "/ is more definite than fi"’, i.e., /i finite (i.e. o) implies
r/7/i fit i, for all

(iii) We say that fi and fi’ are compatible if their finite coordinates are consistent,
i.e., if r/7/i--/i whenever both coordinates are finite.

If fi <-fit’ we say that fi is under fi’ (and fi’ over fit). Again, < denotes the
irreflexive part of this relation. Thus, fit (2, 3, o, 1, o) is less than fit’= (2, 4, co, w, w)
but not under fit’, whereas fit is under fit"= (2, 3, w, w, o), and hence of course also
-<fit". Another way to look at the relation --< is to note that, if fit -< th", we can obtain
fit from fit’ by changing some (possibly zero) components of fit’ to finite values.

Figure 1 shows an example of a marked Petri net (P, m). The places are drawn
as circles, with the numbers inside indicating the nonzero values of the marking, and
the transitions are represented as bars. The marking m is (0, 0, 1, 1, 0, 0), and the
multiplicity of all edges is one.

Transitions in a Petri net P (S, T, K) with pseudomarking fit may be fired and
thus lead to new pseudomarkings. In particular, a transition T is firable at the
pseudomarking fi if the vector t- which has as its th component the multiplicity of
the edge from the ith place of P to the transition t, is less than or equal to fit, i.e., if

t- --def (K(s1, t), ", K (sv, t)) <- fit.

As a matter of fact, there is no loss of generality if we restrict ourselves to bipartite digraphs (without
multiple edges); see [13].
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FIG.

The vector t- can be considered the prerequisite for firing transition t. The firing of
a firable transition T changes the pseudomarking r to the new pseudomarking

+(K(t, Sl)-K(sl, t),... ,K(t, sv)-K(sv, t)).

In order to keep notation simple (without, hopefully, confusing the reader), we also
use for the effect of firing t, i.e., for (K(t, sl)-K(sl, t),. , K(t, sv)-K(sv, t)). Hence
the firing of above changes n to r + t. We write t n’ to denote the fact that
the pseudomarking rh is changed to rh’ by firing the firable transition t. For transition
sequences - il ir 6 T*, we define prerequisite, firability, and effect inductively as
follows"

(i) the empty sequence (with r 0) has prerequisite -- =def (0,""", 0)N and
is firable at any rh N;

(ii) if r>0, then the prerequisite is --=defmax{(til)-, (t2... tir)--ti}; (max
componentwise), and - is firable at r if i’ is firable at r and i2... i is
firable at rh + ’.

It is now obvious that the effect of - (denoted by the same letter) is
and that r -, r’ iff r’= r + - and - is firable at r.

It should be noted (and could be established by an easy induction) that the
prerequisite -- is the minimal marking at which - is firable. This marking is well
defined for all " T*. A transition sequence - T* is called a firing sequence for some
pseudomarking r if - is firable at

In the Petri net of Fig. 1, the sequence - ltt is firable at m (0, 0, 1, 1, 0, 0).
The Petri net with the resulting marking m + " is shown in Fig. 2.

The teachability set Yt (P, r) of a marked Petri net (P, th) is defined as

(P, ) =dee {th’; " r’ for some " T*}.

Fa. 2
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If fi’ (P, fit) we say that the pseudomarking fi’ is reachable (in P) from fi, and
we also write fit * fit’, the Petri net P being understood.

The general reachability problem for Petri nets is the decision problem for the set
of all (well-formed) triples (P, m, m’) such that m’ is reachable from m in P.

There is another purely algebraic formulation of Petri nets, called vector replace-
ment systems (VRS) [21]. A vector replacement system consists of a finite set of pairs
(ui, /)i) N xZ with L/i -- /)i >0,--- an initial vector fi v,2 and a derivation rule

fit --> fit @/) whenever fit /,/i.

Thus, fit’ can be changed to fit’+/.)i whenever it is not less than the test vector (or
prerequisite) u i. Note that u + v _-> 0 implies that fit’+ v => 0. The reachability set of a
VRS with initial vector fit is then the set of all fit’ such that fit * fit’. Here, -**
denotes the reflexive transitive closure of .

It should by now be clear that a Petri net P (S, T, K) with IS v and T
{tl, w} translates into an equivalent VRS with the pairs ((tg) -, ti). The initial
pseudomarking becomes the initial vector of the VRS, and the reachability relation
is the same in both cases. Given a VRS, it is obvious how to construct a Petri net
with the same reachability relation, by equating a pair (u i, v i) with

2.2. Semilinear sets and paths in digraphs. A linear set L N is a set of the form

L ={b+ nipi’(nl,..., nr)GNr}
i=1

for some r N and vectors b, p 1,..., pr Nw. The vector b is called the base of L.
A semilinear set is a finite union of linear sets.
Semilinear sets are precisely those sets definable by expressions in Presburger

Arithmetic, i.e. the first order theory of the nonnegative integers with addition [8],
[35]. Semilinear sets are, therefore, closed under Boolean operations. There are,
furthermore, effective procedures to construct semilinear representations of the sets
defined by Presburger expressions and to decide Presburger formulae [8], [31].

As an example, let L ={b +Y’.i=I nip i’, (nl, nr)Nr} be a linear set. Then the
statement "(x 1,..., Xw) L" can be written as a Presburger expression as follows (we
use the obvious abbreviations; remember that variables in Presburger Arithmetic
range over N):

=Xa ^’’" ^ bw + nipiw =Xw
i=l i=l

Also, the fact that the projection of L onto the first coordinate is unbounded, can be
expressed in Presburger arithmetic in the following way:

Suppose that A is a digraph whose edges are labelled with elements from the set
T of transitions of some Petri net P=(S, T,K). Assume further that there are
distinguished nodes z and z (possibly z= zr) in A. We may look at A as defining
a nondeterministic finite automaton over T, with initial state z and final state z . It
is well known that the set of the labelling sequences - of all paths in A from z to zs is
a regular subset LA of T*. If T {tl, w} and dP(t i, 7") denotes the number of

In the original definition [21], the initial vector is some m N. Our version is a slight generalization.
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occurrences of in r, for any -e T* and T, then it is also known [32] that the set

{((t 1, 7),""", (tw, r)); r LA}
is semilinear.3

Consequently, we can express "m’ m + r for some r e LA" in Presburger arith-
metic (note that we are not claiming m m’). We only need to observe that

r E (t r) ti
i=1

In fact, an appropriate Presburger expression can be effectively constructed given P,
m, m’, and A.

A simple path in a digraph is a path such that all vertices on the path are distinct
(and hence all edges are also distinct). A cycle is a closed path, i.e., its first and last
node are the same. A simple cycle is a closed path that is simple except for the first
and last node. If c is a path in a digraph whose edges are labelled (with elements
from some set T), then r(c) will be used to denote the sequence in T* given by the
sequence of c’s edge-labels. A strongly connected component or SCC of a digraph is
a subgraph induced by a maximal subset of nodes in the digraph such that there is a
path from every node in the subset to every other node in the subset.

Finally, we introduce the concept of reversing a digraph, and some related notions.
Let A be a digraph, and let c be a path in A from the node first(c) to the node
last(c). Then Arev denotes the reversed graph of A obtained by reversing the orienta-
tion of all edges in A, Crev denotes the reversed path in Arev corresponding to c and
leading from last() to first(c). In particular, if A is a Petri net P (S, T, K), then
we refer to the transition in Prev corresponding to in P as trev. Note that the effect
of trev is -t. For sequences r= il... ire T*, we set 7"rev--deflfv""" tv (this is a
slight misuse of notation since actually as a node does not change when P is reversed
to Prey). If A is a digraph with edge-labels from a set T of transitions, the label in
A is replaced by trey in A

2.3. Maximum cover pseudomarkings. Suppose fit is a pseudomarking of some
Petri net P (S, T, K), and r e T* is a firing sequence firable at fit such that the
resulting pseudomarking fit’= fit + r is =>fit. Then clearly r is also firable at fit’, and
we may in fact, starting from fit, repeat firing r arbitrarily many times. If ri, the th
component of the effect r, is greater than zero, then, by firing r over and over again,
we can increase the ith component of the resulting pseudomarking as much as we
like. In the constructions which we are about to discuss, we shall represent this fact
by changing the th component to o. While these constructions are variants of the
basic reachability tree constructions in [13], [14], [20], we shall only be interested in
sequences r which are also elements of a given regular set LA. Intuitively, La can be
thought of as representing the (partial) information or constraints which we have
gathered so far on possible firing sequences of interest.

Formally, let A be some (nondeterministic) finite automaton over T. Let A be
given by its state transition diagram, let z be some state (=node) of A, and let
fit, fit’ N be pseudomarkings. The pseudomarking fit’ is called an (A, z)-cover of
fit if there is some transition sequence z T* such that

(i) there is a (closed) path in A from z to itself whose edge labelling sequence
is r;

Such a statement actually holds more generally or context4ree languages, and is sometimes reerred
to as Parikh’s Lemma.
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(ii) r is firable at n;
(iii) r -<_ rfi + r; and
(iv) ri is w whenever i > 0, and it is ni otherwise, for 1,. , v.
A pseudomarking r" is a maximum (A, z)-cover of r if it is an (A, z)-cover

of n which is over all (A, z)-covers of n. A corresponding transition sequence - is
called a maximum (A, z)-covering sequence for r.

We now show that there is an effective procedure which, given A, z , and n,
determines a maximum (A, z)-cover together with a maximum (A,z)-covering
sequence for n. This construction varies from the reachability tree construction in
[20] by taking into account the finite automaton A. The algorithm constructs a digraph
MC(P, r, A, z ) in which every node k has two labels attached to it, namely a label
rfi(k) N and a label zT(k) in the node set (=state set) of A. Also, every edge e of
MC(P, r,A, z) carries a label t(e)e T. The graph MC(P, rfi, A, z ) is constructed
as the labelled digraph MC in the following

ALOORITHM 1.
let MC initially consist of one node, the "root" r;
rh(r):= fft; 5.(r):= z;
declare "unfinished";
wh|le there are "unfinished" nodes in MC do

choose some "unfinished" node k, declare it "finished";
for every edge (;(k), z’) in A labelled T with firable at rfi(k) do
add a new edge e to M6; with first(e)= k, and a new node k’ as last(e);
t(e):=t; rfi(k’):=rfi(k)+t; (k’):= z’;
it there is some node k" on the simple path from to k’ (excluding k’) such that

rh (k ’) rh (k"), and
(k’) (k")

then
identify k’ with k" co k’ thus becomes "finished" oc

else
declare k’ "unfinished";
if there are nodes k" on the simple path from to k’ such that

rfi (k’) and rfi(k") have the same set of o-coordinates,
rfi(k’) > rh (k"), and
(k’) (k") co such a k" need not be uniquely determined oc

then
choose such a k";
tot each Iv such that (rfi(k’))i > (rfi(k"))i do (rfi(k’))i := w od

fi
od

od
end Algorithm 1.

We leave it to the reader to verify that for every node k in the constructed graph,
there is indeed (as claimed in the algorithm) a unique simple path from the root r to
k. The proof for the termination of Algorithm 1 is by contradiction and runs along
the same lines as in [14], [20] but takes into account that there are only finitely many
states in A. It is based on the observation that if the algorithm did not terminate,
there would be an infinite simple path starting at the root. The sequence of vertices
on this path contains an infinite subsequence such that all vertices in the subsequence
have the same Y-label. It is clear from the construction in the algorithm that if vertex
k’ comes after vertex k in this subsequence, the label rfi (k’) contains at least the same
w-coordinates as the label rfi (k). Since there are only finitely many coordinates, there
must now be an infinite subsequence of the above subsequence such that all of its
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vertices have the same o-coordinates in their rfi-label. But every such infinite sequence
of finite dimensional vectors with nonnegative integer components (which we obtain
by taking the projection onto the non-w-coordinates) must contain an infinite sub-
sequence that is nondecreasing with respect to -< [7]. This now contradicts the definition
of the algorithm. Indeed, if we let k’ be the node belonging to the second element in
this last sequence, either k’ would have been identified with an earlier node on the
simple path from the root r to k’, or rfi(k’) would contain strictly more o-coordinates
than the rfi-labels of its predecessors on this simple path.

LEMMA 1.
(a) The graph MC(P, fit, A,z) contains a node k such that (k)=z and

r(k’) <- fit(k) for every node k’ in the graph with z= ,(k’) and fit <- r(k’). The label
rfi k) of this node is a maximum (A, z) -cover for fit.

(b) From MC(P, fit, A,z), a maximum (A,z)-covering sequence for fit can
effectively be determined.

Proof. For a proof, we refer the reader to [13, 3] and [14, 3]. The proof of
Lemma 1 is a straightforward generalization of the proofs given there. I-1

For example, consider once again the Petri net P of Fig. 1, but now with initial
marking fit (w, 0, 0, 0, 1, 0). If we let A be the trivial automaton consisting of just
one state, z , with a self-loop attached to it for every transition in the Petri net, then
MC(P, fit, A, z ) contains exactly the following simple paths starting from the root
(we let rh (k) stand for every node k):

and

(o, o, o, o, , o)7 (,o, ,o, ,o, o, , o)7 (o, ,o, ,o, o, o, 1),

(w, 0,0,0, 1,0) - (w, 0,0,0,0, 1).

This shows that (w, w, w, 0, 1, 0) is the maximum (A, z )-cover, and - 2 is a maximum
0(A, z )-covenng sequence for fit.
The maximum (A, z)-covering sequence in the above example happens to be

the labelling sequence of a simple path in MC(P, fit, A, z). This coincidence is not
true in general. Rather, if - is the labelling sequence of the simple path from the root
to a node k whose rfi (k) is a maximum (A, z)-cover for n and which has (k)= z,
then - can be subdivided into -=-1-2... .h, and a maximum (A,z)-covering
sequence for fit can be chosen to be of the form (.l)rl(.2)r2... (.h)rh for appropriate
ri. Here, (.i)r, denotes the composition of ri copies of -. Note that the subdivision
basically takes place at those nodes where the number of w-coordinates of the rfi-labels
increases, and at the corresponding nodes k" as used in the above algorithm. The
reason for the composition is that the segments of r following such a node where the
number of o-coordinates increases, might actually have the effect of decreasing a
component which changed to w at this node. Of course, this fact does not become
apparent in the corresponding th-labels because w-n =o for all n N. But the
decrease can be balanced by repeating sufficiently many times earlier segments which
do increase that coordinate. For more details (which we do not use), we refer again
to [13, 3] and [14, 3].

3. Regular constraint graphs. We now introduce the concept of a regular con-
straint graph which is basically a controlling finite automaton as above. It can also be
viewed as a generalization of the basic reachability tree construction in [20]. However,
we shall first give a nonalgorithmic definition of regular constraint graphs that is
motivated by some technically desirable properties, then show how to use them in
the next chapter, and finally discuss a series of algorithms to construct them.
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Regular constraint graphs are supposed to represent, in a canonical and technically
convenient form, sets of transition sequences which are (under varying criteria) possible
candidates for firing sequences.

DEFINITION 1. Let P (S, T, K) be a Petri net, and R a digraph with an edge
label t(e) T for every edge e of R. We call R a regular constraint graph for P if the
following properties hold"

(i) R has two distinguished nodes: an initial node r and a final node q.
(ii) For every node k of R, there is a path from r to q containing k, and there

is only one simple path from r to q; this path is called the base path of R.
(iii) The nodes r and q are SCC’s by themselves, and every SCC of R has exactly

one node in common with the base path.
Intuitively, R represents all transition sequences that are t-label sequences of

paths from r to q. The traversal of an edge e with label t(e)= in a regular constraint
graph thus corresponds to the firing of a transition T. Assume that it takes some
pseudomarking tfi to ’ fit + t. If we want to associate this change of pseudomarkings
with the edge e, it turns out to be very convenient to subdivide the firing of into
two phases’ in the first phase, the pseudomarking is decreased by t-, in the second
the resulting intermediate pseudomarking is increased by / := + t-. (Hence / t-,
and both / and t- are nonnegative vectors.) To denote the change in these intermediate
pseudomarkings effected by some transition sequence z il ir T* we set. --def " + (til)- (tir) +,
i.e., we omit from the total effect - the effect of the first phase of the first transition
and the effect of the second phase of the last transition in -.

Let R be a regular constraint graph, let e 1, e p be the sequence of edges on
the base path of R, and let r k 0, k 1, k p =q be the sequence of nodes. Note that
all edges e connect different SCC’s.

DEFNIaON 2. We say that edge labels (e)N for every edge e in R are
weakly consistent with a pair of markings (m, m’) if the following conditions hold"

(i) The marking determined by rfi for r (resp., q) is m (resp., m’), i.e.,

rfi(el)+t-(el)= m and th(eO)+t+(eO)= m ’.

(For notational convenience, we write t-(e) and t/(e) for (t(e))- and (t(e)) +,
resp.)

(ii) Whenever there is a two-edge path ee’ within an SCC or such that the SCC
of last(e) (= first(e’)) contains no edges, then the labels of e and e’ satisfy

th (e’) th (e) + ?(ee’).

(iii) Whenever there is a two-edge path eie with e on the base path and e’ within
the SCC C of k last(ei), then the labels of e and e’ satisfy

rt e i) + .? e ie ’) <_ rt e ’).

(iv) Whenever there is a two-edge path ee with e on the base path and e within
the SCC Ci-1 of k i- =first(ei), then the labels of e and e satisfy

th (e i) <_ th (e) + ?(eel).
We note that as an immediate consequence of (ii) above, the th-labels of all edges

within the same SCC have the same set of o-coordinates. Also, if rfi is a weakly
consistent edge-labelling for R and (m, m’), then setting /(erev)--def r/C/(e) for each
edge erev in erev produces an rh-labelling for Rrev (considered as a regular constraint
graph for Prev) that is weakly consistent with (m’, m).
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R

FIG. 3a. Regular constraint graph.

FIG. 3b. Weakly consistent rh-labelling for R and R

In the example in Fig. 3, we consider a Petri net with transitions 1, where
(with transition written as +- t-)

,1= (00)_(00) t2= (21)_(00) t3= (00)_/21), t4= ()_(00) ts= (00)_().
Let R be the regular constraint graph as given in Fig. 3a, and let m m’= (0, 0). It
should be clear that the rh-labelling given in Fig. 3b is weakly consistent with (m, m’).

Regular constraint graphs with weakly consistent rh-labels may sometimes provide
good approximations for possible firing sequences. In general, however, the approxi-
mation is still too crude (otherwise they would not be termed weakly consistent).
Informally, they are insufficient for basically two reasons. First, they may contain
edges with t-labels that cannot occur in any firing sequence under consideration, and
second, some edges may have rh-labels with to-coordinates that are "unjustified" in
the sense that the corresponding coordinates of every marking generated by a firing
sequence when "passing through" such an edge are bounded. The rfi-label of e 3 in
Fig. 3b is an example of the latter possibility (here () is the only possible intermediate
marking when passing along e3).

We shall now show how to remove these two deficiencies by taking a closer look
at the t-label sequences of paths in a regular constraint graph. Again, let P be some
Petri net, m and m’ two (fixed) markings of P, and let R be a regular constraint graph
for P, with e 1, e ’ the sequence of edges and r k, k ,... k ’ =q the sequence
of nodes on its base path. Also, let c be some arbitrary path in R from r to q.

DEFINITION 3.
(a) Let a. denote the (uniquely determined) initial segment of a whose last edge

is ej. The last node of aj is U. By convention, Co denotes the path consisting solely of k.
(b) Call a admissible iff

m +r(a)=m’ and

i.e., if[ the total effect r(a) is m’-m (as desired, if we are interested in whether
m’ t(P, m)), and all initial segments a of a satisfy the firability condition that
m =(r(ai)-t(#)) is greater than or equal to the prerequisite t-(#). Note, however,
that for other initial segments a’ of a which do not end with some edge on the base
path, the intermediate marking rh(e)+’(a’) may very well contain negative coor-
dinates.
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DEFINITION 4. Let the notation be as above. We say that th is consistent with
(m, m’) if the following properties hold"

(a) Suppose that the rh-labels within some SCC C of R contain strictly more
w-coordinates than does the label rfi (e i) of the edge on the base path entering C in
k i. Let e’ be an edge within C; leaving k i. Then the pseudomarking determined by
e’ for k is a maximum (C i, k i)-cover for the pseudomarking determined for k by
tfi (ei), i.e.,

rfi(e’)+t-(e’) is a maximum (C i, ki)-cover for th(ei)+t+(ei).

(b) Suppose that the rfi-labels within some SCC C of R contain strictly more
w-coordinates than does the label rfi(e i+1) of the edge on the base path leaving C
(from k i). Let e be an edge entering k within C. Then the pseudomarking determined
by th(e) for k is a maximum (Cev, k/)-cover for the pseudomarking determined for
k by rh(ei+l), i.e.,

rfi(e)+t+(e) is a maximum i+1 i+1(Crv, k )-cover for rh (e + t-(e ).

(Note that (b) is the equivalent of (a) for R.)
(c) There are admissible paths a and a’ such that the following conditions are

satisfied"
(i) the path a’ contains every edge within an SCC of R more often than does

the path a;
(ii) for every edge e; on the base path, riO/(e 1) +-(cri) is under rh(ei);

(iii) for every j Ip, we have ,(a’)>= ,(a), and the ith coordinate of ,(c’) is
strictly greater than that of ,(c) if and only if the ith coordinate of rh(e)
equals to, for all I.

The paths c and a’ are said to justify the labelling rh.
It follows immediately from this definition that if rfi is a consistent edge-labelling

for some regular constraint graph R (with respect to a Petri net P and markings m
and m’), then rh is also consistent for Rrev (with respect to P and markings m’ and
m).

In Fig. 3b, if we replace th (e 3) by (), the resulting rfi-labelling becomes consistent
as the reader can easily verify.

Let R be a regular constraint graph and rh a consistent edge-labelling (with
respect to m and m’). Suppose that the rfi-labels within some SCC C of R contain
strictly more o-coordinates than does the label rh (e i) of the edge on the base path
entering C in k i. For the sake of brevity, we shall call k a (forward) w-node and any
(closed) path in C from k to itself whose t-label sequence is a maximum (C i, k)
covering sequence for rh(e)+t+(ei), a (forward) w-path for k in (R, th). Similarly, if
the rfi-labels within C contain strictly more to-coordinates than does the label rh (ei+a),
we call k a backward w-node and any (closed) path in C from k to itself which is
the reversal of a maximum (Ce, k )-covering sequence for fi(eg+)+t-(ei+), a
backward to-path for k in (R, rh).

LEMMA 2. Suppose R is a regular constraint graph with consistent rfi-labels. Let
e be an edge on the base path ofR entering the (forward) to-node k i, let W W(i) be
the set of w-coordinates of rfi (ei), and let W’= W’(i) be the set of w-coordinates of the
rfi-labels in k’s SCC Ci. Then there is a (closed) path y from k to k such that the
following properties hold"

(i) the sequence r(y) is firable at rfi(ei)+t+(ei);
(ii) the ith coordinate of the effect r( y) is zero for all I- W’, and it is positive

for all W’- W;
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(iii) for every bound HeN, there is an re N such that the r-fold repetition (7"(’)/))
of’( y) isfirable at rfi( e i) + t/( el), and such that, for all W’, the ith coordinate
of the resulting pseudomarking is >-H.

Proof. Choose y to be any (forward) to-path in k i. All properties claimed in the
lemma are then immediate consequences of the definition of maximum covering
sequences.

It is clear that the statement analogous to Lemma 2 which takes into account
direction reversal holds for backward to-paths.

4. A sufficient condition for teachability. In this section, we show that regular
constraint graphs with a consistent th-labelling can be used to construct firing sequences
from the initial marking m to the final marking m’.

As before, let R be a regular constraint graph for some Petri net P (S, T, K),
and let rh be a consistent edge labelling for R (with respect to two markings m and

p , k" q that ofm’ofP).Lete ,...,e be the sequence of edges andr=k k
the nodes on the base path of R. Furthermore, let C be the SCC of R containing
k i, and let a and a’ be two admissible paths which justify the rfi-labels. Define, for
/" 0, ., p, (closed) paths 8 from k to k such that 8 contains every edge within C
just as many times as given by the "difference" between ce’ and a. By convention,
these paths are trivial for/" 0 and/’ p. Because of the definition of a and c’, the
path 8. is guaranteed to "cover" Ci, i.e., it contains every edge within C at least once.
Since the indegree of the "difference" between a’ and a is the same as its outdegree
at every node in Ci, such paths 8. exist. They can be constructed using an appropriate
extension of an algorithm for Eulerian tours.

Let a
(hI be any path from r to q that contains every edge in R exactly as many

times as does the multiset of edges consisting of a and n copies of all the 8. Clearly,
c is an admissible path. In the following, we will show that, for sufficiently large n,
there are paths a" such that r(a") is firable at m. It follows that r(a’"’) takes tn to
tn’. We will find such paths by starting from some arbitrary path ce " which we then
rearrange within every SCC of R. Note that for every/" 1,..., p, the intermediate

in) (n)marking rfi (e ) + (c
is as defined above. As a matter of fact, the following relation holds"

i-1
(n)rfi(e)+-:(c/ )=m-t-(e )+:(%.)+n ’(6).

k=l

We may therefore look at each SCC C separately.
Let the notation be as above. We define, for n _-> 0 and/" O, , p,

m

and

m’(n)(j) =defm -t- 7"(a})l) t(eJ+l),
(n)which are, respectively, the marking defined by ’(a ("/) for the moment when first

enters the SCC Ci, and the marking when it just leaves it. As argued above, these
markings are well defined. Clearly m(")(0)= m’(")(0)= m and m(")(p) m’(")(p)
m’ for all n.

LEMMA 3. Suppose j I.p-1. Then for all sufficiently large n, there is a closed path
(j, n) in R from k to k’ such that

(i) the sequence z(fl) is firable at m(")(j) and takes it to m’(")(j);
(ii) the path fl contains every edge within C exactly as many times as does the

multiset of edges consisting of and n copies of 6i.
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Proof. For notational convenience, in this proof, we shall denote 8j, m t"(/’), and
m’tn(/") simply by , m tn, and m ’n, respectively. We shall use ff for the maximal
segment of the path a that lies within C. Note that c starts and ends in k j. Let I be
a subset of Iv. We say, for some transition sequence 7- and some pseudomarking
r Nv, that 7- is I-firable at fit if the projection of (the transitions of) 7- onto the
coordinates in I is a firing sequence for the projection of n onto the same coordinates.
Clearly 7- is firable at fit iff it is Iv-firable.

Let W be the set of to-coordinates of rfi(e) and W’ that of rfi(e+l). Let if/be
the set of to-coordinates of the rfi-label of any edge within C if C is nontrivial, and
let W equal W otherwise (note that in the latter case W W’). Also let y,p be any
forward to-path for k, and let Tan be any backward to-path for k, i.e., (Yan)rev is a
forward to-path for k in (Rrev, rfi). By convention, we define yu, and Ydn to be the
empty path (consisting only of k) if W if/ or W’= if’, respectively. Since the
fit-labelling of R is consistent, the paths "}/up and "Ydn exist. Note that they are both
closed paths from and to k( Since the (closed) path contains every edge within C
at least once, there is another closed path Ylk from k to k (lk for "link") such that
the three paths yup, "Ylk, and Ydn together contain every edge within C as often as do
to, copies of 8, for some suitable integer to, >_-1. From the definition of an to-path we
know that any iteration of 7-(yup) is (Iv- W)-firable at mn, for every n _->0. Further-
more, any iteration of 7-((Vdn)rev) is (Iv- W’)-firable at m ’n), again for every n->0.
Since 7-(y,p) increases all coordinates in W- W (as does 7-((Yn)rev) for all coordinates
in IX/- W’), we can by Lemma 2 choose some suitably large s N such that4

(n)7-(Yp6YlkS) is (Iv- W)-firable at m

(for any n N, because its coordinates in Iv- W do not depend on n), and such that
at the same time

(n)(7-(aY/kSY.))re is (Iv- W’)-firable at m

(again for every n N).
We claim that

7" =def 7-(’)/upturn’) lkt’Y dn
is (/-(WU W’))-firable at m tn, and that 7-e is (L,-(WU W’))-firable at m ’n. Set

=de, Iv (WU W’) Since (mn+7-)=(m’"), for all iI’, it suffices to prove the
first part of the claim. Note that the consistency conditions for the rfi-labelling of R
imply right away that 7- is (I- ff/)-firable at m

The sequence 7-(,/upCT;) is I’-firable at mn, and the sequence 7-(8/’n) is I’-firable
at m’n-7-(ya,) due to the choice of s. Consider the two markings
and m’n--7-(Syn). If we restrict ourselves to the coordinates in I’, we see above that
the s-fold iteration of "r(’Ylk) links the two markings together. Hence if (7-(’Ylk)) were
not I’-firable at m tn +7-(YupOt), then a violation of the nonnegativity condition for
the intermediate markings (here restricted to the coordinates in I’) would have to
occur within the first or last copy of "r(ylk). All other intermediate markings are linear
interpolations of appropriate intermediate markings generated in the first and last
copy of 7-(Ylk). But by our construction, both copies contain no such violations. We
conclude that the above sequence 7- is therefore I’-firable at mn, for arbitrary n.
Note that 7- has the same effect as given by 7-(ti)+ (2 + sr,o)7-(3). We should also like
to point out here that the extended sequence 7-(yp83,1k) is not necessarily (W-
W)-firabl at m (n since some of these coordinates of r(ytk) may have large negative
values. A similar observation holds for ("/’(v/SkSvS/n))rev

r+l4 Remember that 3’ is the r-fold iteration of 3’, i.e., 3’ 3", 3"
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However, we can choose r N, r >-sr,o, big enough so that all of the following
conditions are satisfied"

the sequence z(y,66) is firable at m
the sequence (Z(6y.))rev is firable at m’(r)"
the marking m ’’(r) (r)

"-’clef m + r(y,pd) + [(r sr)/2J r() is at least as big as the
two prerequisites "r-(ykS) and z-(Srev).

Such a choice for r is possible because
(i) for all I-W, all pertinent conditions are already guaranteed by the

consistency of the r-labelling;
(ii) for all i W-(W W’), the ith coordinate of the effect z(8) is zero, and

because of the choice of s;
(iii) for all W (resp., W’), the ith coordinate of m (r (resp., m ’’) increases

with r; and therefore, finally, because
(iv) for all W U W’ the th coordinate of m ’’(r increases with r.

Now we use the same linear interpolation argument as above. Since "r(y,dS) is
firable at m (’} and since Z(Srv) is firable at m ’’(’, we conclude that in fact
"r(y,,a8 I(‘-r/2 is firable at m (r. Similarly, because "r(YlkS) is firable at m ’’(’} and
(’r(Syd,,))ev is firable at m ’(r we find that "r(ykS("-’/:zy,) is firable at m ’’(r}

Consequently we obtain that Z(fl(r), where

(r) [(r-sr }/21 [(r-sr,,)/2]
def ’)/up Ol.t Y lkt "Y dn,

is firable at m, and changes this marking to m ’(r. The same argument actually shows
that for every n _->r, r(fl) is firable at m and changes it to m’.

THEOREM 1. Suppose that there is a regular constraint graph R for the Petri net P
with an t-labelling which is consistent with respect to the two markings m and m’ of
P. Then m’ is reachable from m.

Proof. Choose n as in Lemma 3 sufficiently large for all SCC’s of R and combine
the paths within the SCC’s with the edges on the base path of R.

In the next section, we prove the following.
THEOREM 2. Let P, m, and m’ be given. There is an algorithm that constructs a

regular constraint graph forP together with a consistent r-labelling ifm * m ’. Otherwise
it determines that no such regular constraint graph exists.

Combining Theorems 1 and 2 we therefore conclude
COROLLARY. The general teachability problem forPetri nets and vector replacement

systems is decidable.

5. The construction o[ regular constraint graphs. In this section, we describe how
to construct regular constraint graphs with consistent edge-labellings. Our algorithm
performs a series of refinements on a given initial regular constraint graph (which is
weakly consistent) until it obtains one with a consistent n-labelling. However, if no
such refinement is possible, the algorithm will determine this impossibility and stop.
We present a nondeterministic algorithm to simplify the presentation. It will be clear
from the description that whenever a nondeterministic step is performed, the number
of possibilities for the step is finite, and hence the nondeterministic algorithm can be
simulated by a deterministic algorithm enumerating all nondeterministic branches.
When we prove the termination of the nondeterministic algorithm, we prove that in
fact every nondeterministic branch of the algorithm terminates. A standard application
of K6nig’s Infinity Lemma then implies the termination of the deterministic simulation.

We first introduce some additional notation. Suppose again that R is a regular
constraint graph for the Petri net P (S, T, K), with e 1, e p the sequence of edges
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and r k, k 1,... kP=q the sequence of nodes on its base path. Furthermore, let
e p+I, e ’ be the remaining edges of R (i.e., those within SCC’s of R, in any order),
and assume that is an edge-labelling of R weakly consistent with respect to some
fixed markings m and m’ of P.

For every path a in R from r to q, we define the following (p’-p +pv)-dimensional
integer vector"

(1)’(0) def ((1)’(e p+I a), , ’(e’ c), rfi(e)+?(aa), rfi(e)+?(c)).

The first p p components ’(e+i’- c) give the number of occurrences of each edge
e "+i in the path c, while the next p blocks of v components each give the intermediate
"marking" generated by r(c) when crossing the edge e on the base path of R, for
/" 1,...,p. (Note that for general c, these intermediate "markings" may have
negative components.) From our discussion in 2.2 and Definition 3, it follows that
the set

AP(R) =clef {’(a); C admissible path in R}

is an effectively constructible semilinear set. What is more, AP(R has the slice property,
i.e., whenever x, x + y, x + z AP(R with y, z _-> 0, then x + y + z AP(R ). A proof
of this can be easily obtained by modifying the construction of Eulerian tours. We
leave the details to the reader.

Now assume that c is a path such that a =def ’(C) is minimal in AP(R). Because
of the slice property of AP(R), there is an admissible path c’ such that

(i) ’(c’) _>- a, and
(ii) whenever ’(c")_->a for any admissible path c", and the ith coordinate of

’(c") is strictly greater than the th coordinate of a, then the th coordinate
of ’(’) is strictly greater than the th coordinate of a ’(c).

Informally, the path c’ boosts the maximal set of coordinates that can be boosted
by any path c" with ’(c")-> a.

DEFINITION 5. Let c, c’, and a ’(c) be as above.
(i) The count ca(e ) determined by a for the edge e of R, =p + 1,. , p’, is

,c) if (e,c)= (e,c),Ca(ei) OP’(e di)’ dp’

w otherwise.

We extend this definition by setting ca(e ) 1 for 1, , p.
(ii) The restriction ra(e j) determined by a for rfi-labels of the edges e, for/"

1,...,p, is given by

J(rt(el)+4(i))i if this is equal to (tlOt(el)+-(o))i,(ra(e*))i
o otherwise.

We also define ra (e i) to consist of all w for/’ -p + 1,. , p’.
Thus the count ca is finite for exactly those edges of R that occur the same number

of times in any admissible path c" in R with ’(c ") ->_ ’(c ), and it then equals this
number. An analogous statement holds for the restrictions ra(e) of edges e on the
base path of R. For edges e’ within SCC’s of R, r(e’) is only defined for technical
convenience and represents no actual restriction.

We next describe a procedure refine. Given a regular constraint graph R as above
with labels t(e), rfi(e), r(e), and ca(e i) attached to its edges e , e’ (where the
th-labels are weakly consistent), refine constructs a refinement R’ or R (i.e., there is
a homomorphism from R’ to R) that embodies the bounds given by ra and ca in a
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sense made formal later. The program for refine is rather lengthy. It consists, however,
of two very similar phases.

procedure refine (R, R’);
begin

co we use auxiliary node labellings rh, .;, and ?; changes made to R are assumed to be local to refine oc
co in a first phase, R is refined in order to account for ca oc
:= initial node of R q := final node of R

let R’ initially consist of one node r’;
5(r’) := r; 6(r’):= (c(e), ., ca(eO’));
declare r’ "unfinished";
while there are "unfinished" nodes in R’ do

select at random some "unfinished" node k, declare it "finished"
co this random selection does not influence the final R’ oc;
for each edge e =((k),z’) in R with e’s component 6(k, e)>0 do
add a new edge e’= (k, k’) to R’, where k’ is a new node;
t(e’):=t(e); rfi(e’):=rfi(e); ra(e’):=ra(e); ].(k’):=z’; (k’):=?(k) with e’s coordinate reduced by 1;
if there is some node k"# k’ in R’ such that [(k’) =?(k") and zT(k’)= 5(k") then

identify k’ with k" else declare k’ "unfinished" fi
od

od;
if there is no node q’ in R’ with 5(q’)=q and a (q’) all of whose finite coordinates are zero then

stop "R has no refinement as required" fi;
nondeterministically select a simple path in R’ from r’ to some node q’ with 5(q’)=q and ?(q’) such
that all its finite coordinates are zero;
attach to every node k on a copy of this simple path a copy of its SCC in R’ such that it shares only the
node k with the path; call the result R";

redefine R to be R" with the edge labellings t, rfi, and ra as inherited, and with no other labels;

co in a second phase, the new R is now further refined taking into account the rh- and ra-labels; clearly,
the rfi-labels are still weakly consistent oc

:= initial node of R; q := final node of R; e := edge leaving in R;
let R’ initially consist of one node r’;
zT(r’) := r; rh(r’) := rfi(el)+t-(e);
declare r’ "unfinished";
while there are "unfinished" nodes in R’ do

select at random some "unfinished" node k, declare it "finished"
co this random selection does not influence the final R’ oc;
for each edge e ((k), k’) in R with t(e) firable at rfi(k) do

if rh(k)-t-(e), rfi(e), and ra(e) are pairwise compatible then
add a new edge e’= (k, k’) to R’, where k’ is a new node;
t(e’) := t(e); rfi(e’) := min {fft(k)-t-(e), rfi(e), ra(e)} co min componentwise oc;
(k’) := z’; rh(k’) := the maximum (R, z’)-cover of rfi(e’)+t/(e’);
if there is some node k"# k’ in R’ such that rfi (k’)= rfi (k") and (k’)= (k") then

identify k’ with k" else declare k’ "unfinished" fi
fi

od
od;
if there is no node q’ in R’ with (q’) q then

stop "R has no refinement as required" fi;
nondeterministically select a simple path in R’ from r’ to some node q’ with (q’)= q’
attach to every node k on a copy of this simple path a copy of its SCC in R’ such that it shares only the
node k with the path; call the result R";

redefine R’ to be R" with the edge labellings and rfi as inherited, and with no other labels
end refine.

To see that the procedure refine terminates, first note that in both phases the
mapping of an edge e’=(k, k’) in R’ to the edge e ((k), zT(k’)) in R with label
t(e’) t(e) provides a graph homomorphism from R’ into R.
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For the first phase, also note that for every SCC of R’ (and hence for any SCC
of the finally selected R"), this homomorphism is in fact one-to-one, because of the
node-identification in the procedure. Moreover, while nodes in the same SCC of R’
have equal ?-values, those in different SCC’s have different t-values, all of which are
smaller than ?(r). Since there are only finitely many such values, the first phase of

refine terminates.
For the second phase, we may restrict ourselves to showing that the preimage of

any SCC of R under the above homomorphism is finite. Since the restrictions ra within
SCC’s of R have only w-components, the proof is similar to the demonstration of
termination for Algorithm 1 in 2.3. The ra do not influence the construction.

We call the homomorphism from the output R’ of refine into its input R the
refinement homomorphism. We obtain it by a double application of the homomorphism
given above. Note that under the refinement homomorphism, every edge e’ is mapped
to an edge e with t(e’)= t(e) and rfi (e’) -< rfi (e). Extending a similar observation made
above for the first phase of refine, we find

LEMMA 4. LetR be a regular constraint graph with a weakly consistent rfi-labelling.
Suppose also that counts ca and restrictions ra for R are given, and that refine produces
R’ from R.

(a) Then R’ is again a regular constraint graph with a weakly consistent -labelling.
(b) Let C’ be any SCC of R’, and let C be the SCC of C"s image under the

refinement homomorphism. Also, let W(C) (resp., W(C’)) be the set of w-coordinates of
the -labels ofedges within C resp., C’) ifC or C’ is trivial we set W(C) resp., W(C’))
equal to the empty set). Then

(i) W(C’)= W(C) and C’ is isomorphic to a subgraph of C, or
(ii) W( C’) is a strict subset of W(C).
Proof. Part (a) of the lemma is obvious from the construction. As for part (b),

we noted above that certainly W(C’)_W(C). If W(C’)=W(C) the node
identification process in refine guarantees that C’ is isomorphic to a subgraph of C.
We note that this subgraph is a true subgraph of C if the count of some edge within
C is finite.

We are now ready to describe the final algorithm. Let as before P (S, T, K) be
a Petri net, and let m and m’ be markings for P. We may assume without loss of
generality that m m’, and that m’ is not reachable from m by firing just one transition
in T. These exceptional cases can be easily checked. We call an initial regular constraint
graph for (P, m, m’) any regular constraint graph R with a weakly consistent rfi-
labelling such that

(i) R has exactly three SCC’s; and
(ii) the middle (and only nontrivial) SCC of R consists of a self-loop e (k 1, k 1)

with t(e) and rfi (e) (w,. ., w) N for every T.
Note that there are at most TI2 initial regular constraint graphs. The following
algorithm basically refines an initial regular constraint graph in alternating directions
until this refinement process stabilizes.

ALGORITHM 2.
nondeterministically select an initial regular constraint graph R;
repeat
LR := R co LR for left-right oc;
determine AP(LR );
nondeterministically select a minimal a AP(LR);
determine ca and ra; attach them to LR’s edges;
refine(LR, R’);



458 ERNST W. MAYR

RL := R’rev co RL for right-left oc;
determine AP(RL);
nondeterministically select a minimal a AP(RL);
determine ca and ra attach them to RL’s edges;
refine(RL, R’);
R :=R’

until LR R co only take into account the t- and rfi-labels oc;
output R
end Algorithm 2.

To prove termination of Algorithm 2 consider first one execution of the repeat-
loop. Let LR be the regular constraint graph entering, and R the one leaving this
execution of the loop. Choose any SCC C’ of R, and let C be the SCC of LR into which
C’ gets mapped by a double application of the refinement homomorphism. Let nm
(respectively, nm’) be the number of o-coordinates of the rfi-labels of edges within C
(respectively, C’) and be zero if there are no such edges. Let ne (respectively, ne’) be
the number of edges within C and C’, respectively. Applying Lemma 4 twice, we obtain
that either (nm’, ne’) is lexicographically strictly smaller than (nm, ne), or that they are
both the same and the preimage of C under the twofold application of the refinement
homomorphism is C’ and is isomorphic to C itself. Attach to every SCC of a regular
constraint graph with a weakly consistent rfi-labelling its corresponding pair (nm, ne).
Then after one execution of the loop in Algorithm 2, each of these pairs either is
unchanged (and then the corresponding SCC also does not change) or it is replaced
by a finite multiset of pairs which are all strictly smaller in the lexicographic ordering
than the one being replaced. Since the corresponding multiset-ordering is well-founded
the algorithm must terminate [6].

LEMMA 5. Let P, m, and m’ be as above.
(a) If Algorithm 2 terminates normally, it outputs a regular constraint graph with

a consistent rfi-labelling.
(b) If m’ is (nontrivially) reachable from m in P, then there is a computation of

Algorithm 2 which terminates normally.
Proof. Part (a) follows from the fact that the regular constraint graph finally

output is stable under refinement in both directions. This fact provides for the existence
of all the necessary forward and backward o-paths. Stability under the refinement
procedure in any one of the directions already gives the existence of justifying
admissible paths.

Whenever there is a nontrivial firing sequence r such that m m’, there is
certainly an initial regular constraint graph for which - is the label sequence of an
admissible path. And in every refinement step, there is always a nondeterministic
choice for which - remains an admissible path in the refined regular constraint graph.
This fact is clear from the specification of the nondeterministic choices in the algorithm
and its subroutines, and from the definition of the count and restriction vectors. Hence
there is a sequence of refinements which can be chosen by the algorithm and which
always retains - as the labelling sequence of an admissible path. As argued above,
this sequence must terminate. U

The proof of Theorem 2 promised at the end of 4 now immediately follows
from Lemma 5.

6. Conclusion. The following is a list of some problems that have been shown
to be effectively reducible (<=) or equivalent (=) to the general reachability problem
for Petri nets:

(a) (=) the liveness problem for Petri nets [14];
(b) (=) the zero marking reachability problem [14];
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(c) (--) the persistence problem for one transition [14];
(d) (_-<) the containment and equivalence problem for sets of firing sequences [14];
(e) (--) the word problem for commutative Semi-Thue-Systems [21];
(f) (---) the word problem for PBLIND [10];
(g) (--) the emptiness problem for the intersection of two Szilard languages [5];
(h) (---) the recursiveness of subsets of finitely presented commutative semigroups

compatible with relations with finitely many minimal elements [11].
As shown in [24], the reachability problem for Petri nets is exp-space hard. In

[26], Petri nets with finite, nonprimitive recursive reachability sets are exhibited. It
is not clear whether this implies that Algorithm 2 is also nonprimitive recursive in
this case. Without the additional constraints derived from the count and restriction
vectors for the first refinement, the first refined regular constraint graph would in
effect enumerate the whole reachability set. However, we do not know so far how
including these additional constraints affects the complexity of the algorithm. Also,
it is still open whether Dickson’s lemma [7] which is used implicitly several times,
and which implies that every infinite sequence in N has an infinite nondecreasing
subsequence, can be replaced by a different argument providing effective upper bounds
for the case of marking sequences generated by Petri net transitions.

Other open problems concern the reachability sets of Petri nets, e.g."
(a) Is there a live marking in Y (P, m)?
(b) Is there a marking m such that Y (P, m) is live?
(c) Is (P, m) semilinear?
(d) Is there a "small" bound Sp(m, m’) for m’ (P, m) such that m’ is reachable

via intermediate markings which are all bounded by Sp(m, m’)?
It is hoped that the techniques shown in this paper can also be applied to other

word problems (e.g., in monotone systems characterized by the property that transi-
tions possible in some state are also possible in all "bigger" states) where no a priori
upper bounds on the length of shortest derivations are known so far.
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QUANTITATIVE RELATIVIZATIONS OF COMPLEXITY CLASSES*

RONALD V. BOOK, TIMOTHY J. LONG AND ALAN L. SELMAN

Abstract. Consider the following open problems:
(i) P ? NP;
(ii) NP ? co-NP;
(iii) P ? PSPACE;
(iv) NP ? PSPACE.
In this paper we study these four problems from a particular point of view. To illustrate our approach,

consider the first problem. It is known that there exist recursive sets A and B such that P (A)= NP (A)
and P (B)NP(B). We study restrictions R on both the deterministic and also the nondeterministic
polynomial time-bounded oracle machines such that the following holds: P NP if and only if for every set
A, Pn(A)=NPn(A). The restrictions are "quantitative" in the sense that the size of the set of strings
queried by the oracle in computations of a machine on an input is bounded by a polynomial in the length
of the input. We study several different ways of specifying such quantitative restrictions, each of which has
the desired property.

Key words, complexity classes, restricted relativizations, bounding the size of the set of queries, P, NP,
co-NP, PSPACE

1. Introduction. The fundamental issues of machine-based complexity theory
such as "determinism vs. nondeterminism" and "time vs. space" have received renewed
interest in the last decade due to the enormous effort that has been expended in
investigating whether specific combinatorial problems are in P or are in NP or are
NP-complete, etc. In the 1970’s several attempts were made to solve the "P ? NP"
problem by applying techniques of recursive function theory. It seemed reasonable to
assume that any diagonalization technique yielding P NP would be sufficiently general
to yield, for every set A, P(A) NP (A), and that any simulation technique yielding
P NP would be sufficiently general to yield, for every set A, P (A) NP (A). However,
Baker, Gill and Solovay [3] showed that there exist A and B such that P (A) NP (A)
and P (B) NP (B), so that P NP does not imply that for every A, P (A) NP (A),
and P NP does not imply that for every A, P(A) NP (A).

The theme of the present paper is the study of the questions "P ? NP, NP
? co-NP," "P ? PSPACE" and "NP ? PSPACE," by placing restrictions on deter-
ministic and nondeterministic oracle machines operating in polynomial time or poly-
nomial space and then considering the corresponding restricted relativized complexity
classes. We develop "positive relativizations" of each of these questions; that is, we
restrict the behavior of these oracle machines to obtain statements such as "P NP if
and only if for every set D, PR (D)= NPR (D)" where PR (D) (NPR(D)) is the class
of languages L such that L P(D) (resp., L NP (D)) is witnessed by a deterministic
(resp., nondeterministic) polynomial time-bounded oracle machine operating with
restriction R.
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To motivate our approach, consider the oracle property "x L(A) if and only if
A contains a string of length Ix]" that is used in [3] in order to separate P(A) from
NP (A) for some oracle set A. A nondeterministic oracle machine can accept L(A)
relative to A because it can nondeterministically search a set of size 2Ixl. Intuition
suggests that a deterministic oracle machine cannot perform this search in polynomial
time, and the proof in [3] bears this out. We want the restrictions on our oracle
machines to retain the combinatorial difficulties of the "P= ? NP" question. Such
considerations indicate that we reach the borderline of these kinds of classes by
permitting nondeterministic oracle machines to search sets of size at most a polynomial
in the length of the input.

We illustrate our case with the following result. For a nondeterministic oracle
machine M, let O(M, A, x) denote the set of all strings queried in the entire tree of
computations of M on input x with oracle set A. Let NP (A) be the class of languages
accepted relative to A by nondeterministic polynomial time-bounded oracle machines
M such that there is a polynomial q (depending on M and A) such that for all input
strings x, the number of distinct strings in Q(M, A, x) is at most q([xl). In Theorem
4.5 we show that NP=co-NP if and only if for every set A, NP (A)=co-NPn (A).
In Theorem 5.3 we show that P- NP if and only if for every set A, P (A)=NP (A).
Observe that this constraint on the set of strings queried is weak: the computation
tree of M on input x relative to A may still be exponential in size.

The type of controlled relativization exemplified by NP is "quantitative" in
the sense that it is the size of the set of queries that is bounded. Other quantitative
relativizations are studied here as well.

As a consequence of the results cited above, one approach to proving P NP is
to construct a set A such that P(A) NP (A). If one attempts to construct such an
A by diagonalization, then it is clear that one wants the class NP (A) to be as large
as possible so as to be able to separate it from P (A). Among the restrictions considered
here, NP is the weakest restriction for which the Baker-Gill-Solovay
phenomenon does not occur.

Basic notation and definitions are established in 2. In 3 we define several
complexity classes of functions computable deterministically or nondeterministically
in polynomial time, and we develop relationships between these function classes and
the language classes P and NP. These relationships are used extensively in the proofs
of our major results. In 4 a number of quantitative relativizations of NP are introduced
in order to study the "NP-- ? co-NP" question, while in 5 these same relativizations
are used to study the "P- ? NP" question. Section 5 contains the main result, P NP
if and only if for every set D, P (D) NPn (D). The various quantitative relativizations
considered in 4 and 5 are proved to be distinct from one another in 6.

Ladner, Lynch and Selman [15] showed that in the case of deterministic poly-
nomial-time oracle machines, if one considered the restricted class where the entire
set of queries could be computed before any questions were asked of the oracle, then
this relativization characterized deterministic polynomial-time truth-table reducibility.
In 7 we investigate the quantitative relativizations of P and NP with the further
restriction that the set of queries be computable before any questions are asked of the
oracle and develop more positive relativizations of the "P ? NP" question.

While there have been several studies of oracle machines with varying abilities to
use the oracle [2], [11], [12], [14], [19], the first positive relativizations were developed
in the study of the "NP ? PSPACE" question. In this case the restriction on nondeter-
ministic polynomial space-bounded oracle machines was that the number of times the
oracle could be queried was bounded by a polynomial [5], [7]. Subsequently, it was
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found that this same restriction yields a positive relativization of the "P ? PSPACE"
question [23]. (Other results using this type of restriction are reported in [6].) Section
8 is devoted to additional positive relativizations of the "P ? PSPACE" and "NP
? PSPACE" questions using the notions of quantitative relativizations. Finally, technical
questions and directions for further research are discussed in 10.

In this paper we bring together a number of concepts and proof techniques that
extend and generalize methods used in previous papers [5]-[7], [17]. Clearly these
methods can be used to study questions about other complexity classes, but the
techniques will be basically the same as those developed here. However, one question
for which these techniques appear to fail is that of "P= ? NP(’Ico-NP." We have
succeeded in developing a positive relativization of this question by restricting the
"pattern of queries" that a nondeterministic oracle machine may make in its computa-
tions. We refer to such restrictions as "qualitative." An exposition of the properties
of qualitative relativizations is in preparation.

2. Preliminaries. It is assumed that the reader is familiar with the basic concepts
from the theories of automata, computability and formal languages. Some of the
concepts that are most important for this paper are reviewed here and notation is
established.

For a string w, wl denotes the length of w. The empty string is denoted by e, e[ 0.
For a set S, IISII denotes the cardinality of S.
It is assumed that all sets of strings are taken over some fixed alphabet that

includes {0, 1}. If A Z*, then E*-A.
Let < denote any standard polynomial time computable total order defined on

E*. For a finite set S *, say S {ya,. , y,} where < j implies y < y, let c(S)
%y%... % y, % where % is a symbol not in E. Let c(4)= %. We consider c to be
an encoding function. Notice that if S e E* is a finite set and y e Z*, then the predicate
"y is in S" can be computed in polynomial time from the inputs y and c(S).

For sets A,B_E*, the join of A and B is defined as AB=
{Oxlx e A}U {l yly e B}.

An oracle machine is a multitape Turing machine M with a distinguished work
tape, the query tape, and three distinguished states QUERY, YES, and NO. At some
step of a computation on an input string w, M may transfer into the state QUERY.
In state QUERY, M transfers into the state YES if the string currently appearing on
the query tape is in some oracle set A; otherwise, M transfers into the state NO; in
either case the tape is instantly erased. The set of strings accepted by M relative to the
oracle set A is L(M, A) { wlthere is an accepting computation of M on input w when
the oracle set is A}. If M has no query tape, we write L(M) instead of L(M, ok).

Oracle machines may be deterministic or nondeterministic. An oracle machine
may operate within some time bound T, where T is a function of the length of the
input string, and the notation of operation within a time bound for an oracle machine
is just the same as that for an ordinary Turing machine. An oracle machine may operate
within some space bound S, where S is a function of the length of the input string,
and here we require that the query tape as well as the ordinary work tapes be bounded
in length by S. For other notions of space-bounded oracle machines, see [2], [14], [19].

For any space bound S, where S(n) >- n, and any oracle set A, let NSPACE (S, A)
(DSPACE (S, A)) be the class of languages accepted relative to A by nondeterministic
(resp., deterministic) oracle machines that operate within space bound S(n). Let
NSPACE (S) NSPACE (S, b) and DSPACE (S) DSPACE (S, 4). For any time
bound T, where T(n)>= n, and any oracle set A, let NTIME (T, A) (DTIME (T, A))
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be the class of languages accepted relative to A by nondeterministic (resp., determinis-
tic) oracle machines that operate within time bound T(n). Let NTIME (T)=
NTIME T, 4) and DTIME (T) DTIME T, 4).

If 5 is a set of space bounds and A is an oracle set, let DSPACE (5, A)--
t_l {DSPACE (S, A)IS O} and NSPACE (Se, A) U {NSPACE (S, A)IS 6e}, and let
DSPACE (5) DSPACE (5, b) and NSPACE (Se) NSPACE (, b). If - is a set of
time bounds and A is an oracle set, let DTIME (-, A) U{DTIME (T, A)]T- -} and
NTIME (-, A) t_J {NTIME T, A)I T -}, and let DTIME (-) DTIME (-, b) and
NTIME (-) NTIME -, b).

Let PSPACE (A)= t3 k=>l DSPACE (n k, A). It is known [21], [24] that for every
oracle set A and all k->l, NSPACE(n k, A)

_
DSPACE (n2k,A) so that

PSPACE (A) CI k_>l NSPACE (n k, A). Let PSPACE PSPACE (b).
Let P (A) U k__>l DTIME (n k, A) and NP (A) t3 k->l NTIME (n k, A). Let P

P (4) and NP=NP (4).
It will be useful to refer to an enumeration of classes such as NP (A), and to have

universal sets for certain subclasses of NP (A). Hence, we assume the existence of an
effective enumeration of clocked nondeterministic oracle machines that run in poly-
nomial time, say M(0), M(1), . Thus, for any sets L and D, L NP (D) if and only
if there is some such that L L(M(i), D). We lose no generality by assuming that
for every i, machine M(i) runs in time Pi(n) hi+ i. Let (.,.)denote a fixed polynomial
time computable pairing function with polynomial time computable inverses. We define
the set K as follows: For machines M(i), inputs x, finite sets Ty, TI of strings, and
integers k, let (M( i), x, c( Ty), c( TN), ok) K if and only if some computation of
machine M(i) on input x accepts x in at most k steps, and if y is a string that is
queried in this computation, then y Ty t.J TN and the answer to the query is "yes"
if and only if y Ty. It is clear that K NP. Also, it should be clear that this set K
stands in strong analogy to the standard diagonal halting set that is complete for the
class of recursively enumerable sets, and that the two sets are not the same. No
confusion should arise since we consider only subrecursive classes.

The set K will be used in the following situation. Let M(i) be the/th nondeterminis-
tic polynomial time oracle machine. Suppose that on input x the set of strings queried
in M(i)’s computations on x relative to set A is Ty TI and (Ty TI)fqA Ty.
Then x L(M(i), A) if and only if (M(i), x, c(Ty), c(Tu), 0p,(Ixl)) is in K. In this sense
K is a universal set.

3. Computing functions. In this section we develop some results about functions
computed nondeterministically in polynomial time. These results will be used as tools
in later sections.

A nondeterministic Turing transducer is a nondeterministic Turing machine with
distinguished accepting states and a distinguished output tape. A transducer T computes
a value y on an input string x if there is an accepting computation of T on x for which
y is the final contents of T’s output tape. In general, a nondeterministic transducer
computes a partial, multivalued function.

Given a partial, multivalued function f, define set-f by set-f(x)= {YlY is a value
of f(x)}, for all x. If Ilset-f(x)]l is finite for each x, then the function c(set-f) is defined
by c(set-f)(x)= c(set-f(x)). For each x, c(set-f)(x) is a string encoding of the set of
all words y such that y is a value of f(x). Also, note that c(set-f) is a single-valued
total function defined on

DEFINITION 3.1. (a) NPMV is the set of.all partial, multivalued functions com-
puted by nondeterministic polynomial time-bounded transducers.
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(b) NPSV is the set of all f e NPMV that are single-valued.
(c) NPMVPB is the set of all f NPMV such that for some polynomial p and all

x, Ilset-f(x)ll =< p(Ixl).
(d) PF is the set of all partial single-valued functions computed by deterministic

polynomial time-bounded transducers.
Clearly, PF NPSV NPMVPB NPMV. Let "NPMVPB PF" denote the

assertion that "for every f NPMVPB, c(set-f) is in PF," and let "NPMVPB NPSV"
denote the assertion that "for every f NPMVPB, c(set-f) NPSV." (Of course, there
is no expectation that either of these assertions is true.) It should be clear that we are
simply making useful conventions and not set-theoretic inclusions.

PROPOSITION 3.2. If NP co-NP, then NPMVPB NPSV.
Proof. Let T witness f e NPMVPB and let q be a polynomial such that for all

x, Ilset-f(x)ll--< q(Ix[). Define the set ACC to be the set of all accepting configurations
of T. Define the set OKCON as follows: (x, c(S), I) is in OKCON, where x is an input
word to T, I is a configuration of T, and S is a finite set, if and only if there is a
computation of T starting from configuration I that outputs a string y e set-f(x) which
is not in the finite set S. Note that ACC e P and OKCON e NP.

Without loss of generality, assume that T has nondeterministic fan-out two, so
that every configuration I of T has at most two successors, left (I) and right (I). The
following procedure computes c(set-f). The basic idea is to implement a depth-first
search of the computation tree of T on input x. When a configuration I is visited,
OKCON is used to determine which of the successors, left (I) or right (I), is to be
visited next.

ORACLE PROCEDURE 3.1.
begin
input x;
S:= 4;
Io := initial configuration of T on x;

(1) while (x, c(S), Io) OKCON flo
begin {S is a proper subset of set-f(x)}
I := Io;

(2) while I ACC do
{simulate computation of T}

(3) if (x, c(S), left (I)) OKCON
then I := left (I)
else I := right (I);

S := S U [the string on the output tape of configuration I]
end;

(4) halt in accepting state with c(S) on the output tape
end.

Since OKCON NP and NP co-NP is assumed, there exist NP machines N1 and
N2 that accept OKCON and --aOKCON, respectively. The test on line 1 is implemented
by simultaneous executions of N1 and N2 on input values (x, c(S), lo). Line 1 becomes
true if N1 accepts and becomes false if N2 accepts. If N1 and N2 both fail to accept a
common input, the procedure terminates. Line 3 is implemented the same way. Thus,
for every input word x, there is a computation that leads to line 4.

When execution of the outer while-loop terminates, S =set-f(x); i.e., the pro-
cedure nondeterministically computes c(set-f). To see this, note that line 2 is reached
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only if there is a string y eset-f(x) that has not yet been found and that the inner
while-loop preserves this property.

Now let us observe that this nondeterministic procedure runs in polynomial time.
We have already seen that the test on lines 1 and 3 take polynomial time and this is
clearly true for the test on line 2. Furthermore, the outer while-loop is executed at
most q(Ixl) times and, for each execution of the outer loop, the inner while-loop
executes at most p(Ixl) times, where p is a polynomial bound on the running time of
T. Thus, we conclude c(set-f)

Here is an example that indicates how the technical results of this section are to
be used in the forthcoming sections. Let M be a nondeterministic oracle machine that
operates in polynomial time and let Q(M, x) denote the set of words queried in all
possible computations of M on x, i.e., relative to all oracle sets. Suppose that for some
polynomial q and for all x, ]]Q(M, x)ll--< q(lx[). Then, for any oracle set D one could
nondeterministically recognize L(M,D) by first constructing "tables" Ty=
Q(M, x)f-]D and Tu Q(M, x)VI D upon input x and then simulating M without
further use of D. Let us not be concerned with the latter simulation at this point, but
rather consider how the tables can be constructed (as they are in Theorem 4.5A under
the hypothesis NP co-NP and again in Theorem 5.3A under the hypothesis P NP).
Simply let f be the multivalued function such that for all x, set-f(x)= Q(M, x) and
observe that according to our assumption f NPMVPB. Then, some function g NPSV
computes c(set-f) if NP=co-NP, by Proposition 3.2, and, if P=NP, then, using
Proposition 3.3 below, some function h PF computes c(set-f). Thus, tables Ty and
TN can be constructed in polynomial time relative to D, nondeterministically if
NP co-NP, and deterministically if P NP.

PROPOSITION 3.3. The following are equivalent"
(a) P NP.
(b) NPSV c_c_ PF.
(c) NPMVPB c_ PF.
Proof. Certainly, (c) implies (b). For each set L in NP, the function f defined by

f(x)-- 1 if x L, and f(x) is undefined otherwise, is single-valued. Hence, (b) implies
(a). Thus, it is sufficient to show that (a) implies (c). This follows from the proof of
Proposition 3.2. Namely, if P--NP is assumed, then OKCON is in P. Therefore, each
test in the procedure is executable deterministically in polynomial time. The conclusion
is that c(set-f) PF.

We will also want to consider partial multivalued functions computed by nondeter-
ministic oracle Turing transducers. With reference to Definition 3.1, for any set D,
the classes NPMV (D), NPSV (D), NPMVPB (D) and PF (D) are defined in the
obvious way. Clearly, PF (D) c_ NPSV (D) c_ NPMV (D) c_ NPMVPB (D), for every
set D.

PROPOSITION 3.4. For any multivalued function f of one argument, define the
single-valued function g as follows"

f c(set-f(x)
g(x, 0)

undefined
if Ilset-f(x)I[ k,
otherwise.

Suppose that f is in NPMV. Then, the following implications hold:
(i) If NP co-NP, then g NPSV and domain (g) e NP f’l co-NP.
(ii) If co-NP___ NP (D) for some set D, then g NPSV (D) and domain (g) e

NP (D) (3 co-NP (D).
(iii) If P NP, then g PF and domain (g) P.
(iv) If NP

_
P (D) for some set D, then g PF (D) and domain (g) P (D).
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Proof. A minor modification of the procedure used in the proof of Proposition
3.2 gives the results.

ORACLE PROCEDURE 3.2.
begin
input x and 0k;
S:= 4;
j:=0;
I0 := initial configuration of T on x;

(1) while (x, c(S), I0) OKCON and j <- k do
begin { j S II}
I := I0;
while I ACC do

(2) if (x, c(S), left (I)) OKCON
then I := left (I)
else I := right (I);

S := S [string on output tape of configuration I];
j:=j+l
end;

(3) if j <- k
then halt in an accepting state with c(S) on the output tape,
else halt in a nonaccepting state

end.

If either NP co-NP or P NP is assumed, then the proofs of Propositions 3.2
and 3.4 show that for each input x there is a computation of the procedure that reaches
line 3. Using the loop invariant "j [[SII," it follows that the procedure accepts x and
outputs c(set-f(x)) if and only if I[set-f(x) -< k. Thus, the procedure correctly computes
g. If NP co-NP, then g NPSV, and if P NP, then g PF.

Recall that OKCONNP. Therefore, if co-NP_NP (D) for some D, then
OKCON NP (D). Hence, the tests on lines 1 and 2 can be implemented by simul-
taneous executions of nondeterministic oracle machines relative to the set D that
accept OKCON and -OKCON. Therefore, co-NP_ NP (D) implies g NPSV (D).

Similarly, if NP_ P (D) for some set D, then OKCON P(D), and g PF (D)
follows.

The remaining assertions are trivial. If g NPSV, then domain (g) NP, and since
in clause (i) NP=co-NP is assumed, domain (g)6NPf3co-NP. Also, g6NPSV (D)
(PF, PF (D) resp.) implies domain (g) NP (D) (3 co-NP (D) (P, P (D), resp.). [3

Observe that in the proof of (iv), nondeterminism occurs only in the tests that
direct the search. For this reason the procedure yields something stronger than
domain (g) NP (D), namely domain (g) P (K D). Therefore, under the hypothesis
NP

_
P (D), it follows that K P (D) and so domain (g) P (D). (Recall that NP

_
P (D) means that D is =<-hard for NP.) This point of view will be useful in later
sections.

With respect to parts (ii) and (iv) of Proposition 3.4, recall that co-NP_ NP (D)
means that D is <-_e-hard for NP. In fact, as the following argument shows, D is

-<sN-hard for NP:
co-NP

_
NP (D) if and only if Zze NP (D), if and only if NP (SAT)

_
NP (D), if

and only if SAT <__sN D, and if and only if D is =<-N-hard for NP.

4. NP ? co-NP. In this section we introduce new, restricted relativizations of
NP. These restrictions are quantitative in the sense that the set of strings potentially
queried by the oracle machine is explicitly bounded.
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DEFINITION 4.1. Let M be an oracle machine. (a) For any set D and any input
string x of M, let Q(M, D, x) (resp., QA(M, D, x)) be the set of strings y such that
in some computation (resp., accepting computation) of M relative to D on input x,
the oracle is queried about y.

(b) For any input string x, let O(M, x) [J o Q(M, D, x) and OA(M, x)
[-J o QA(M, D, x).

In some of our constructions, it will be convenient to further subdivide the set
Q(M,D,x).

DEFINITION 4.2. Let M be an oracle machine. For any set D, any input string x
and any integer k > 0, let Q(M, D, x, k) be the subset of Q(M, D, x) such that
y Q(M, D, x, k) if and only if there is a computation of M relative to D on input x
that queries the oracle at least k times, and at the kth time that M enters the QUERY
state in this computation y is the string on the query tape.

In the computations of a machine M relative to an oracle set D on input x,
Q(M, D, x, 1) is the set of strings queried the first time M reaches a query configuration,
Q(M, D, x, 2) is the set of strings queried the second time M reaches a query configur-
ation, etc.

Let us consider for a moment the standard machine model NP (.) together with
the well-known construction of Baker, Gill and Solovay [3] of a set D such that
P (D) NP (D). They apply the oracle property "x L(D) if and only if D contains
a string of length Ixl." For any set D, L(D) can be recognized relative to D by a
machine M that on reading x nondeterministically guesses a string y such that
and then queries the oracle for D about y. In this case Q(M, D, x) has size 21xl; by
"guessing," M can nondeterministically search a set of size 2Ixl. Intuition says that a
deterministic oracle machine cannot perform this search in polynomial time and the
proof in [3] bears this out. In order to eliminate this difference, we consider here
restrictions of the size of the sets Q(M, D, X) and QA(M, D, x).

DEFINITION 4.3. Let D be a set. Define the following classes:
(a) NP.ALL (D) is the class of languages L such that L NP (D) is witnessed by

a machine M such that, for some polynomial q and all x, I[Q(M, x)ll--<q(lxl);
(b) NP.ACC (D) is the class of languages L such that L NP (D) is witnessed by

a machine M such that, for some polynomial q and all x, [IQA(M, x)ll <--q(Ixl);
(c) NP.ALLoDEP (D) is the class of languages L such that L NP (D) is witnessed

by a machine M such that, for some polynomial q and all x, IIO(M, D, x)ll
(d) NP.ACC.DEP (D) is the class of languages L such that LNP (D)

is witnessed by a machine M such that, for some polynomial q and all x,
IIQA(M, D, x)ll <-- q(lxl).

For some choices of M and D, the size of Q(M, D, x) may be polynomially
bounded while the size of Q(M, x) is not.

For any set D four classes of languages are specified by Definition 4.3. Each of
the classes arises from a restriction of the class of nondeterministic polynomial time-
bounded oracle machines. In each case the restriction is based on the machine’s
computation trees. The notation NPALL (.) refers to the set Q(M, x) of all strings
queried in the computation tree containing all computations of M on x independent
of the choice of oracle. The notation NPACC refers to the set QA(M, x) of
strings queried in the accepting computations independent of the choice of oracle. In
contrast the classes NP.ALL.DEP(D) and NP.ACCoDEP(D) refer to the sets
Q(M, D, x) and QA(M, D, x), respectively, that depend on the set D.

The classes NP.ALLDEP (D) are the classes referred to in the Introduction as

NPB (D). Not all of the classes defined here are distinct.
LEMMA 4.4. For every set D, NP.ALL (D) NP.ACC (D).
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Proof For every M and x, QA(M, x) Q(M, x), so it is clear that for every set
D, NP.ALL (D)

_
NP.ACC (D). For the converse, let M1 witness L NP.ACC (D).

Define the set OKCON as follows: (I, S) OKCON if and only if I is a configuration
of M1, S is a finite set of words of the form (w, b), where w E*, b {0, 1}, and (w, 1) S
implies that (w, 0) S, and there is an accepting computation of M1 that begins with
I so that for every w, if w is queried during this computation and if for some b,
(w, b) S, then the return state is YES if and only if b 1. Clearly, OKCON is in NP;
let Mo witness OKCON NP.

Now we describe a nondeterministic oracle machine M2 such that L(M2, D)-
L(M1, D) and O(M2, x)= OA(M1, x). One of M2’s work tapes is used to store (an
appropriate encoding of) S and this tape is initially empty. On input x, M2 begins a
simulation of some computation of M1 on input x. Whenever this simulated computation
is to enter a query configuration, say I, M2 first simulates some computation of Mo
on I and S, where S is determined by the current value of M2’s designated work tape.
If this computuation accepts so that (I, S) OKCON, then M2 continues its simulation
of M1 from configuration ! in the following manner. Let w be the word to be queried
in configuration L If for some b, (w, b) belongs to S already, then simulation of
continues in state YES if b 1 and in state NO if b 0. If (w, b) does not belong to
S for any b, then M2 nondeterministically chooses a transfer state from configuration
I and writes the pair (w, b) on its designated tape, where b 1 if the transfer state is
YES and b 0 otherwise.

Clearly, L(M2, D)=L(M, D) and M2 operates nondeterministically in poly-
nomial time. In a computation on input x, M2 queries the oracle only if the current
query configuration could potentially lead to an accepting computation and S is
maintained to insure consistency of oracle responses along this computation. Thus,
O(M2, x)= OA(M1, x) so that the size of O(M1, x) is polynomial-bounded since the
size of QA(M, x) is so bounded. This means that M2 witnesses L

Thus, for each set D there are at most three different restricted classes. Clearly,
NP.ALL (D)

_
NP.ALL.DEP (D)

_
NP.ACC.DEP (D) NP (D). We will see in

Theorems 6.1 and 6.4 that there are recursive sets E and F such that NP.ALL (E)
NP.ALL.DEP (E) and NP.ALL.DEP (F) NP.ACC.DEP (F). Note that
NP.All (4) NP.ALL.DEP (4) NP.ACC.DEP (4) NP (b) NP.

Now we have our first result, two positive relativizations of the "NP ? co-NP"
problem.

THEOREM 4.5. A. NP=co-NP if and only if for every set D, NP.ALL (D)=
co-NP.ALL (D).

B. NP=co-NP if and only if for every set D, NP.ALL.DEP(D)=
co-NP.ALL.DEP (D).

Before proving Theorem 4.5, we repeat an observation made in 3. If a nondeter-
ministic polynomial time-bounded oracle machine M has the property that, for some
polynomial q and all x, Q(M, x)[[-< q(lxl), then for any set D one can nondeterministi-
cally recognize L(M, D) by first constructing the tables Ty Q(M, x)(3 D and TN
Q(M, x)f3 if) upon input x and then simulating M. Notice that in this case Q(M, x)
is constructed from M and x and then the oracle for D is queried. On the other hand,
if M witnesses L e NPoALL.DEP (D) for some set D, then Ty and Tu must be
constructed by using the oracle for D throughout; in the proof of Theorem 4.5B, T,
and Tr are constructed iteratively.

Proof of A. If for every set D, NP.ALL(D)=co-NP.ALL(D), then
NP.ALL (b) co-NP.ALL (4,) so that NP co-NP. Conversely, suppose that NP
co-NP. It suffices to show that for every D and every L e NP.ALL (D), the complement
L of L is in NP.ALL (D).
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Let M witness LNP.ALL (D) and let q be a polynomial such that for all
x, Ilo(m, x)ll-< q(Ixl). Let f be the multivalued function such that for all x, set-f(x)=
O(M, x). Since for all x, O(M, x)]]--< q(lxl), f is in NPMVPB. By Proposition 3.2, the
function c(set-f) is in NPSV.

Recall from 2 the set K ={(M(i), x, c(Ty), c(Tu), 0k)l some computation of
M(i) on input x accepts x in at most k steps, and if y is a string that is queried in this
computation, then y Ty tO Tu and the answer to the query is "yes" if and only if
y Ty }. Recall that K is in NP, so that under the hypothesis NP cp-NP, K is in NP.
Let p be a polynomial bounding M’s running time, and let us consider the following:

ORACLE PROCEDURE 4.1.
begin
T, := Tu := 4;

(1) tr each y in set-f(x) d
it y oracle set

then r. := r. U [y]
else Tu := Tu U [y];

(2) if (M, x, c(rv), C(TN), 0P<lXl))("l G/
then accept x

end.
We have already seen that c(set-f) is in NPSV; thus, control of the for-loop at

line 1 takes nondeterministic polynomial time. Since c(set-f)=O(M,x) and
IIO(M, x)ll<-q(Ix[), the body of the for-loop executes at most a polynomial number
of times. When D is used as oracle set, T, O(M, x) (3 D and Tu O(M, x) 71D
upon execution of line 2. Thus, this procedure witnesses L NPoALL (D).

Proof of B. As in the proof of part A, it suffices to show that for every set D and
every L e NP.ALL.DEP (D), the complement L of L is in NPoALL.DEP (D). If
witnesses L eNP.ALL.DEP (D), then there is a polynomial q such that for all x,
IIo(m,, D, x)ll-<-q(lxl). Since it is not necessarily the case that IIQ(M1, x)ll is bounded
by a polynomial in Ix], the method used to obtain for each x, Ty Q(M1, D, x)71D
and Tu Q(MI, D, x)-Ty is different from that used in the proof of part A.

Define the function f as follows: For each input string x of M1, each pair Ty and
TN of finite sets of strings, and each integer k > 0, y is a value of f(x, c(Ty), c(TN), 0k)
if and only if there is a computation C of MI on x such that

(i) the kth time that C enters the QUERY state, y is the string on the query
tape;

and
(ii) if w is any string queried during the first k-1 times that C enters the

QUERY state, then w Ty U Tu and the answer used by C to the query
about w is "yes" if and only if w Ty.

It is clear that f NPMV (but, in general, f is not in NPMVPB). As long as
ryc__D and TNC_, then f(x,c(Ty),c(Tu),Ok)_Q(M,D,x) and so
f(x, c(ry), c(r), 0)11--<q(lxl). Therefore, let g be the function in NPSV obtained
from f by Propositio_n 3.4(i). Then, g((x, c(Ty), c(TN), ok), 0q(ll)) --- Q(M, D, x) when
Ty c_ D and TN

_
D.

In the following oracle procedure S is a program variable (of type string, but used
to encode a finite set)"

ORACLE PROCEDURE 4.2.
begin
input x;
T := Tu := ,;
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(1) for k :-- 1 to p(lxl) do
(2) if g((x, c(T.), c(TN), 0k), 0qlxl) is defined

then begin
(3) S:= g((x, c(T,), C(Tlv), 0k), 0qlxl);
(4) for each y in the set encoded by S do

if y e oracle set
then T. := T. U [y]
else TN := TN [y]

end;
(5) if M, x, c T. ), c(Tv), 0p(Ixl)) e/(

then accept x
end.

Consider the implementation and running time of this procedure. Under the
hypothesis NP co-NP, g NPSV, domain (g) NP, and K NP. Thus, the tests at
lines 2 and 5 and the function evaluation at line 3 can be carried out nondeterministically
in polynomial time. For each execution of the outer for-loop at line 1, the size of the
set computed at line 3 is at most q(Ixl). Thus, each execution of the inner for-loop
takes at most polynomial time (relative to the oracle set). Since the outer for-loop
iterates p(Ixl) times, the entire procedure can be implemented to run nondeterministi-
cally in polynomial time relative to the oracle set.

Now consider the correctness of this procedure for L when using oracle set D.
Since IIQ(M,D, x)ll--<q([xl) and Ty and TN are both initialized to b, it is clear that
at the end of k iterations of the for-loop beginning at line (1), Ty=
j<-k Q(M1, D, x, j) VI D and TN Uj<_k Q(M1, D, x, j) fq D. Since the running time of
M1 is bounded by p, Q(MI, D, x) f’I D t.J<_pIxI) Q(M1, D, x, J) fq D) and
Q(M, D, x) f3 D t.J__<plxl) (Q(M1, D, c, j)) f3 D). Thus, when execution reaches line
(5), Ty Q(M1, D, x) VI D and TN Q(M1, D, x) fq D. This means that the text at
line (5) correctly determines membership in L. Thus, there is a nondeterministic oracle
machine M2 that implements this procedure in polynomial time, and Q(M2, D, x)=
Q(MI, D, x) so that IIQ(Mz, D, x)ll _-<q([x[). Hence, M2 witnesses L
NP.ALL.DEP (D). E

We do not know whether one can obtain a positive relativization of "NP ? co-NP"
in terms of the classes NP.ACC.DEP (?). Baker, Gill and Solovay [3] described a set
E such that NP(E)co-NP (E), and their proof shows that NP.ACC.DEP (E)
co-NP.ACC.DEP (E). Thus, of the relativizations considered here, NP.ALL.DEP (?)
is the most general positive relativization of NP relative to the "NP ? co-NP" problem.

For what sets D is it the case that NP.ALL (D) co-NP.ALL (D)? To study the
question, consider the notion of being "hard."

DEFINITION 4.6. If R(" isa relativization, then write A <_R B whenever A e R(B).
Set D is <_-n-hard for class cg if for every C cg, C <=riD.

Simply, D is =<n-hard for if and only if cg c__ R(D).
COROLLARY 4.7. For every set D"
A. NP.ALL (D) co-NP.ALL (D) if and only if D is <=NP’ALL-hard for co-NP;
B. NP.ALL.DEP (D) co-NP.ALL.DEP (D) ifand only ifD is <=NP’ALL’DZP-hard

for co-NP.
Proof. We consider statement B only, the proof for statement A being similar.

First, assume that NP.ALL.DEP(D)=co-NP.ALL.DEP(D) and let us show that
co-NP NP.ALL.DEP (D). Let L e co-NP. Then, L e NP

___
NP.ALL.DEP (D), so L e

co-NP.ALL.DEP (D), which by assumption yields L e NP.ALL.DEP (D). Thus, co-
NP

_
NP.ALL.DEP (D).
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Now assume that co-NP_ NP.ALLoDEP (D). Let L NP.ALL.DEP (D) be wit-
nessed by oracle machine M. We will see that L NPALL.DEP (D). First let us note
that because co-NP NP.ALL.DEP (D), given any f NPMV, Proposition 3.4(ii)
applies, so that g NPSV (D) and domain (g) NP (D). Moreover, the proof of Propo-
sition 3.4 yields more information than just stated. Namely, the set OKCON NP and
OKCONco-NP NP.ALL.DEP (D) yields g NPSV (D) witnessed by an oracle
transducer, call it T, such that Q(T, D, x) is bounded by a fixed polynomial for all x.
As a consequence, domain (g) NP.ALL.DEP (D) holds also.

Now consider Oracle procedure 4.1. By the comments of the previous paragraph,
lines 2 and 3 can be implemented by procedures that are in NPALL.DEP (D). Also,
K NP.ALLDEP (D), since K co-NP, so line 5 is in NP.ALL.DEP (D) as well. The
entire procedure, therefore, witnesses the fact that L NP.ALLoDEP (D).

It is also interesting to consider the results of this section from a somewhat different
point of view. It is known that -<_P is not closed under complementation [3]; that is,
here exist A and B such that A_-<PB and ; PB. We have introduced three
restrictions of =<P’. namely, =<NP’ALL, =<NP’ALL’DEP, and =<NP’ACC’DEP. It is natural to
ask if these restrictions are closed under complementation. As noted above,.-< NP.ACC.DEP

is not. For NP.ALL and -<_ NP.ALL.DEP, we have the surprising result that they are closed
under complementation if and only if NP- co-NP.

As previously stated, the controlled relativizations of NP considered in this section
are quantitative in the sense that the "space of queries" is bounded in size by a
polynomial. This is a weak constraint on oracle machines since the computation relative
to oracle set D of a machine M on input x may still be exponential in size. In 5 we
introduce the deterministic versions of these reducibilities. We will find that the question
of whether the deterministic reducibility and the corresponding nondeterministic
reducibility differ is, in some instances, equivalent to the "P =?NP" question. This
results in positive relativizations of the "P-?NP" question.

5. P=?NP. Now we introduce controlled relativizations of P corresponding to
the controlled relativizations of NP defined in 4. We use these notions to study the
"P- ?NP" question. We begin with the analogue of Definition 4.1.

DEFINITION 5.1. Let D be a set. Define the following classes:
(a) P.ALL (D) is the class of languages L such that L P(D) is witnessed by a

machine M such that, for some polynomial q and all x, IIQ(M, D, x)][-<q(Ix[);
(b) P.ACC (D) is the class of languages L such that L P(D) is witnessed by a

machine M such that, for some polynomial q and all x, IIQA(M, x)ll <--q(Ix]);
(c) P.ALL.DEP (D) is the class of languages L such that L P(D) is witnessed

by a machine M such that, for some polynomial q and all x, [IQ(M, D, x)[I-<q(Ixl);
(d) P.ACC.DEP (D) is the class of languages L such that L P(D) is witnessed

by a machine M such that, for some polynomial q and all x, IIQA(M, D,
For any oracle set four classes are defined in Definition 5.1. Clearly, for every set

D, P.ALL (D)
_
P.ACC (D) and P.ALL (D)

_
P.ALL.DEP (D)

_
P.ACC.DEP (D).

If M witnesses LP (D), then there is a polynomial q such that M runs in time q(n).
Since M is deterministic, this means that for all x, IIQ(M,D,x)]l<-_q(Ix[) and
IIQA(M,D,x)II<-_q(Ixl), so that M witnesses LP.ALL.DEP(D) and L
P.ACC.DEP (D). This is stated formally as follows:

LEMMA 5.2. For every set D, P.ACC.DEP (D)= P.ALL.DEP (D)= P (D).
Thus, for each set D there are at most three different classes. It will be shown in

Corollary 6.3 that there exist sets E and L such that LP (E)-NPoALL (E). For
every set D, P.ALL(D)_P.ACC(D)_NP.ACC(E)=NP.ALL(D), so that L6
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P (E) P.ACC (E), thus witnessing P.ACC (E) P (E). We do not know whether
there is a set F such that P.ALL (F) P.ACC (F). We will see in Corollary 5.5 below
that if P.ALL (D) P.ACC (D) for some D, then P NP.

Now consider positive relativizations of the "P ?NP" problem.
THEOREM 5.3. A. P NP ifand only iffor every set D, P.ALL (D) NP.ALL (D).
B. P NP /f and only if for every set D, P.ACC (D)= NP.ALL (D).
C. P=NP/f and only iffor every set D, P (D) NP.ALL.DEP (D).
Proof of A. This proof is very similar to that of part A of Theorem 4.5. Under

the hypothesis P NP, the function f is such that c(set-f) is in PF by Proposition 3.3.
Thus the tables Ty and TN can be constructed deterministically in polynomial time
using an oracle for D, and then M can be simulated deterministically in polynomial
time under the hypothesis P NP. The details are left to the reader. [3

Proof of B. It is clear that for every set D, P.ACC (D)___ NP.ACC (D). But by
Lemma 4.4, for every set D, NP.ACC (D)=NP.ALL(D), and so P.ACC (D)___
NP.ALL (D) If for every set D, P.ACC (D) NP.ALL (D), then P P.ACC (b)
NP.ALL(b)=NP. If P=NP, then by part A for every set D, P.ALL(D)=
NPALL (D), and since P.ALL (D)

_
P.ACC (D) c_ NP.ALL (D), this means that

P.ACC (D) NP.ALL (D). {q

Proof of C. This is very similar to the proof of part B of Theorem 4.5. Under
the hypothesis P NP, the functions f and g are such that c(set-g) is in PF by Proposition
3.4(iii). Thus, the tables T, and TN can be constructed deterministically in polynomial
time using an oracle for D, and M can be simulated deterministically in polynomial
time under the hypothesis P NP. The details are left to the reader. [3

We will see in Corollary 6.5 that there is a set F such that P(F)
NP.ALL.ACC (F). Thus, of the relativizations considered here, NP.ALL.DEP is
the most general positive relativization of NP relative to the P ? NP problem.

For what sets D is it the case that P.ALL(D)=NP.ALL(D) or P(D)=
NP.ALL.DEP (D)? From Theorem 5.3 and Proposition 3.4 we have the following fact"

COROLLARY 5.4. For every set D,
A. P.ALL (D) NP.ALL (D) /f and only if D is <=P’ALL-hard for NP;
B. P (D) NP.ALL.DEP (D) /f and only if D is <=P-hard for NP.
Thus, the questions "do the reducibilities <__N’.ALL and =<’.AkL coincide?" and "do

the reducibilities _<N’.Ae and __<_’.ACC coincide?" and "do the reducibilities <=N’.Akk.DEe
and --< - coincide?" are each equivalent to the question "P ? NP."

From Theorem 5.3 we see that if P=NP, then for every set D, P.ALL (D)=
NP.ALL (D)= P.ACC (D). We rephrase this as a corollary which shows that distin-
guishing between certain deterministic reducibilities would imply that P NP"

COROLLARY 5.5. If there exists a set D such that P.ALL (D) P.ACC (D), then
PNP.

We do not know whether the converse of Corollary 5.5 is true.
Let us consider Theorem 5.3 in a different light. For every set D, P.ALL (D) is

a restriction of P (D) and NP.ALL (D) is a restriction of NP (D); for some choices
of D, these are proper restrictions. To prove that P NP, one wishes to find a set E
such that P.ALL (E) is as small as possible and NP.ALL (E) is as large as possible so
that some argument, possibly a diagonalization, can be used to show that P.ALL (E)
NP.ALL (E).

Recall that there is a set E such that P (E)# NP (E). The proof of this fact in
[3] does not speak to the difference between deterministic and nondeterministic
computation in general, but rather illustrates the power of nondeterminism in steps
that write on the query tape, allowing O(M, E, x) to be exponential in size; in the
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deterministic case, the size of O(M, E, x) is always bounded by a polynomial (the
running time). On the other hand, by forcing the size of Q(M, D, x) and Q(M, x) to
be bounded in the same way in both the deterministic and the nondeterministic cases,
Theorem 5.3 allows us to face the issue of the potential difference between deterministic
and nondeterministic computation within the framework of relativized computation.

As noted at the end of 3, nondeterminism arises in the procedure used in the
proof of Proposition 3.4 only in the tests that direct the search. This is also true in
the proof of Theorems 4.5 and 5.3. If one attempts to prove Theorem 5.3B directly
from Proposition 3.4, then one can show the following fact:

COROLLARY 5.6. For every set D, NP.ALL.DEP (D) P (K D).
Then one obtains Theorem 5.3B by noting that P= NP implies K e P

_
P(D) so

that P (K@D)=P (D) for all D. Thus, one obtains P (D)= NP.ALL.DEP (D) from
Corollary 5.6. Similarly, Corollary 5.4 follows from this observation.

Figure 1 shows the relationships between the classes studied in this section.

NP(D)
/

/
/ NP.ACC.DEP (O)

NP.ALL.DEP (D)

NP.ALL (D)= NP.ACC (D)

P.ACC (D)

P.ALL (D)
FIG. 1. ,SLOl (O)/ (D) indicates that for all D, (D)_ 2 (D). 1 (O),’",2 (O) indicates that for

all D, (D) 2 (D) and for some E, (E)# L2 (E). (D) */’2 (D) indicates that P=NP if and
only if for all D, (D)=Le (O).

6. Some separation theorems. It is natural to ask if <_- P, NP.ACC.DEP,
__
NP.ALL.DEP

and --<_ NP.ALL differ. Here we show that both <_-NP.ALL and also --<_ NP.ALL.DEP differ from
all of the others. We have not shown that _-< NP.ACC.DEP and <=P differ, but we conjecture
that this is true.

THEOREM 6.1. There exists a recursive set E such that NP.ALL(E)#
NP.ALL.DEP (E).

Proof. The proof is based on a construction used by Ladner, Lynch and Selman
[15]. Assume that the alphabet X contains 0, 1 and %. (If IIEII 2, we assume a simple
coding of 0, I and % over X.) For each x E*, let S(x) {x% Yl[ Yl--< Ix[ and y {0, 1}*}.
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Associated with the set E (which is described below) will be a language L that
will be shown to be in NP.ALL.DEP (E)-NP.ALL (E). Membership of x in L will
depend on a single string x%y S(x) with [xl =[Yl; more precisely, x will be in L if
and only if x%y is in E. The set E is constructed so that the prefixes x%, x%al,
x/oala2, , x% ala2 alxl_ of x% y can be used to determine x% y x%al alx
where, for 1,. , Ixl, ai is in {0, 1}. This notion is implemented by considering any
proper prefix x%al."aj of x%y for 0_-<j<lxl and letting the next prefix be
x%al"’ajO if x%al...aiC:E and x%a...al if x%aa...aE. When E is
constructed so as to have this property, then the following oracle procedure witnesses
L NP.ALL.DEP (E).

ORACLE PROCEDURE 6.1.
begin
input x;
w:=x%;
for i:= 1 to Ix} do

if w oracle set
then w := w 1
else w:= w0;

if w oracle set
then accept x
else reject x

end.

Notice that this procedure witnesses L P(E)_ NP.ALL.DEP (E).
The set E will be constructed in stages. For each natural number m, at the end

of stage m, E(m + 1) and E(m + 1) will denote the set of strings put into E and E,
respectively, in stages 0 through m. The length of the longest string in E(m + 1)U
E(m+ 1) will be denoted by n,+. It will be the case that if Ix[ <-_ nm+, then x
E(m + 1) (rn + 1), so that E (rn + 1) and E(m + 1) completely determine all strings
of length at most n,+a. When the construction begins, E(0)={e}, E(0)= 4) and no =0.

Recall that M(0), M(1),. is an effective enumeration of the clocked nondeter-
ministic oracle machines that run in polynomial time, and that for every i, machine
M(i) runs in time pi(n)= hi+ i. For any oracle set D, we say that "L NP.ALL (D)
via M(i) and p if L= L(M(i), D) and, for all x, IlO(M(i), x)[[ _-< p;(lxl). We consider
ordered pairs of natural numbers. At stage rn (i, j) the construction guarantees that
L NP.ALL (E) via M(i) and p. This will yield L NP.ALL (E).

Stage m=(i,j). Let n be the least integer such that n> n, and pj(n)<2". For
every string x such that

T <-[xl--<
2

add each string x%l , 0-< k<-_lxl, to E(m); add all other strings y S(0") such that
n <lyl<_-pi(n) to E(m). Notice that the effect of this is to put into L each string x
such that

except for the string 0". Also, all strings y such that n,, < ]Yl =< pi(n) have been placed
into E(m)UE(m) except for yeS(O"). Membership of 0 in L or in L will be
determined so that 0" witnesses L NP.ALL (E) via M(i) and p.
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Case (1). IIQ(M(i), 0")ll > pj(n). In this case L NP.ALL (E) via M(i) and pj
because Q(M(i),O") is too large. Place each of the strings 0"%1 k, O<=k<-n, into
E(m); place all other strings in S(0") into E(m). Set E(m + 1) to E(m), E(m + 1)
to E(m), n,+l to pi(n), and go to stage m + 1.

Case (2). IIQ(M(i),O")l{<-_pj(n). By choice of n, p(n)<2" so there is some
string O"%y=O"%al...a, in S(0") which is not in Q(M(i), 0"). Place each of the
strings 0"%al...ai, 0-_< i=< n-1, into E(rn) and place all other strings w
S(0")-{0"%y} into E(m). At this point the only string of length at most pi(n) which
is not yet decided for E or E is 0"%y. Now consider computations of M(i) relative
to E(m). (Note that all queries can be answered consistently with E and E since the
running time of M(i) is bounded by Pi and O"%y: Q(M(i), on).) If O"%yL(M(i),
E(m)), then place 0 % y into E(m); otherwise, place 0" % y into E(m). This yields
L NP.ALL (E) via M(i) and pj because M(i) on input 0", with an oracle for E, gives
the wrong answer. Set E(m + 1) to E(m), E(m + 1) to E(m), nn+ to pg(n), and go
to stage m + 1. End of stage m.

From the construction of E U E(m) and E 13,, E (m), it is clear that
L NP.ALL (E). Since each stage is effective, E is a recursive set.

Recall that for all sets D, NP.ALL (D)
_
NP.ALL.DEP (D)

NP.ACC.DEP (D)_ NP(D). From Theorem 6.1 we have the following fact:
COROLLARY 6.2. There is a recursive set E such that NP.ALL(E)

NP.ACC.DEP (E) and NP.ALL (E) NP (E).
In fact, the proof of Theorem 6.1 yields more fruit:
COROLLARY 6.3. There is a recursive set E such that NP.ALL (E) P(E).
Now we show that =<P.ALL.DEP and NP.ACC.DEP differ.
THEOREM 6.4. There exists a recursive set F such that NP.ALL.DEP (F)

NP.ACC.DEP (F).
Proof For any set D, let L(D)= {x[there exists y such that lY[ =lxl and y D}.

We will construct a set F such that for every n, either F contains no strings of length
n or F contains exactly one string of length n; this will show that L(F)
NP.ACC.DEP(F). The set F will be constructed so that L(F) is not in
NP.ALL.DEP (F).

The set F will be constructed in stages. The notation F(m + 1), F(m + 1), and
n,n+l is defined as in the proof of Theorem 6.1. Initially, F(0)={e}, F(0)= b, and
no =0. (The construction of F in finite stages is not necessary from a technical
standpoint, but may be useful for the reader.)

For any set D, we say that "LNP.ALL.DEP(D) via M(i) and Pi" if L=
L(m(i), D) and IlQ(m(i), D, x)ll--< p.(Ixl) for all x, where again we assume an effective
enumeration of the clocked nondeterministic oracle machines that run in polynomial
time.

Again we consider pairs of natural numbers. At stage rn (i, j) the construction
guarantees that L(F)C_NP.ALL.DEP(F) via M(i) and pi. This will yield
L(F) : NP.ALL.DEP (F).

Stage rn =(i, j). Let n be the smallest integer such that n > nm and p(n)<2".
Add to F(m) all strings y such that n, < y} <-_ p( n ).

Case (1). IlO(M(i),V(m), 0")ll>pj(n). In this case, L(F): NP.ALL.DEP (V)
via M(i) and pi because O(M(i), F(m), 0") is too big. Set F(m + 1) to F(m), F(m + 1)
to F(m), n,,+l to pi(n), and go to stage rn + 1.

Case (2). I]O(M(i),V(m), O")ll<-_pi(n). There are two possibilities"
(a) If M(i) accepts 0" relative to F(m), since n >nm, O : L(F) so that 0" witnesses

L(F) : NP.ALL.DEP (D) via M(i) and pi. Set F(m + 1) to F(m), F(m + 1) to F(m),
n,,+l to pi(n), and go to stage m+ 1.
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(b) If M(i) does not accept 0" relative to F(m), then notice that some string of
length n, say y, is not in Q(M(i), F(m), 0n) since IIQ(M(i),F(m),On)ll<=pj(n)<2n.
Set F(m+l) to F(m)tA{y}, F(m+l) to F(m)-{y}, n,,+l to pj(n), and go to stage
m+l. Notice that 10nl=lyl and yF so that OnL(F). Thus, 0 witnesses
L(F) : NP.ALL.DEP (F) via M(i) and p. End of stage m.

From the construction of F=t.lmF(m) and F=O,,F(m), it is clear that F is a
recursive set and L(F): NP.ALL.DEP (F). [3

Recall that for every set D, NP.ALL.DEP (D) c__ NP.ACC.DEP (D) c_ NP (D).
Also, notice that for every set D, P (D)c__ NP.ALL.DEP (D). Thus, from Theorem
6.4 we have the following fact"

COROLLARY 6.5. There is a recursive set F such that NP.ALL.DEP (F) # NP (F)
and P (F) # NP.ALL.ACC (F).

7. Uniform relativizations. In 4 and 5 we have considered relativizations where
the size of the query tree is polynomially bounded. Ladner, Lynch and Selman [15]
considered classes where the entire set of queries could be computed uniformly before
any questions were asked of the oracle. In the case of deterministic polynomial time,
Ladner, Lynch and Selman showed that this restriction of <= - characterizes determinis-
tic polynomial time truth-table reducibility. On the other hand, the nondeterministic
polynomial time version of truth-table reducibility developed in [15] is equivalent to
<_l,. In the present study we are interested in the question of whether knowing the
existence of a polynomial bound on the set of queries allows one to uniformly compute
this set in advance. We find all answers to these questions except those that directly
entail solutions of imporant separation problems.

DEFINITION 7.1. Let D be a set.
(a) Let P.UNIF.ALL (D) (P.UNIF.ACC (D)) be the class of languages L such

that L e P (D) is witnessed by a deterministic polynomial time oracle machine M such
that the function f(x)= c(O(M, x)) (resp., f(x)= c(OA(M, x))) is in PF.

(b) Let NP.UNIF.ALL (D) (NP.UNIF.ACC (D)) be the class of languages L
such that L e NP (D) is witnessed by a nondeterministic polynomial time oracle machine
M with the property that the function f(x) c(O(M, x)) (resp., f(x) c(OA(M, x)))
is in NPSV.

It follows from characterizations of polynomial time truth-table reducibility < l,
tt

given in 15], that < P.UNIF.ALL
---’tt.
<: P This is not so for the corresponding nondeterminis-

tic reducibilities. For every set D, NP.UNIF.ALL (D)
__
NP.ALL (D) and, by Corollary

6.2, there is a set E such that NP.ALL (E) # NP (E). Therefore, recalling once more
that _-<P= =<tNt’, we see that =<NP’UNIF’ALL #,<tNtP.= Similarly, it is easy to see that
< NP.UNIF.ALL < NP

tt

For any set D, if M1 witnesses L P.UNIF.ACC (D), let f PF be the function
such that or all x, f(x)=c(OA(Ml, X)). Let Ma be a machine that on input x, first
computes f(x) and then simulates M on x, accepting relative to D if and only if M
accepts x relative to D and rejecting if in the simulated computation M reaches a
query configuration where the string on the query tape is not in OA(M1, x). Thus,
O(M, x) OA(M, x) for all x, and so Me witnesses L P.UNIF.ALL (D). This means
that for all sets D, P.UNIF.ACC (D) P.UNIF.ALL (D) P.ALL (D)

_
P.ACC (D)

and, similarly, NP.UNIF.ACC (D) NP.UNIF.ALL (D)
_
NP.ALL (D).

We consider relations between these relativizations under the hypothesis NP
co-NP.

LEMMA 7.2. If NP=co-NP, then for every set D, NP.UNIF.ACC(D)=
NP.UNIF.ALL (D)= NP.ALL (D)= NP.ACC (D) and each of these classes is closed
under complementation.



478 RONALD V. BOOK, TIMOTHY J. LONG AND ALAN L. SELMAN

Proof. Recall from Lemma 4.4 that NP.ALL(D)=NP.ACC (D). Under the
hypothesis NP=co-NP, Proposition 3.2 yields NPMVPBcNPSV. If M witnesses
L NP.ALL (D) for some set D, then the multivalued function f defined by y set-f(x)
if and only if y Q(M, x) is in NPMVPB, so the function c(O(M, x)) is in NPSV.
Thus, a machine that on input x first computes c(O(M, x)) and then simulates M on
x will witness L NP.UNIF.ALL (D). Thus, NP.UNIF.ALL (D)= NP.ALL (D).

Let M witness LNP.UNIF.ALL(D). As just stated, the function f(x)=
c(O(M, x)) is in NPSV when NP co-NP. For each y Q(M, x), determining whether
y OA(M, x) can be done nondeterministically in polynomial time. Assuming NP=
co-NP, it follows that the function g(x)=c(QA(M,x))NPSV and that L
NPoUNIF.ACC (D). Thus, NP.UNIF.ACC (D) NP.UNIFoALL (D). Finally, closure
of these classes under complementation follows easily from the assumption NP=
co-NP.

Construction of a set which separates any of the classes related in Lemma 7.2
would yield a proof that NP co-NP. On the other hand, the hypothesis NP co-NP
allows us to conclude that if we know the existence of a polynomial bound on the set
of queries, then we can compute this set in advance. Further separation of either the
deterministic or nondeterministic relativizations will be hard to prove because of the
corollary to the next result.

LEMMA 7.3. If P=NP, then
A. for every set D, P.UNIFoACC (D) P.UNIF.ALL (D)= P.ALL (D)=

P.ACC (D); and
B. for every set D, NP.UNIF.ACC (D) NP.UNIF.ALL (D) NP.ALL (D)

NP.ACC (D).
Proof Part B is an immediate consequence of Lemma 7.2. Now consider Part A.

By Corollary 5.5, P NP implies that P.ALL (D)= P.ACC (D) for all sets D.
The proofs that P.UNIF.ALL(D)=P.ALL(D) and that P.UNIF.ACC (D)=

P.UNIF.ALL(D) are almost identical to the proofs used in Lemma 7.2 to
show that NP.UNIF.ALL (D)= NP.ALL (D) and that NP.UNIF.ACC (D)-
NP.UNIF.ALL (D), respectively.

THEOREM 7.4. A. P=NP if and only if for every set D, P.UNIF.ACC (D)=
NP.UNIF.ACC (D).

B. P NP if and only if for every set D, P.UNIF.ALL (D) NP.UNIF.ALL (D).
Proof. To prove both A and B from right to left, let D b. The proof of A (resp.,

B) from left to right follows immediately from Lemma 7.3 and Theorem 5.3B (resp.,
Theorem 5.3A).

COrOILAr 7.5. If P=NP, then for every set D, P.UNIF.ACC(D)=
P.UNIF.ALL (D) P.ALL (D) P.ACC (D) NP.ACC (D) NP.ALL (D)=
NP.UNIF.ALL (D) NP.UNIF.ACC (D).

Thus, if P NP, then all of the reducibilities studied here that involve bounding
the number of query strings are simply equivalent formulations of deterministic
polynomial time truth-table reducibility. This means that if one can separate any two
of the restrictions of P (.) or NP (.) obtained by uniformly bounding the set of queries,
then P NP. Notice that nondeterministic polynomial time truth-table reducibility is
equal to nondeterministic polynomial time Turing reducibility [15], and P (.) is not
equal to NP (.) whether or not P equals NP.

Figure 2 shows the relationships between the classes studied in this section.

8. P =?PSPACE and NP =?PSPACE. Now we turn to the "P =?PSPACE" and
"NP =?PSPACE" questions. Baker, Gill and Solovay [3], Baker and Selman [4] and
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NP(D)

P(D) /

NP.ALL (D)= NP.ACC (D)

P.ACC (D

P.ALL (D)

P.UNIF.ACC (D)

NP.UNIF.ALL (D)

P.UNIF.ALL (D)

NP.UNIF.ACC (D)
FIG 2. o (D)/ (D) indicates that for all D, 1 (D) -2 (D). 1 (D).-"cf’2 (D) indicates that for

all D, 1 (D) 2 (D) and for some E, (D) # ’2 (E). 1 (D) *//"2 (D) indicates that P NP if and
only if for all D, 1 (D) 2 (D).

Simon and Gill [25] have shown the existence of various sets D such that NP (D)#
PSPACE (D). However, if E is -<-complete for PSPACE, then P(E)=NP (E)=
PSPACE (E) PSPACE. Book and Wrathall [5], [7] developed a positive relativization
of the "NP ?PSPACE" problem by introducing a new relativization of PSPACE ),
called NPQUERY( ). The corresponding positive relativization of the
"P =?PSPACE" problem was conjectured in [5] and subsequently affirmed in [23].
Here we consider analogues of the quantitative relativizations of P and NP and obtain
further positive relativizations of the "P=?PSPACE" and "NP=?PSPACE"
problems.

DEFINITION 8.1. Let D be a set. Let NPQUERY (D) {L(M, D)IM is a nondeter-
ministic oracle machine that uses at most polynomial work space and that is restricted
so that in every accepting computation only a polynomial number of oracle calls are
made}. Let PQUERY (D)= {L(M,D)IM is a deterministic oracle machine that uses
polynomial work space and that is restricted so that in every accepting computation
only a polynomial number of oracle calls are made}.
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The classes NPQUERY (D) and PQUERY (D) have a certain "robustness" since
they are invariant under the following changes of definition:

(i) "in every accepting computation" is replaced by "there exists an accepting
computation";

(ii) "in every accepting computation" is replaced by "in every computation."
Recall that PSPACE is closed under complementation. However, there exist sets

D and E such that NPQUERY (D)#co-NPQUERY (D) and PQUERY (E)
NPQUERY (E). The interest in these relativizations in the present study stems from
the following facts:

PROPOSITION 8.2 (a) [5]. NP PSPACE if and only if for every set D, NP (D)=
NPQUERY (D).

(b) [23]. P PSPACE/f and only if for every set D, P (D)= PQUERY (D).
Let M be an oracle machine. If M is time-bounded or if M is space-bounded

and the number of oracle queries allowed is bounded by the space bound, then M can
be simulated by a machine of the same type that queries the oracle about any given
string at most once. Thus, if M is a polynomial space-bounded oracle machine with
the property that for every set D there is a polynomial q such that, for all x,
]]Q(M,D,x)ll<-q(Ix]) or IIQA(M,D,x)l]<-q(lxJ), then M witnesses L(M,D)
NPQUERY (D) if M is nondeterministic and M witnesses L(M, D) PQUERY (D)
if M is deterministic. Thus, quantitative relativizations of PSPACE similar in form to
those of P and NP considered in 4-7 are, in fact, modifications of PQUERY
and NPQUERY ().

Consider again multivalued deterministic or nondeterministic transducers with
accepting states. A string y is an output of a transducer T on input x if some computation
of T on input x halts in an accepting state with y on its distinguished output tape. We
consider only those transducers T which operate in polynomial space and for some
polynomial p, if y is an output of T on input x then ]y[ <-_ p([x[).

DEFINITION 8.3. (a) NPSPACEMV is the set of all partial, multivalued functions
computed by nondeterministic polynomial space-bounded transducers.

(b) NPSPACESV is the set of all f NPSPACEMV that are single-valued.
(c) NPSACEMVPB is the set of all f NPSPACEMV such that for some poly-

nomial q and all x, [[set-f(x)[[ _-<q([x[).
(d) PSPACEF is the set of all partial single-valued functions computed by deter-

ministic polynomial space-bounded transducers.
Recall that PSPACE

___
DSPACE (n) g NSPACE (n) and

PSPACE co-PSPACE. Also, analogous to what was done in 2, let us introduce the
conventions "NPSPACEMVPB _c NPSPACESV" and "NPSPACEMVPB

_
PSPACEF" to mean that "for every f NPSPACEMVPB, c(set-f) NPSPACESV"
or "c(set-f) PSPACEF," respectively. The arguments used to prove Propositions 3.2
and 3.3 can be extended to show the following fact:

LMMA 8.4. (a) NPSPACESV PSPACEF, NPSPACEMVPB _NPSPACESV,
and NPSPACEMVPB c_ PSPACEF.

(b) If P PSPACE, then PF PSPACEF.
(c) If NP PSPACE, then NPSV PSPACEF.
Let D be a set. Let L NPQUERY (D) be witnessed by a machine M such that

for some polynomial q and all x, []Q(M, x)l[ <-_q([x[). Let f be the function given by
y set-f(x) if and only if y Q(M, x), so that f NPSPACEMVPB. Thus, the function
g(x) c(Q(M, x)) is in NPSPACESV =PSPACEF. Hence, there is a deterministic
polynomial space-bounded oracle machine M2 that recognizes L relative to D by first
computing g(x) on input x, then querying the oracle for D about each string in
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Q(M1, x), and finally deterministically simulating MI’S computations on x relative
to D.

Suppose that one defines the analogues of the classes NP.ALL (D), P.ALL (D),
etc., specified by polynomial space-bounded oracle machines, where in the uniform
cases the function g(x)-c(Q(M, x)) is computed by a polynomial space-bounded
transducer. Consider only those classes where the bound on the set of queries does
not depend on the oracle set. The argument given in the last paragraph applies to all
of these classes, so that Lemma 8.4 yields the fact that for any set D, there is exactly
one class resulting from a polynomial bound on the size of Q(M, x). Thus, the fact
that PSPACE Uk>=I DSPACE (n k) UkINSPACE (f/k) allows one to conclude
that, instead of eight potentially different classes for an oracle set D, there is just one;
this is the analogue of Corollary 7.4. We will refer to this class as PQUERY.ALL (D).
Details are left to the reader.

Now consider the situation where the size of Q(M, D, x) depends on D as well
as M.

DEFINITION 8.5. Let D be a set.
(a) Let NPQUERY.ALL.DEP (D) (NPQUERY.ACC.DEP (D)) be the class of

languages L such that L e NPQUERY (D) is witnessed by a nondeterministic poly-
nomial space-bounded oracle machine M such that, for some polynomial q and all x,
Q(M, D, x)ll =< q(Ixl) (IIQA(M, D, x)ll--< q(Ixl)).

(b) Let PQUERY.ALL.DEP (D) (PQUERY.ACC.DEP (D)) be the determinis-
tic counterpart of the class defined in (a).

The proof of Lemma 5.2 can be extended to yield the following fact:
LEMMA 8.6. For every set D, PQUERY.ALL.DEP(D)-POUERY.ACC.

DEP (D) PQUERY (D).
The fact that Uk DSPACE (n k) UkNSPACE (n k) PSPACE-co-PSPACE

allows one to use the argument in the proof of Theorem 5.3, part C, to obtain the
following fact:

LEMMA 8.7. For every set D, PQUERY (D)- NPQUERY.ALL.DEP (D).
It is a straightforward exercise to modify the proof of Theorem 6.1 to show the

existence of a set E such that PQUERY.ALL (E) NPQUERY.ALL.DEP (E) so
that PQUERY.ALL (E) PQUERY (E). Also, one can modify the proof of Theorem
6.4 to show the existence of a set F such that NPQUERY.ALL.DEP(F)
NPQUERY.ACC.DEP (F).

Thus, for every set D, there are at most four distinct classes obtained by starting
with NPQUERY (D) and making restrictions on the access to sets of oracle queries.

Now we have positive relativizations of the "P=?PSPACE" and
"NP ?PSPACE" problems.

THEOREM 8.8. A. P PSPACE if and only iffor every set D, P.UNIF.ALL (D)
PQUERY.ALL (D).

B. NP=PSPACE if and only if for every set D, NP.UNIF.ALL(D)-
PQUERY.ALL (D).

C. NP=PSPACE if and only if for every set D, NP.ALL.DEP(D)=
PQUERY (D).

D. NP=PSPACE if and only if for every set D, NP.ACC.DEP(D)=
NPQUERY.ACC.DEP (D).

Proof of A. If for every set D, P.UNIF.ALL (D)=PQUERY.ALL (D), then
P P.UNIF.ALL (&) PQUERY.ALL (b) PSPACE. Since for every set D,
P.UNIF.ALL (D)

_
PQUERY.ALL (D), it suffices to show that P PSPACE implies

that for every set D, PQUERY.ALL (D)
_
P.UNIF.ALL (D).
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Let L e PQUERY.ALL (D) be witnessed by M so that the function c(O(M, x))
is in PSPACEF. Under the hypothesis P=PSPACE, PF--NPSV=PSPACEF by
Lemma 8.4 so that c(O(M, x))ePF. Now for each x, Tr O(M, x)f3D and TN
Q(M, x)71D can be computed deterministically in polynomial time using an oracle
for D. Under the hypothesis P PSPACE, there is a deterministic polynomial time
procedure that on input (x, c(T,), c(TN)) will determine whether x is accepted by M
relative to D. Thus, L is in P.UNIFoALL (D).

Proof. of B, C, and D. The proofs of parts B, C and D are essentially the same
so that only that of part D will be given. As in the proof of part A, it is sufficient to
show that for every set D, NPQUERY.ACC.DEP (D)c_c_ NPoACC.DEP (D).

Let M witness L e NPQUERY.ACCDEP (D) for some D. Consider the following
predicates"

(i) EVAC is true for a potential configuration J of M if and only if there is an
accepting computation of M that begins with J and does not pass through a query
configuration;

(ii) NEXT is true for a pair (/, J) of potential configurations of M if and only if
I is not a query configuration, J is a query configuration, and there is a computation
of M that begins with I and reaches J without passing through a query configuration.

Since M is a nondeterministic polynomial space-bounded oracle machine, EVAC
and NEXT are predicates in PSPACE. Under the hypothesis NP PSPACE, both
EVAC and NEXT are total predicates in NP.

Since M witnesses L e NPQUERY.ACCDEP (D), there is a polynomial q such
that for every input x to M, every computation of M on x makes at most q(lxl) oracle
queries.

Consider the following:

ORACLE PROCEDURE 8.1.
begin
input x;
I := initial configuration of M on x;
k:=0;
while k < q(Ixl) and -nEVAC(I) do

begin
nondeterministically guess a query configuration J;
if NEXT(I, J)

then begin
query the oracle "y oracle set?" for the string y
on the query tape in configuration J;

I := successor of J;
k:=k+l
end

else halt in a nonaccepting state
end;

if EVAC(I)
then accept
else halt in a nonaccepting state

end.

Recall that EVAC and NEXT are total predicates in NP. The loop is executed
at most q(Ixl) times. Thus the procedure is nondeterministic and runs in polynomial
time and clearly accepts x relative to D if and only if x L. It is clear that the oracle



QUANTITATIVE RELATIVIZATIONS 483

is queried regarding y D in an accepting computation if and only if y is in
QA (M, D, x). hence, this procedure witnesses L NP.ACC.DEP (D). El

From Theorem 8.8 the following fact is immediate:
COROLLARY 8.9. A. If P PSPACE, then for every set D, P.UNIF.ACC (D)=

P.UNIF.ALL (D)= P.ALL (D)= P.ACC (D)= PQUERY.ALL (D).
B. If NP=PSPACE, then for every set D, NP.UNIF.ACC(D)=

NP.UNIF.ALL (D)= NP.ALL (D)= PQUERY.ALL (D).
The proofs of the positive relativizations of the problems considered in 4-7

are more complex than the proof of Theorem 8.8. The positive relativization of the
"P =?PSPACE" problem compares two classes specified by deterministic machines;
thus, it is sufficient to guarantee that the sets of queries be generated in the same way.
The same thinking applies to the positive relativizations of the "NP=?PSPACE"
problem, but is more striking since Theorem 8.8.D is the only result here that compares
"ACC.DEP )" classes.

It is clear that for every set D, NP.ALL.DEP (D)c_ PQUERY (D) (since by
Lemma 8.7, PQUERY (D)= NPQUERY.ALL.DEP (D)). Thus, Theorem 8.8 shows
that if NP- PSPACE, then for every set D, NP.ALLoDEP (D)= PQUERY (D). The
results of [5] show that limiting the number of oracle calls does not restrict the power
of nondeterminism in computations, since for every set D, NPQUERY (D) is closed
under nonerasing homomorphism. On the other hand, there exists a set E such that
PQUERY (E) NPQUERY (E), PQUERY (E)= NPQUERY.ALL.DEP (E), and
PQUERY (E) is not closed under polynomial-erasing (even -nonerasing) homomorph-
ism. Thus, the relativization NPQUERY.ALL.DEP (.) does not have the full power
of nondeterminism. Also, if NP PSPACE, then NP.ALL.DEP (E)= PQUERY (E),
so that the relativization NP.ALL.DEP (.) does not have the full power of nondeter-
minism. We state this formally in the following way:

COROLLARY 8.10. Iffor every set D, NP.ALL.DEP D) is closed underpolynomial-
erasing (-nonerasing) homomorphism, then NP PSPACE.

9. The polynomial-time hierarchy. Now we turn to the polynomial-time
hierarchy.

Let D be a set. Define E1l" (D) NP (D), H1e (D) co-Ee (D), and Ae (D)=P (D).
For each i> 0, define /P+I (D) U {NP (E)IE e X (D)}, 1-I/P+I (D) CO-/P+I (D), and
Ai+l (D) U{P (E)]E yr (D)}. Define PH (D) U i>0 :X (D) and PH PH ().

The structure Ele (D),X (D),... is known as the polynomial-time hierarchy
relative to D. See [27], [30].

It is known [4] that there exists a set D such that X’ (D) 5; (D)g X; (D), but
it is not known if there is a set E such that X (E) /P+I (E) for all i; that is, whether
there exists a properly infinite polynomial-time hierarchy. Of course, PH NP if and
only if NP co-NP.

It is the case that for every set D, PH (D)_PSPACE (D), and if PH (D)-
PSPACE (D), then the polynomial-time hierarchy relative to D is finite.

A positive relativization of the "PH =?PSPACE" problem is known [7]. We
review this result here.

Let D be a set. Define Ele (D) NPQUERY (D) and for each i> 0, i+IPQ (D)=
U{NPQUERY (E)IE 6Eei (D)}. Define PQH (D)=U>0 (D).

PROPOSITION 9.1. [7]. PH =PSPACE if and only if for every set D, PH (D)=
PQH (D).

Now we consider connections between the polynomial-time hierarchy and the
operator NP.ALL.DEP and show that the hierarchy obtained by application of
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NP.ALL.DEP determines exactly the class A of the polynomial-time hierarchy.
In contrast, it is not known how many proper levels exist in the polynomial-time
hierarchy.

THEOREM 9.2. For each k >_- 2, NP.ALL.DEP (A) A.
Proof. Clearly, A c__ NP.ALL.DEP (A) for all k. For some k >_- 2 and some A e A[,

let L be in NP.ALL.DEP (A). Corollary 5.6 shows that NP.ALL.DEP (A) c__ p (A K)
so that LP(AK). But for k_->2, KeA so that A@KeA when AeA. This
implies that L e A since P (A)= A. Since k_->2 was chosen arbitrarily, we have
NP.ALL.DEP (A)c_ A for all k _-> 2. lq

Theorem 9.2 provides the basis for a characterization of the classes , k->_ 2, in
the polynomial-time hierarchy in terms of the operator NP.ALL.DEP as opposed
to the operator P ).

COROLLARY 9.3. For each k -> 1, NP.ALL.DEP () A+1.

Proof. It is clear that for all k, A+a c_ NP.ALL.DEP. (;). For each k, c__ A+
so that NP.ALL.DEP ()c_ NP.ALL.DEP (A+I). But for k _-> 1,
NP.ALL.DEP (A+I) A+I by Theorem 9.2 so that NP.ALL.DEP (E)

For each set D, let NP.ALL.DEP (D)=NP.ALL.DEP (D) and for k> 1, let
NP.ALL.DEPk+l (D)= NP.ALL.DEP (NP.ALL.DEPk (D)).

COROLLARY 9.4. For each k >-2, NP.ALL.DEPk (P)- A2P.
Proof. Clearly, NP.ALL.DEP (P) NP ;[. Thus, NP.ALL.DEP2 (P)

NP.ALL.DEP (ziP). By Corollary 9.3, NP.ALL.DEP (ZiP) A so that
NP.ALL.DEP2(P)=A. For each k>2, applying Theorem 9.2 yields
NP.ALL.DEPk (p)= NP.ALL.DEP2 (A)= A2P by induction on k.

Let us consider Corollary 9.4 from a different viewpoint. Consider the smallest
class of languages such that contains the empty set and NP.ALL.DEP ().
The proof of Corollary 9.4 shows that is exactly A2P. In contrast, the least fixed
point for the operator NP is PH, and the least fixed point for the operator P
is P.

Theorem 9.2 also yields interesting information about why nondeterminism is
necessary for recognition in polynomial time of sets in the E levels of the polynomial-
time hierarchy for k_-> 2, assuming of course that the hierarchy is proper through
level k.

COROLLARY 9.5. For each k>=2, if B,P--APk, then for every nondeter-
ministic polynomial time-bounded oracle machine M and every set A in ,Pk_I such that
L(M, A) B, it is the case that for every polynomial p, IIQ(M, A, x)l[ > p(lxl) for
infinitely many x.

Proof. The statement is that if Be;-A for some k>-2, then
B NP.ALL.DEP (E-l). But this follows immediately from Corollary 9.3 since
NP.ALL.DEP (;-1) A[ when k _-> 2. [3

Corollary 9.5 may be interpreted as follows" If B e E-A for some k _>-2, then
all nondeterministic polynomial time-bounded oracle machines which accept B relative
to some set in ;-1 must search through nonpolynomial-size portions of that oracle
set on infinitely many of the accept inputs. Thus, if the polynomial time hierarchy
extends to some level k _-> 2 with A k

P ;, then the hierarchy stands to this level because
the power of nondeterminism is necessary for searching through oracle sets when
accepting sets in EP-AP for 2--<i_--< k.

10. Possible extensions. Here we consider some possible topics for further study.

10.1. Other resource bounds. The techniques developed in 4-9 apply equally
well to classes specified by resource bounds other than just the set of polynomials and
to classes specified by simultaneous bounds on time and space. Positive relativizations
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of some of the questions comparing classes specified by time and space have been
developed previously [6], [23]. Here let us consider other resource bounds.

For every set D, let DEXT (D) (NEXT (D)) be the class of languages accepted
relative to D by deterministic (resp., nondeterministic) oracle machines that operate
in time 2 for some c > 0.

It is not known whether DEXT NEXT or whether NEXT =co-NEXT. There
exist sets A and B such that DEXT (A)=NEXT (A) and DEXT (B) NEXT (B).
Jones and Selman [10] have shown that a language L is in NEXT if and only if L is
the binary encoding of a spectrum, i.e., is the set of cardinalities of the finite models
of a first-order formula (see also [8]). Thus, the question of whether the complement
of each spectrum is itself a spectrum is equivalent to the question of whether NEXT
is closed under complementation. The technique used to study "NP ?co-NP" in 4
is applicable here.

For every set D, let NL (D) be the class of languages accepted relative to D by
nondeterministic oracle machines that operate in linear time. Just as the polynomial-
time hierarchy is defined from NP in 9, one can define the linear-time hierarchy
from NL ). The class RUD Ui>0 NL (b) has been shown by Wrathall [29], [31]
to be an encoding of the rudimentary predicates. The question of whether RUD is
equal to DSPACE (lin), i.e., the class of languages accepted by deterministic machines
that use linear space, is open. For every set D, RUD (D)_DSPACE (lin, D).
Using techniques similar to those in 8 and 9 and in [7], one can show that
RUD=DSPACE(lin) if and only if for every set D, Ui>0NL (D)=
U i>0 {NL (DA)IA DSPACE (lin)}. Again, this question is of interest both because
of the foundational role of the rudimentary predicates and also because DSPACE (lin)
is the class of sets with characteristic functions in the Grzegorczyk class 2.

10.2. Sparse sets. A set D is sparse if there is a polynomial p such that for all
n > 0, II{x Dllxl -< b}ll--< p(n). Mahaney [20] has shown that P= NP if and only if
there is a sparse set that is NP-complete. Further, Long and Selman [18] have shown
that for every k => 2 Z H if and only if for every sparse D, E(D)= H(D).

Consider the result of Mahaney mentioned above along with the result of Theorem
5.3C: P NP if and only if there is a sparse set that is NP-complete if and only if for
every set D, P (D) NP.ALL.DEP (D). On the one hand, every sparse set is "small,"
and on the other hand, if M witnesses L NP.ALL.DEP (D), then for all x, Q(M, D, x)
is "small." We suggest that there may be formal connections between the restricted
relativizations considered here and arbitrary relativizations relative to sparse oracles.

10.3. Structural properties of complexity classes. In addition to inclusion relation-
ships between complexity classes, structural properties of complexity classes have
recently been studied via relativizations. Sipser [26] has constructed an oracle A for
which NP (A)fq co-NP (A) has no complete set. There are several constructions [9],
[22] of oracles B such that NP (B) has P (B)-immune sets, i.e., infinite sets in NP (B)
which have no infinite subsets in P (B). Of course, for any oracle C such that
P (C)= NP (C), NP (C) contains no P (C)-immune sets. The original construction of
Baker, Gill and Solovay [3] described a set D such that NP (D)-P (D) contains a
sparse set. On the other hand, Kurtz [13] has shown the existence of an oracle E such
that NP (E)-P (E) contains no sparse sets.

Such results naturally suggest the development of positive relativizations of struc-
tural properties of complexity classes. We conjecture that NP contains P-immune sets
if and only if for every set A, NP.ALL.DEP (A) contains P (A)-immune sets. Perhaps
it is the case that NP-P contains a sparse set if and only if NP.ALL.DEP (A)-P (A)
contains a sparse set for some set A.
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10.4. Eltectively enumerable reducibilities. There seems to be yet another differ-
ence between the standard polynomial time-bounded oracle machine model and the
relativizations studied here that is worth drawing out. As we have noted earlier, every
relativization R determines a reducibility _-<n, and, conversely, every reducibility
<=n determines the relativization given by forming the -<n-reduction classes, e.g.,
R (D) {A[A <=n D}. If __<n is a deterministic polynomial time-bounded reducibility
and is a class of deterministic oracle machines, we will say that defines <__n if
A_-<nD if and only if A_-<nD by means of a machine in t. Similarly, if _<n is a
nondeterministic polynomial time-bounded reducibility and is a class of nondeter-
ministic oracle machines, /defines <=n if A-<_nD if and only if A-<PD by means
of a machine in . A set of oracle machines is effectively enumerable if is the
range of some total recursive function. A reducibility _-<n is an effectively enumerable
reducibility if there is an effectively enumerable set of machines that defines __<n.

To illustrate, the set - of all deterministic oracle Turing machines that operate
in polynomial time defined < -, but - is not effectively enumerable. Nevertheless, < P

--T

is an effectively enumerable reducibility because the class of all deterministic oracle
machines that have polynomial time clocks is effectively enumerable and defines < P

---y

In this paper we have defined a number of relativizations by placing semantic
conditions on the computation trees of their defining machines. Although they are
open questions, we suspect that

NP.ALL NP.ACC NP.ALLoDEP NP.ACCoDEP P.ALL P.ACC

NPoUNIF.ALL and __< NPoUNIF.ACC

are not effectively enumerable. It is easy to see that
PoUNIF.ALL and <= PoUNIF.ACC

are effectively enumerable.
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CONVEX PARTITIONS OF POLYHEDRA:
A LOWER BOUND AND WORST-CASE OPTIMAL ALGORITHM*

BERNARD CHAZELLE’

Abstract. The problem of partitioning a polyhedron into a minimum number of convex pieces is known
to be NP-hard. We establish here a quadratic lower bound on the complexity of this problem, and we
describe an algorithm that produces a number of convex parts within a constant factor of optimal in the
worst case. The algorithm is linear in the size of the polyhedron and cubic in the number of reflex angles.
Since in most applications areas, the former quantity greatly exceeds the latter, the algorithm is viable in
practice.

Key words. Computational geometry, convex decompositions, data structures, lower bounds, polyhedra

1. Introduction. The general problem of decomposing complex structures into
simpler components has received a great deal of attention recently [1], [4], [5], [8].
The reason for this concern comes partly from the impossibility of applying many of
people’s favorite geometric algorithms to nonconvex structures. Often, decomposing
the structures into convex parts and applying the algorithms to each part is one way
to overcome this difficulty. For example, intersection I-2] and searching problems [9]
can be solved efficiently by means of convex decompositions. One of the forefathers
of decomposition algorithms is Garey et al.’s algorithm I-4] for partitioning an n-gon
into triangles in O(n log n) time. Minimality considerations were addressed later on
in [1], where an O(n +N3) time algorithm was given for decomposing an n-gon with
N reflex angles into a minimum number of nonoverlapping convex pieces. Several
variants of this problem were shown to be NP-hard [8]; in particular, the generalization
of the problem to polygons with holes [5]. This result was to be used as a stepping
stone to prove that the following problem was NP-hard.

Given a three-dimensional polyhedron P, what is the smallest set ofpairwise disjoint
convex polyhedra, whose convex union is exactly P?

This paper is devoted to this problem, and is organized along the following lines:
in 2, we present the basic concepts and outline an effective method for decomposing
an arbitrary polyhedron into convex pieces. Let n and N designate respectively the
size of the input and the number of reflex angles into the polyhedron. We prove that
the algorithm never produces more than approximately N2! 2 convex pieces. We show
in 3 that this figure is optimal in the worst case up to within a constant factor. To
do so, we exhibit a polyhedron P with an arbitrary number of reflex angles N and
n O(N) vertices, and we prove that P necessarily has 12(N2) convex parts. Of course,
by a trivial output size argument, this result also establishes a quadratic lower bound
on the time complexity of the decomposition problem. Finally in 4, we give the
details of the algorithm outlined at the beginning.

Before proceeding, we shall set our notation. We define a three-dimensional
polyhedron as a finite, connected set of simple plane polygons, such that every edge
of each polygon belongs to exactly one other polygon. To exclude degenerate cases
(e.g., two cubes connected by a single vertex), we also require that the polygons
surrounding each vertex form a simple circuit [3, p. 4]. Note that this definition does

* Received by the editors May 17, 1982, and in revised form July 21, 1983. This work was partly
supported by a Yale fellowship and by the Defense Advanced Research Projects Agency under contract
F33615-78-C-1551.

" Department of Computer Science, Brown University, Providence, Rhode Island 02912.
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not prevent faces from having holes (Fig. l a). A face with k holes is said to be of
genus k. Similarly, polyhedra may have holes (i.e., handles), and we define the genus
of a polyhedron as the genus of the surface formed by its boundary [6]. It follows
from the definition that a polyhedron may not have interior boundaries.

Let P be a polyhedron with n vertices vl," , vn, p edges el,. ., ep, and q faces
fl,’",fq. A necessary condition for vertices, edges, and faces to be adjacent is to
have at least one point in common. For simplicity, however, we will say that a face
and an edge or two faces are adjacent if and only if they share an entire line segment.
If T and U are two adjacent faces intersecting in a segment L, we define the angle
(T, U) as the angle between two segments lying respectively on T and U and perpen-
dicular to L. Recall that there is no natural orientation of angles in Euclidean space.
Thus, to avoid ambiguity, the angle (T, U) will always be measured between 0 and
360 degrees with respect to a.given side of the pair T, U. Noticing that each face of
P has an outer and an inner side, we define a notch of P as an edge with its adjacent
faces forming a reflex angle (i.e. > 180 degrees) with respect to their inner side (Fig.
l b). Let gl,..., gN denote the notches of P.

(a) (b)
FIG. 1. a) A face of a polyhedron with a hole in the middle, b) A notch of a polyhedron.

2. The basic method. It is easy to see that the presence of notches in a polyhedron
is characteristic of its nonconvexity [3, p. 4]. Thus we can view a convex decomposition
of P either as a partition of P into convex polyhedra or as a set of cuts performed
through P in order to resolve the reflex angles at its notches. This suggests a naive
decomposition algorithm, which we proceed to describe next.

2.1. The naive decomposition. Informally, a notch can be removed by cutting
along a plane adjacent to it so as to resolve the reflex angle between its adjacent faces.
More precisely, let g be a notch of the polyhedron P with fi and f its adjacent faces,
and let T be a plane which contains g and resolves its reflex angle, i.e., such that both
angles (fi, T) and (T, f), as measured from the inner side of j and ), are not reflex.
The intersection of T and P is in general a set of polygons. These polygons may have
holes and the holes may themselves contain other polygons (Fig.lla). Let S be the
unique polygon containing g. We call S a cut of the naive decomposition. It is clear
that cutting along S will remove the notch g. Note that, in general, this operation will
break P into two pieces. If P has a nonzero genus, however, removing a notch may
simply cut a handle of P and preserve its connectivity. In this case, the polyhedron
obtained has two distinct faces with the same geometric location (Fig. 2a). Other
intriguing effects may be observed and it is worthwhile to mention some of them.

If the polygon S has holes, removing g may create a handle in either of the two
parts produced (Fig. 2b). Therefore the added genus of all the pieces produced thus
far will increase by one. We also observe that the operation may produce one piece,
while removing a handle and creating another handle (Fig. 2c). We will thus treat the
more general case where the polyhedron P may have arbitrary genus, since the naive
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(a)

genu

(b)

(c)

FIG. 2. Removing a notch.

decomposition may produce intermediate objects of higher genuses. In spite of these
intricacies, we can easily show that repeating the cutting process on each remaining
nonconvex part will eventually produce a convex decomposition in a finite number of
steps. To find out how many convex parts such a decomposition may generate, we first
observe that, at any time, any notch of a part is either a notch of P or the subsegment
of a notch of P, called a subnotch. This follows from the fact that a cut may intersect
other notches, thus duplicating them (Fig. 3). Note, however, that no new notch is
ever created. At worst, each cut may intersect all of the other notches or subnotches
present in the polyhedron considered. If f(N) is the maximum number of cuts which
a complete decomposition may necessitate, we have f(0)= 0, and

f(N)<=2f(N-1)+l.

Therefore, at most 2N- 1 cuts are needed, which shows that the procedure will always
converge and produce at most 2N convex parts. Unfortunately, as shown in [1], this
scheme may indeed produce an exponential number of pieces, so an alternate method
is in order.

Subnotches

FIG. 3. The duplication of notches.

LEMMA 1. There exist two constants a, b and a class ofpolyhedra P(n) with O(n)
vertices, such that for any n > a, the naive decomposition applied to P produces at least
2bn convex parts.

Proof. See [1 ].

2.2. The naive decomposition revisited. To avoid an exponential blow-up in the
number of pieces, we will remove all the subnotches of each notch with coplanar cuts.
This will ensure that all the cuts used in the removal of a notch duplicate a total of at
most N- 1 other notches, leading to an O(N2) upper bound on the number of convex
parts. More precisely, let us define for each notch gi a plane Ti that resolves its reflex
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angle. We proceed as before, with the additional requirement that the cuts of each
subnotch of gi should be coplanar with Ti.

TI-IEOREM 2. The revised naive decomposition algorithm applied to P yields at most
N2/2 +N2+ 1 convex parts.

Proof. We can assume that all the subnotches of a notch are removed consecutively.
Since the cuts corresponding to the subnotches of g are coplanar, their union intersects
every other notch in at most one point. It follows that, at the ith step, each remaining
notch will have been broken up into at most i+ 1 subnotches, and step i+ 1 will
introduce at most + 1 polyhedra into the decomposition. [3

In the last section of this paper, we will describe an effective method for carrying
out the naive decomposition. But first we will establish a lower bound on the size of
any convex decomposition.

3. A quadratic lower bound on the number of convex parts.
3.1. Introduction. The algorithm described above produces O(N2) convex parts,

thus saving us from an exponential blow-up. We may yet wonder whether O(N) parts
is not always achievable, as is the case in two dimensions [1]. We next tackle this
problem and prove that this O(N2) upper bound is indeed tight. To achieve our goal,
we must exhibit a class of polyhedra which cannot be decomposed into fewer than
cN2 parts. The technique used to derive this lower bound is based on volume consider-
ations. We define a portion Z of the polyhedron P and, observing that a decomposition
of P also realizes a partition of 5:, we study the contribution of each convex part to
this partitioning. The crux is to show that a convex part can only have a small piece
lying in Z, and therefore lots of convex parts are needed to fill up Z. To realize this
condition, we must carefully design Z, giving it a warped shape so that its intersection
with any convex object can never occupy too much space. The fact that Z must be
defined by means of straight lines suggests giving it the shape of a hyperbolic paraboloid.
Recall that this surface can be generated by two sets of orthogonal lines [11, p. 649].

The main idea can be summarized as follows: Z has thickness e so that its volume
is approximately eN2. The warpness of a hyperbolic paraboloid will then ensure that
since Z is bounded by notches, the "chunk" of : removed by any convex piece can
only be very small, i.e. have volume e. As a result at least (N2) convex parts will be
necessary to decompose Z.

3.2. Description of the polyhedron P. P is essentially a rectangular parallelepiped
with a series of N+ 1 notches cut through the lower face and N+ 1 similar notches
cut through the upper face (Fig. 4a, b). The two faces adjacent to any notch form a
very small angle and, for our purposes, can be regarded as a single vertical quadri-
lateral. Thus, we have N+ 1 such quadrilaterals emanating from the lower face, all
of which are vertical, parallel to the plane Oxz, and equidistant. The upper edges of
these quadrilaterals are called the bottom notches of the polyhedron P, and are
designated BOTO,. , BOTN in ascending Y-value. To achieve the desired warping,
all the bottom notches lie on the hyperbolic paraboloid z xy. The N+ 1 quadrilaterals
emanating from the upper face of P are parallel to the plane Oyz and satisfy the same
specifications. Similarly, their lower edges are called the top notches of P and are
designated TOPO,..., TOPN in increasing X-order. All these notches lie on the
hyperbolic paraboloid z xy+ e. We now give a more precise definition of P by
characterizing its significant vertices with the system of axes indicated in Fig. 4b. Note
that the origin O is the intersection of BOTO with the vertical plane passing through
TOPO. The upper face of the parallelepiped lies on the plane z 2N2 and its lower
face, on the plane z =-2N. This ensures that all bottom and top notches fit strictly
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(a)

o/( o a. .i. b

FZG. 4. The polyhedron P.

between these two faces. Also the parallelepiped has a depth and width of N+ 2. Fig.
4c gives all the coordinates of the top and bottom notches.

3.3. Decomposing P into convex parts. We define E as the portion of P comprised
between the two hyperbolic paraboloids z xy and z xy/ e and the four planes
x 0, x N, y 0, y N. E is a cylinder parallel to the z-axis, of height e, whose base
is the region of the hyperbolic paraboloid z xy with 0<_-x, y_-<N (Fig. 5). Let
Q1," ", Q, be any convex decomposition of P and let Q* denote the intersection of
Qi and :. Since : lies inside P, the set of Q* forms a partition of :. Note that Q*
may consist of 0, 1, or several blocks, most of which are likely not to be polyhedra.
Our goal is to prove that m >-cN2 for some constant c, by showing that the volume
of Q* cannot be too large. By volume of Q*, we mean the sum of all the volumes of
the blocks composing Q*. We first characterize the shape and the orientation of the
large Q/*’s, which permits us to derive an upper bound on their maximum volume.

FIG. 5. The warped region



CONVEX PARTITIONS OF POLYHEDRA 493

For all between 0 and N, let BOTi* (resp. TOPi*) denote the vertical projection
of BOTi (resp. TOPi) on the plane Oxy. The set of all BOTi* and TOPi* forms a
regular square grid of N2 cells, each cell being itself a one-by-one square. Consider
the two points A" (XA, YA, ZA) and B: (xn, yn, zn) lying in Of. We will investigate their
possible positions when their vertical projections on the grid lie on two parallel lines
which are at a distance 2 of each other. Wlog, we will assume that XA <= Xn. We have
the following result.

LEMMA 3. Let A and B be two points of Of.
1. If XA is an integer with 0 <= <= N- 2 and xn XA + 2, then yn YA <- 2e.
2. If YA is an integer with 2 <= <= N and yn YA- 2, then xn XA <= 2e.
Proof. Recall that the lines supporting BOTi and TOPi are defined respectively

by (y i, z ix) and (x i, z iy + e).
1. Let the coordinates of A and B be respectively (XA i, YA, ZA) and (xn i+

2, yn, zn) with 0_-<i=< N-2. Let T be the middle point of the segment AB, (x +
1, Yr (YA + yn)/2, Zr (ZA + Zn)/2, and consider the point C on TOPi + 1 with coor-
dinates (Xc xr, Yc Y, Zc XcYc + e). Since 0 is convex, the whole segment AB
lies in O and T lies inside P, therefore z <= Zc. Also, since A and B lie in , XA YA <= ZA
and xnyn <= zn, therefore (XAYA + xnyn)/2 <= Z. Combining these results yields (XAYA +
xnyn)/ 2 <= ZC, therefore

iyA +(i + 2)yn <= 2(e +(i + 1)(yA + yn)/2),

hence

Y- Ya -<- 2 e.

2. The proof is very sirn.ilar. The coordinates of A and B are respectively (x, i, ZA)
and (xn, i-2, zn) with 2 <=iNN. The middle point of AB is now defined by T: (xr
(x + xn)/2, yr i-l, Zr=(ZA + Zn)/2) and lies right above the point of BOTi-1,
C" (Xc xT-, Yc Yr, Zc XcYc), therefore Zc <-- zr. Since both A and B belong to., ZA N XAYA q- e and zn <= xnyn + e, therefore

2(i- 1 )(XA + Xn)/2 <= 2e + iXA + i-- 2)XB

and

XB--XA<2e
which completes the proof.

When A is now any point in E with 0-< XA -< N-2 and 2 _-< YA <----N, we can still
use the previous result to delimit the region where B cannot lie. The shaded area in
Fig. 6 represents the forbidden area. Assume that x- [XA > 2 and let A’ and B’ be
the two points on the segment AB with XA’ [XA and x, XA’ + 2. Since A’ and B’
lie in Q, we can apply the result of Lemma 3 on these two points. It follows that
YB’- YA’ <= 2e, therefore

Yn YA Yn’- YA’ <= e.
XB XA XB,-- XA,

This shows that B must lie under the line y= YA-t-e(X--XA) as indicated in Fig.
6. Similarly, we can show that if [YA] --Yn > 2, B must lie on the left-hand side of the
line x XA + e(yA-- y).

We can now attack our main problem, that is, evaluating the maximum volume
of Q. Recall that Q} may be empty or consist of several blocks. Let A be the point
of Q with minimum X-coordinate. We will assume that A does not lie too close to
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BOT

BOT 0"
TOP 0 TOP ’1

FG. 6. The forbidden area.

BOTO or TOPN in order to have the points B and C of Fig. 7 well defined. More
precisely, we require that

O<XA <N-2, 2< yA <N--3e.

Fig. 7 is only a reproduction of Fig. 6, specifying the regions of interest with respect
to A. Note that VA, VB, and VC really denote the intersection of ; with the vertical
cylinders whose bases are represented by the shaded areas in Fig. 7. We know that
O] lies entirely in the union of VA, VB, and VC. So we can partition O’ into 3 parts,
VA1, VB1, and VC1, defined respectively as the intersection of O’ with VA, VB,
and VC.

BOTN

TOPO*

TOPN*

u x BOTO*
FIG. 7. Restricting the domain where Q has to be computed.

I) Evaluating the volume of VA1. When there is no ambiguity, we will refer to
a three-dimensional object and to its volume by using the same symbol (in this case
VA1). To derive an upper bound on the volume VA1, we integrate a vertical section
of VA1 along a direction "almost" parallel to Y-axis. This permits us to exploit the
warping of in order to bound the area of the section, while having a very short
interval of integration. More precisely, let Pw be the vertical plane (Pw: Y x tan 0 + w),
and S(0, w) the area of the cross section formed by the intersection of Pw and VA1.
The volume of VA1 can be computed by integrating S(O, w) along a line normal to
the planes Pw.

VA1 f S(O, w) cos 0 dw.



CONVEX PARTITIONS OF POLYHEDRA 495

If we choose 0 larger than (Ox, AB) (Fig. 7), all values of S(0, w) will be null outside
of A and D, that is, for"

w > WA YA- XA tan 0

and

w < wo Yo- xo tan 0.

Letting S(O) be the maximum value of S(O, w) for all w, we have

VA1 <= WA wo)S( O) cos 0

and from YA- 3 <--YI and xo N, we derive

(1) VAI <=(3+N tan O)S(O)cos O.

The condition on 0 is easily expressed as

(2) e < tan 0.

We are now reduced to establishing an upper bound on S(0, w). We will find it more
convenient to change the system of coordinates so that the point (0, w, 0) becomes
the new origin and the line (z 0, y x tan 0 + w) becomes the new X-axis. We express
the old coordinates (x, y, z) of any point in terms of the new coordinates (X, Y, Z) as
follows:

x X cos 0- Y sin 0,

y= w+X sin 0+ Ycos 0,

The hyperbolic paraboloid z xy is now described by the equation:

Z (X cos 0 Y sin 0) w +X sin 0 + Y cos 0)

and the intersection of Pw with is a strip in the plane (Y 0) comprised between
the two parabolas:

(f): Z X2 sin 0 cos (9 + Xw cos (9,

(g): Z X2 sin (9 cos 0 + Xw cos (9 + e.

Before proceeding further, we will prove a technical result about areas covered
by parabolas. Suppose that we have two parabolas of the previous type, described by
f(x) ax2 + bx with a > 0, and g(x) f(x) + e. Let T(x) be the area comprised between
the parabola f and the tangent to g at x (Fig. 8). We can show the following

g(x f(x)

T(x)

FIG. 8. The function T(x).
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LEMMA 4. T(x) is a constant function equal to 4ex/-/a/3.
Proof. The tangent to g at x has the equation:

Y (2ax + b)(X- x) + axz + bx + e

and intersects the parabola f at the points with X-coordinates Xl and x2, solutions of

(2ax + b)(X- x) + ax2 + bx + e aX2 + bX

that is,

aX2- 2axX + ax2- e 0

yielding Xl- x-x/e/a and x2-x+x/e/a. It is now straightforward to evaluate T(x).

T(x)= f [(2ax+b)(t-x)+ax2+bx+e-at2-bt] dt

that is,

therefore

T(x) (x2- Xl)(e ax2 + ax(xl + x2)- a(x+ XlX2 + x.)/3)

T(x) 4ex/e/ a/ 3,

which establishes the proof.
We will now take a closer look at the structure of the parabolic strip formed by

the intersection of ; and Pw which, we know, contains S(0, w). Here again, S(O, w)
designates both the surface and its area. Recall that S(O, w) may consist of several
disconnected pieces. The intersection of Pw and is a connected strip enclosed between
two vertical lines X a, X b (the exact values of a and b are irrelevant for our
purposes). Also, as illustrated in Fig. 9a, the upper parabola of this strip, g, intersects
the top notches, TOPk, at regular intervals of length 1/cos 0. Let F denote the convex
polygon formed by the intersection of Q. and Pw. Assuming that F is not empty, we
distinguish two cases:

1) No point of F lies above the parabola g (Fig. 9b).
Since F is convex, there exists a line L separating g and F. Since L’, the tangent

to g parallel to L, also separates g and F, the X-coordinate, u, of the tangent point
satisfies S(0) -< T(u).

2) There exists a point M in F lying above g (Fig. 9c).
Using the notation of Fig. 9c, it is clear that S(O, w) lies totally in L U C U R.

Since the areas of L and R are dominated by T(Xk)= T(Xk+I), and the area of C is
exactly e/cos 0, we have

S(O, w)<--2T(Xk)+e/cos O.

From Lemma 4, it follows that

S 0, w) =< e/cos 0 + ex/e / sin 0 cos 0.

And from (1), we derive

VA1 <= e(3+N tan 0)(1 +-x/e/tan 0).

II) Evaluating the volume of VC1. Since the hyperbolic paraboloids are sym-
metric about x and y, the same computation will give an upper bound on VC1. Note
that now, no condition like (2) must be set on the angle giving the direction of
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(a)

(b)

(c)

Z

I/cos

FIG. 9. Evaluating S( O, w).

integration. For convenience, we will take it equal to 0, however. Thus, we have

VC1 <-_ e(3 +N tan 0)(1 +/e/tan 0).

III) Evaluating the volume of VB1. The shaded area of Fig. 7 corresponding to
VB has a maximum area of eN2/2, therefore the volume of VB is dominated by
eZN2/2. This yields an upper bound on VB1

VB1 <= eZN2/2.
3.4. The lower bound on the number of convex parts. We can now prove our

main result.
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THEOREM 5. There exist a constant c and a class of polyhedra involving an
arbitrarily large number of vertices such that each polyhedron cannot be decomposed
into fewer than cn 2 convex parts, where n is the number of vertices.

Proof. Recall that the volumes computed in the previous section are only relevant
for the points A satisfying

0<2A <N-2 and 2<ya<N-3e.

Let V be the corresponding portion of . We have

V=(N-2)(N-3e-2)e.

Since no Oj can contribute more than VA1 + VBI+ VC1 to the volume V, we can
derive the following lower bound on the number m of convex parts Oj.

V
VA1 + VB1 + VCI"

Assume that N is large enough and that e < sin 0 < tan 0 < 1/N2. Relation (2) is then
satisfied, and we have

VA1, VC1 < (1 +)(3 + 1/N)e < 16e.

Also, since

V > eN2/2
it follows that

m > eN2/2(32e + e2N2/2),
hence

m > N2/66
which completes the proof.

4. The decomposition algorithm. We give a precise description of the decomposi-
tion algorithm outlined in 2. We will show that it is possible to decompose P into
O(N2) pieces in O(nN2(N+ log n)) time, using O(nN2) storage. We will also indicate
that at the price of added complication, we can reduce the running time to O(nN3).

The first issue to investigate is the mode of representation used for describing a
polyhedron. Since many practical problems involve dealing with faces rather than
edges or vertices, we may assume that the edges enclosing a given face are readily
available. More precisely, we require the data structure chosen to provide three types
of lists:

1. Edge-to-face lists: contain the names of the two faces adjacent to each edge.
2. Face-to-edge lists: give the sequence of edges enclosing each face in clockwise

order.
3. Adjacency lists: provide a set of the vertices adjacent to each vertex.
Note that the faces of a nonconvex polyhedron may be polygons with holes. In

that case, each face-to-edge list should provide clockwise descriptions of the outer as
well as of the inner boundaries. We call a graph representation of a polyhedron any
representation providing the above lists. We may notice that these representations are
redundant, but they are chosen to be so for the sake of simplicity. These lists reflect
the size of the polyhedron accurately, however, since they clearly require O(p) storage.
Recall that p is the number of edges in P.
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Because decomposing P consists essentially of dividing it up with successive cuts,
we first consider the problem of computing graph representations for the two polyhedra
P1 and P2 into which a cut S breaks up P. For the time being, we will assume P to be
of genus 0. In the following, we will successively show I) how to compute the intersection
of T and P, II) how to obtain S from it, and III) how to compute the two polyhedra
P1 and P2. But before proceeding we need to take a closer look at the problem and
prove a preliminary result.

Let e be the edge through which the cut is performed. We first compute W, the
intersection of P with the plane supporting S. W may consist of a set of polygons with
holes, which may themselves contain polygons of the same nature. We identify S as
the unique polygon which contains the edge e (Figs. 2, 11). Whereas it is immediate
to compute a description of the outer boundary of S, obtaining the inner boundaries
(if any) requires more work. Viewing W as a set of nonintersecting boundaries, we
first determine all the boundaries in W which lie inside the outer boundary of S, thus
forming a set W*. Next, we keep all the maxima of W*. A boundary is said to be a
maximum if it is not contained in any other boundary. We can show that the two
problems are very closely related, and that an algorithm for solving one can easily be
modified to handle the other.

LEMMA 6. All the maxima of a set W of boundaries can be found in O(n log n)
time, if n is the total number of vertices in W.

Proof To begin with, we should note that the nonintersection of the boundaries
of W implies that W always has at least one maximum. The method which we will
describe is inspired from Shamos and Hoey’s algorithm for intersecting pairs of segments
[10]. The crucial observation to make is that the intersection of a vertical line L with
the maxima of W forms a set (possibly empty) of disjoint segments. The endpoints of
each segment lie on some edges of W, and the vertical line L induces a total ordering
R on the set JE of these edges. JE consists exactly of all the edges of maxima which
intersect L (Fig. 10a). We say that two edges of JE, consecutive with respect to R, are
linked if the vertical segment joining them lies in a maximum of W. Note that
consecutive pairs of edges in R are alternately linked and not linked. For any point
v of L, we define h(v) (resp. l(v)) as the first edge in E above v (resp. below v). If
no such edge exists, h(v) or l(v) is 0 (Fig. 10a). The notion of above and below is, of
course, defined with respect to the vertical line L. Similarly, the order of two edges
of W is defined with respect to a common intersecting vertical line. Actually, this
order is the same for any vertical line since the edges of W can intersect only at their
endpoints. If v is the leftmost vertex of a polygon P of W, P is a maximum if and only
if h (v) and l(v) are not linked. This condition is clearly necessary since, if h (v) and
l(v) are linked, they belong to the same polygon, which cannot be P since v is its
leftmost vertex. To see that it is sufficient, assume that P is not a maximum; then
there is a unique maximum O in W which contains P, and O must intersect the vertical
line passing through v, therefore the intersection is a segment containing v and the
pair h(v), l(v) must be linked.

The algorithm proceeds as follows: we sweep a vertical line from left to right,
passing through each vertex v in W. The vertices are maintained in sorted order (by
X-values) in a set O. We first check if v is the leftmost vertex of a polygon P of W.
If it is, we can decide immediately if P is a maximum by finding whether h(v) and
l(v) are linked. If they are, P is not a maximum and all its vertices are deleted from
O. Otherwise, P is a maximum. Actually, since nonmaxima are removed as soon as
their leftmost vertex is encountered, the polygon containing v is a maximum in all the
other cases (i.e., when v is not a leftmost vertex). Then we can simply update the
ordering R with the functions insert and delete, as well as the linked pairs with the
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(a)

(b)

Linked edges: (ul, u2),
(u3, u4),
(us, u),
(u, u).

h(v)=u
l(v)=u3

case I:

case 4:

case 2:

case

case 3:

case

FIG. 10. a) The ordering R. b) The algorithm for computing maxima.

functions link and unlink. This is fairly straightforward and the algorithm we next
present is self-explanatory.

MAXIMUM(W)
Q Set of vertices in W stored in order
by x-values.
R-o
tot all v in Q (in ascending x-order)

begin
Let P be the polygon to which v belongs.
it v is the leftmost vertex of P
and h(v), l(v) are linked
then "P is not a maximum"

delete all vertices of P from Q
else "P is a maximum"

UPDATE(R, v)
end

UPDATE(R, v)
Let a, b be the two edges adjacent to v.
Switch to the case corresponding to Fig. 10b.
case 1:

insert a ), insert (b)
unlink (h(v), l(v))
link h (v), a
link (b, l(v))
break
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case 2:
insert a ), insert (b)
link (a, b)
break

case 3:
delete a ), delete (b)
unlink (a, b)
break

case 4:
delete a ), delete (b)
unlink h (v), a
unlink (b, l(v))
link (h(v), l(v))
break

case 5:
delete a ), insert (b)
unlink a, (v)
link (b, l(v))
break

case 6:
delete a ), insert (b)
unlink (h (v), a)
link (h(v), b)
break

Note that when the algorithm terminates, only the vertices of maxima will remain
in Q, thus the maxima can be obtained from O in O(n) time. To implement the
algorithm efficiently, we can store O as a doubly-linked list with random-access to the
nodes, thus allowing constant time deletions. R can be maintained as a balanced tree,
so that the functions h, L, insert, and delete perform in logarithmic time. Link(u, v)
will simply set two pointers, one from u to v, and the other from v to u, while
unlink(u, v) will remove these pointers. With this implementation, the algorithm
requires O(n log n) time. Note that all the preprocessing needed involves sorting the
vertices by X-values and computing the leftmost vertices, all of which also takes
O(n log n) time. [3

We can now turn back to the problem of dividing up a polyhedron P. Recall that
the intersection of P with the plane T supporting the cut S is in general a set of
polygons. These polygons may have holes which may themselves contain other polygons
of the same kind. We first compute S, from which we derive P and P2.

I) Computing the intersection of P and T. Consider each face F of P in turn and
report all the edges of F which intersect the plane T, yet do not lie in T. This includes
all the edges of the inner and outer boundaries. Let a,. , a denote the intersections
of T with these edges, as they appear in sorted order on the line supporting the
intersection of F and T. Call u the edge of F intersecting T at a. Observing that the
intersection of T and F is made up of the segments aa2,"’, a_a (Fig. l lb), we
set two pointers for each pair (u2-, u2); one from uz_ to u2 and the other from
u2 to u2-. Iterating on this process for all faces of P will eventually provide
doubly-linked lists for all the boundaries of the polygons of the intersection of P and
T. Let U denote this set of boundaries. Since each edge is considered at most twice,
all these operations take O(p) time, except for the sorts, each of which requires
O(p log p) time, where Pl is the number of edges intersecting T involved in the face
considered. Since each edge appears on two faces, the sum of all the p is less than or
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(a)

end

FIG. 11. a) A cut S. b) The edges of S.

equal to 2p’, which leads to an O(p’ log p’) running time (similarly, p’ is the number
of edges of P intersecting T). Note that the conversion of the doubly-linked lists of
ui into lists of ai is straightforward in general. Some special cases may yet be encoun-
tered, when ai is the endpoint of u and several edges are adjacent to a. It is easy to
see, however, that those cases can be handled separately without altering the total
running time of the algorithm, which is O(p+p’ log p’).

II) Computing S. To begin with, we determine the outer boundary of S, denoted
S*, by identifying the boundary in U which contains the edge e. To find the inner
boundaries is somewhat more involved. We first form the subset W of U consisting
of all the boundaries which lie inside S*. To do so, we can use a variant of the algorithm
MAXIMUM used in the proof of Lemma 6.

Q is still the set of all vertices in U, ordered by X-values. The ordering R, however,
will now involve the edges of S* only. As before, the main loop sweeps a vertical line
left-to-right passing through each vertex in Q. If v belongs to S*, we simply maintain
the ordering R with the function UPDATE defined earlier. Otherwise, we observe
that the boundary in U which contains v lies inside S* if and only if h(v) and l(v)
are distinct from 0 and are linked. Thus, we know whether a boundary belongs to W
or not as soon as we examine its leftmost vertex. To make the algorithm more efficient,
we can thus delete all the vertices of the boundary from Q, after examining its first
vertex. Like its look-alike, MAXIMUM, this algorithm requires O(k log k) time,
where k is the total number of vertices in Q. Since each of these vertices corresponds
to a distinct edge of P, the running time is O(p’ log p’).

Q Set of vertices in U sorted by x-values.
R W Empty set.
for all v in Q (in ascending x-order)

begin
if v belongs to S*

then UPDATE (R, v)
else Let B be the boundary in U

containing v.
delete all vertices of B from Q.
if h (v) and l(v) are not 0
and are linked
then "v lies inside S*"

W=WU{B}
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We are now ready to apply the result of Lemma 6 to the set W. This will give us
exactly all the inner boundaries of S, with a total running time of O(p’ log p’).

III) Computing P1 and P2. The last step is to compute a graph representation of

P1 and P2. This is a trivial graph transformation, and we only sketch out the procedure.
Let Adj (w) be the adjacency list of the vertex w in the graph representation of P.
Also, call E the set of edges of P passing through the vertices of S. We can assume
E to be readily available, since the edges in E must be determined in order to compute
S. Let w be an endpoint of some edge in E. Defining P1 as the polyhedron cut by S
that contains w, we next show how to compute P in O(p) time.

1) Adjacency lists of P1. For each edge ab of E which does not lie on T, let v
be the unique vertex of S lying on ab. We can always assume that a lies on the same
side of T as w, that is, is a vertex of P whereas b is a vertex of P2. If v is distinct
from a, we replace b by v in the list Adj (a) and delete the list Adj (b). If v a, we
simply delete b from Adj (a) as well as the list Adj (b). Repeating these operations
for all the edges of E which do not lie on T has the effect of disconnecting P1 from
P2. Then, a depth-first search in the resulting graph of P, starting at w, will provide
all the vertices of P1. All the adjacency lists of the vertices common to P and P1 have
already been updated. Finally, since we have a doubly-linked-list description of the
boundaries of S, we can set up the adjacency lists of the new vertices, that is, the
vertices of P1 lying on S. All these operations require O(p) time.

2) Face-to-edge lists of P1. Since the previous lists provide the set of vertices of
P1, we first remove all the faces of P made up entirely of vertices not in P1. Then,
since all the faces of P intersecting S have been previously determined, it is easy to
compute a description of the parts of those faces which lie in P1. Let F be such a face,
with a,.-., ak being the vertices of S lying on F. Recall that a,..., ak have been
computed in sorted order (Step I). We may assume that the boundaries of F are
represented by doubly-linked lists with the nodes representing the vertices. Letting ui
be the edge of F passing through ai and b be the endpoint which lies on the same
side of T as w, we first delete from the lists all the vertices lying strictly on the other
side of T, then we enter the vertices a into the lists by linking both ways bi and ai as
well as azi-1 and azi (Fig. 12a). Note that we can always assume that ui does not lie
on T, which ensures that b is always well-defined. The result of these operations may
produce several disconnected lists, since F may be broken up into several faces of P1.
Finally, if F has some edges lying on T, the algorithm may produce lists consisting of
two vertices, and these degenerate cases should be removed in a postprocessing stage
(Fig. 12b). Finally, the face-to-edge lists of S (which have already been computed)
must join the set of face-to-edge lists of P. Once again, all these operations will take
O(p) time.

3) Edge-to-face lists of P. These lists can be obtained in O(p) time by scanning
through the face-to-edge lists once and recording the faces next to each of their
boundary edges.

The computation of P and P2 is now complete. We conclude:
LEMMA 7. A polyhedron P of genus 0 can be partitioned with a cut in time

O(p + p’ log p’), using O( p) storage, with p’ being the number of edges in P intersecting
the plane supporting the cut.

We have seen that in the course of its action, the naive decomposition may produce
polyhedra containing holes. For that reason, we wish to generalize the previous result
to polyhedra of arbitrary genus. Now, instead of breaking P into two pieces, a cut
may simply decrease its genus by one or have some of the effects described at the
beginning of 2.1 (e.g., removing a handle and creating another). To handle these
cases, we may first cut each edge of P which intersects S, by updating the adjacency
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b3 (PI)

(P2)

FIG. 12. Computing the faces of P1.

lists accordingly. Next, we test the connectivity of the graph by doing a depth-first
search with the adjacency lists. If it is no longer connected, the cut breaks P into two
separate pieces P1 and P2 which can be computed as indicated above. Otherwise, we
update the lists of the representation in a similar way; the only major difference being
the introduction of two faces corresponding to the cut. We may omit the details of
these operations which are very elementary.

In our analysis, we were careful to use the number of edges p and not the number
of vertices as the measure of the input size. Indeed, Euler’s formula, which relates the
number of vertices, edges, and faces of a polyhedron has to be altered for higher
genuses [6]. Consequently, the well-known inequality p<=3n-6, which holds for
0-genus polyhedra, is no longer valid when it comes to polyhedra with holes, as is the
case in our problem. It is, however, easy to verify that the number of edges always
gives the size of the description of P, up to within a constant factor. The revised
algorithm for the naive decomposition is merely a repeated application of the procedure
described above. This leads to the following result.

THEOREM 8. The naive decomposition of a polyhedron P of genus 0 can be done
in O(nN2(N+log n)) time, using O(nN) storage.

Proof. The algorithm proceeds by removing each notch in turn. In an O(p)
preprocessing stage, we can assign to each notch a plane resolving its reflex angle.
Then, for each notch in turn, we remove each of its subnotches with cuts lying in the
plane associated with the notch. This will produce O(N2) convex parts in the end, as
has been shown in Theorem 2. Each cut can be implemented with the procedure of
Lemma 7 and the generalization for higher genuses which we just mentioned. Consider
the partial decomposition before the notch g is removed. Let P1,’", Pk be the
(nonconvex) polyhedra in the current decomposition which contain a segment of g as
a subnotch (we have seen that k =< N). Let Pi be the number of edges in Pi and pl the
number of edges intersecting the plane supporting the cut used to remove g. From
Lemma 7, we know that we can remove the subnotch of g in Pi in time O(p +pl log pl).
We next evaluate the maximum number C of edges present at any time in the
decomposition. We distinguish two kinds of edges: first the edges which are pieces of
edges of P. Since each edge of P can be divided into at most N+ 1 segments, the
number C1 of such edges cannot be greater than p x (N + 1).
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The other edges are intersections of cuts with faces (or parts of faces) of P or
intersections between cuts. Since each cut lies on any of N possible planes, and all
faces of P lie on q possible planes, the C2 edges we are now considering lie on at most
qN possible lines. Next we show that each of these lines supports at most 3N edges
(we do not believe that this upper bound is tight). Let L be such a line and Ul,’"’, ut
be the edges of the decomposition that lie on L. The edges u1,’", ut form m
disconnected segments rl,"" ", r, on L, each segment consisting of contiguous edges

r?_. 3 L

m’: 4

FIG. 13. Counting the number of edges in the decomposition.

ui (1 <- m <- t) (Fig. 13). Let m’ be the number of endpoints common to two consecutive
u0; we have

(1) m+m’=t.

L is the line passing through the intersection of a cut S with a face of P or the
intersection of two cuts S and S’. In either case, let h be the notch passing through
the cut S. The union of all the cuts used to remove h forms a polygon Q, which may
possibly have holes. Moreover all the segments ri are edges of O and each notch of
O corresponds to a distinct notch of P. At this point, we must anticipate a little and
use a result which we will prove at the end of this section (Lemma 10). This result
states that the line L cannot intersect O in more than 2N segments. Therefore we have

(2) m<=2N.

Since the interior endpoints are all intersections of cuts with L, we also have

(3) m’<=N.

Combining (1)-(3) shows that t<-3N, which proves our claim and implies that

C2 3qN2.

Since each edge of P is adjacent to at most 2 faces of P while a face has at least 3
enclosing edges, we have

3q<=2p

showing that

C2 O(nN2)
since p= O(n) (P is of genus 0). Our counting argument considered each ui as the
intersection of a cut or a face with a cut. Therefore each edge ui will be counted exactly
twice in Pl +" + Pk, hence

Pl +" + Pk =< C1 + 2C2.
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Finally, since C1 <=p(N+ 1) and p= O(n), we have

Pl +" + Pk O( nN2).

Also, since at most 2 edges intersecting a given plane in a single point can be collinear,
the maximum number of edges which can intersect a given plane is bounded by the
maximum number of lines L, therefore

p] +... +p’ O( nN).

It follows that all the subnotches of g can be removed in time O(nN(N+log n)),
using O(nN2) storage. Since N notches must be removed, the proof is now com-
plete. [3

It is possible to improve the running time of the algorithm to O(nN3), using the
same amount of storage. The algorithm is too long and too complex to be presented
here, given the relatively minor gain it represents. We, therefore, refer the reader to
[1] for a detailed description of the method.

THEOREM 9. The naive decomposition ofP can be carried out in O(nN3) time and
O(nN2) space.

Proof. See [1]. I-1

We will now prove the claim made earlier that L intersects O in at most 2N
segments.

LEMMA 10. Let N be the number of reflex angles in a nonconvex polygon 0 with
any number of holes in it. No line L can intersect 0 in more than 2N segments.

Proof We will prove the lemma in two parts: first assume that all of O lies on
one side of L. Assume wlog that L is horizontal and that O lies below L. Although
all the vertices of O that lie on L are collinear, we can assume that among the other
vertices, no two lie on a common horizontal line. This is only desirable for the sake
of simplicity and does not restrict the generality of the problem in any way. Let
sl,"’’, sk be the segments of O 71L in left-to-right order, and let Vl," , v be a list
of the vertices of O lying strictly below L, sorted vertically in descending order. If we
translate the line L downwards along a vertical axis in a continuous motion, we observe
that the segments si undergo continuous transformations. New segments may appear
in the process, some may vanish from L, while others may merge. Eventually all of
them will disappear from L. The crucial observation is that since O is connected, no
si will disappear before merging at least once. Therefore there will be at least k/2
merges in the process (actually, it would be easy to show that there will be at least
k-1 merges). Note that the merges can occur only when L reaches a vertex v. Let
L be the corresponding position of L (i.e. the horizontal line passing through v).
Since all the v have distinct Y-coordinates, at most one merge can occur at L. Suppose
that a and b are two segments merging on L. The endpoint common to both segments,
vi, is clearly a notch of O, therefore 0 has at least as many notches as we have merges,
i.e. k/2, provided that k > 1.

Assume now that L may intersect O in an arbitrary fashion, and let Sl,’" ", sk
be the intersecting segments. Let us cut along each segment s. This operation partitions
0 into at most k + 1 polygons, each lying entirely on one side of L, as in the previous
case. Note that we may have strictly fewer than k + 1 polygons if O has holes. Also,
since O is connected, each segment s is the edge of at least one polygon which has
at least another edge collinear with L (assuming that k > 1). It follows that among
these polygons we can find j of them, say, 01,’", O, such that each has at least two
edges collinear with L and each s is an edge of at least one of them. Let N be the
number of reflex angles in Oi and let k be the number of edges collinear with L. Since
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C)i has at least two edges adjacent to L, we can use the previous result to derive
ki <- 2N. Since kl +" + kj >= k, and all the reflex angles of O involved in the j quantities
N1,""", N are distinct, we have k _-< 2N, which completes the proof.

5o Conclusions. The contribution of this work has been to describe a heuristic
for decomposing a polyhedron into a set of convex pieces, with the cardinality of this
set lying within a constant factor of the minimum in the worst case. We have also
established a quadratic lower bound on the complexity of the minimum convex
decomposition problem in three dimensions. Refinements of the algorithm given in
this paper might take into account the particular shapes that most practical polyhedra
are likely to have. For example, it is often the case that two notches will be adjacent
and can be removed with the same cut. This simple observation may reduce the number
of convex parts by half. More generally, we believe that efficient special-purpose
heuristics could be developed along these lines. An interesting case is to restrict the
domain of polyhedra to architectural designs where, for example, all the edges lie on
three possible perpendicular directions. Another restriction may further require that
the convex parts be rectangular parallelepipeds. All these problems are highly practical,
yet still open.

Only in two and three dimensions is the concept of nonconvex polyhedra totally
natural. In higher dimensions, convex polyhedra are still easily expressed as intersec-
tions of halfspaces, but nonconvex polyhedra do not lend themselves to such easy
descriptions. One method is to express a polyhedron as a connected union of convex
polyhedra. Note that the convex polyhedra may overlap, thus do not necessarily
constitute a convex decomposition of the polyhedron. This representation is common
in linear programming, when the constraints are expressed by k set of inequalities,
and at least one set has to be satisfied. If we can find a convex decomposition of the
polyhedron into p parts with p<< k, and if each convex part has relatively few faces,
testing the feasibility of a point can be greatly simplified by testing its inclusion in any
of the p convex parts. Here again, because of the complexity of the problem (recall
that the standard version of the decomposition problem is already NP-hard), only
efficient heuristics should be sought.
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Abstract. The main results of this paper show that serialization is both necessary and sufficient for
consistency in concurrent database systems. This is true for both the final database and the views of the
database seen by individual transactions. The model of a transaction includes both read and write operations
which may be performed in any order (except an entity must be read before being written).

The main results are presented in terms of an information flow model describing the source of each
value read and the use of each value written. Since the model does not involve any concept of the "time"
a value was read or written, it models any concurrency system producing information flow among transactions.

There is a section discussing the effect of changing the model to include write operations without

preceding reads, and a section discussing the restriction to straight-line programs.

Key words, database, concurrency control, consistency, serialization, transaction

1. Introduction. There has been a lot of activity in the area of database concur-
rency controls. The goal of concurrency control is to allow transactions accessing a
common database to run as concurrently as possible without destroying database
consistency or preventing a transaction from eventually running to completion. It has
generally been appreciated that consistency can be insured by designing a serializable
control, where serializability means that the effect of running transactions concurrently
is the same as if the transactions have been run in some serial order. Many practitioners
have in fact made serializability a design requirement.

This paper investigates the relationship between serializability and consistency.
We first develop a general concurrency control model based on information flow
between transactions. We then show that serializability is both necessary and sufficient
for consistency. (There is a small loophole for read-only transactions.) We consider
both the consistency of the final database produced by the transactions and the
consistency of the view seen by each transaction.

Our concurrency model is developed to reflect assumptions we believe appropriate
for concurrency controls in mainstream commercial database systems. These assump-
tions and our reason for making them are as follows:

Assumption A1. The control can distinguish between a read access and a write
access. Reason. Data manipulation languages have this feature.

Assumption A2. The control does not know the consistency criterion. Reason.
In practice, consistency conditions are too complex to expect a user to write them
down (or even fully comprehend them).

Assumption A3. The control does not make inferences from the particular values
read or written. Reason. Because of Assumption A2, this information is, for practical
purposes, useless. (In theory, inferences could be made from testing values for equality.)
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Assumption A4. The control may respond to a read request with a value other
than the last value written. Reason. Concurrency control designs have been proposed
which have this feature [1], [2], [13], [14], [15].

Assumption A5. A value written in the database during the run of the transaction
must be considered functionally dependent on all values read, rather than functionally
dependent only on those read by the transaction before writing the value. Reason.
Data manipulation languages usually permit branching and rewriting values. The
control must assume a value written might have been rewritten if values read sub-
sequently had been different.

Assumption A6. Before a transaction can write an entity, it must read the entity.
Reason. The "necessity" results are false without this assumption. (See 11.)

Assumption A7. There are no "lost updates." More precisely, the history of
changes to a given entity is a sequence of changes, each change overwriting the change
made by the preceding transaction in the sequence. Reason. Lost updates are usually
considered undesirable. Also, the "necessity" results are false without this assumption.
For instance, consider a concurrency control that presents each transaction with the
original contents of the database, and, when a transaction terminates, throws out the
values it wrote. This concurrency control preserves consistency (since the final database
is identical to the initial database), but is not serializable.

We believe Assumptions A1 to A5 to be both reasonable and desirable. Assump-
tion A6 is also reasonable in that most state-of-the-art database systems interface with
the operating system and concurrency control by first reading a page from the disk
and then perhaps writing the page. Once Assumption A6 is made, we believe Assump-
tion A7 to be both reasonable and desirable. It implies that all but one version of each
entity is overwritten. The single version that is not overwritten can be thought of as
being retained in a final database produced by the transactions. Therefore every version
of the entity is actually "used" in the sense that it is either overwritten or else is the
unique "surviving" version of the entity.

When we say that serialization is necessary, we mean that in all nonserializable
situations, there could be (from the viewpoint of the concurrency control) an incon-
sistency. Our results do not exclude the possibility that for specific consistency criteria
or for specific transactions, consistency may be preserved in nonserializablesituations,
and indeed such cases have been considered in the literature [6], [7], [8], [9], [11].

This paper addresses two consistency questions:
1) Under what conditions is the final database consistent?
2) Under what conditions does an individual transaction see a consistent view of

the database?
The second question is very important for several reasons:
a) The view of the individual user is the view seen by transactions. A report

produced by a transaction which sees an inconsistent view might be regarded by a user
as evidence that the database is being mismanaged.

b) A transaction may not be properly designed to accommodate "impossible"
data, and may behave unpredictably when given an inconsistent view.

c) In a system which is always running transactions, there may never be a
well-defined "final database," and consistency for individual transactions may be the
only meaningful concept.

Previous papers on serialization have concentrated on question 1. Question 2
requires more complex proof techniques because inconsistency must be demonstrated
using only that portion of the database that a transaction sees.
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Most papers on serializability use the concept of a "schedule of accesses" (or
history or log). This concept is not adequate here because of Assumption A4. Instead
we use the concept of a "version graph" showing information flow. The version graph
might appear inadequate because it does not show the order in which an individual
transaction makes its requests. However, the order of requests is irrelevant because
of Assumption A5. We examine this issue more closely in 12.

The early work of [5] is based on "schedules." A schedule is defined to be consistent
if it is serializable, and a database state is defined to be consistent if it satisfies a set
of consistency constraints. The authors note that if the initial database state is consistent
and if each transaction transforms a consistent state into a consistent state, then
serializable schedules maintain consistency. From a schedule, they construct a "depen-
dency" relation that is similar to the "augmented version graph" of this paper, and
show that the schedule is serializable if and only if the dependency relation is acyclic.

Kung and Papadimitriou [10] show that for systems with only one type of access,
which is a combined read-write access, a "schedule" maintains full database consistency
if and only if it is serializable. They do not address the consistency of the view seen
by individual transactions. The model in [10] differs from ours in Assumptions A1 and
A5. In each case, we are making the more general assumption.

Casanova [3] and Casanova and Bernstein [4] study consistency in a model where
all reads occur in a single combined access and then all writes occur in a single access.
This does not permit all the possibilities of information flow permissible under our
model. However, unlike our model, theirs allows the write to include entities which
were not read.

The results in this paper improve an earlier version announced in [14, Thm. 1]
without proof.

2. Concurrency control. In this section, we describe in nonmathematical terms
our concept of a concurrency control. In later sections, we formalize those aspects of
the control that pertain to consistency.

We think of a transaction as a computer program that reads information from
and writes information into a database. The interface to the database is through system
procedures READ and WRITE. A call on READ is referred to as a "read request"
and a call on WRITE is referred to as a "write request."

If transactions were run on a system one at a time, read requests could be responded
to by reading the value from the database, and write requests by replacing the old
database value with the new. The problem comes with systems which attempt to run
a number of transactions concurrently. The part of the system which determines the
response to the read and write requests is called a concurrency control.

The concurrency control can grant read requests by supplying an input, and can
grant write requests by saving the output somewhere. These values are not necessarily
read or written directly into the database, as the control may sometimes have a
temporary need to remember several different values for a single entity.

If a read request by a given transaction on a given entity is not the first request
by that transaction on that entity, and if the concurrency control grants the read
request, then the value supplied to the transaction is assumed to be the value associated
with the preceding request on the entity by the transaction. If the preceding request
was a write request, the value written is supplied to the new read request. If the
preceding request was a read request, the value supplied to that request is assumed
to be also supplied to the new read request. Thus the only time a concurrency control
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must make a choice as to what value of an entity to supply when granting a read
request is when the read request is the first request of the transaction on the entity.
The value that the concurrency control is allowed to supply is either the value of the
entity in an initial database, or the final value written by some other transaction that
wrote the entity.

Database consistency deals with data values, and is independent of other aspects
of the concurrency control. Thus we base our mathematical treatment of consistency
on a model of data flow, rather than a model of concurrency control. As with any
mathematical model, the appropriateness for the intended application is an issue to
be addressed. Towards this end, we will relate our formal definitions to the above
notion of a concurrency control and to Assumptions A1 to A6 of the introduction.

3. Databases. We now present our formal concepts of databases and database
consistency.

DEFINITION 3.1. A database is specified by a pair (E, V) where E is a set of
entities and V is a set of values. A mapping from E into V is called a database state.

In practice, a database entity could be an item, record, page, or file, depending
on at what level a given system applies a concurrency control discipline. If s is a
database state and e is an entity, then s(e) is interpreted as the value stored in
entity e.

DEFINITION 3.2. A consistency criterion for a database (E, V) is a set C of database
states. A database state s in C is said to be consistent.

This definition of consistency allows for an arbitrary classification of database
states being "consistent" or "inconsistent." There is no need to compute C, and in
fact our interest is in controls which work for arbitrary criteria (Assumption A2).

It is our opinion that this definition is too weak to capture all aspects of preserving
consistency. However, it serves the purposes of this paper very well, since this weak
definition already gives the strongest possible result, namely that serialization is
necessary.

4. Transactions. A given run of a transaction reads certain entity values and
writes certain entity values. To study consistency, the run can be represented
mathematically by the entities and entity values read and written. We call this mathe-
matical object a "transaction effect." Unlike most other authors, we do not put the
order of reads and writes into our model. The reason is Assumption A5, which implies
the order is not relevant.

DEFINITION 4.1. Given a database (E, V), a transaction effect is specified by a
four-tuple (READSET, WRITESET, r, w) where

a) READSET is a nonempty subset of E,
b) WRITESET is a subset of READSET,
c) r is a function r: READSET- V called the input function, and
d) w is a function w: WRITESET- V called the output function.
READSET represents the set of entities read by the run of the transaction and

function r gives the values read. We rule out the trivial case where no entities are
read, since we are only concerned with transactions that interact with the database.
WRITESET represents the set of entities written by the run of the transaction and
function w gives the values written. We require that WRITESET be a subset of
READSET to conform to Assumption A6.

A given transaction can produce a variety of effects, depending on the values
supplied in response to its read requests. Even the READSETs and WRITESETs can
vary because the transaction can branch on values read.
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DEFINITION 4.2. Given a database state s and a transaction effect o- (READSET,
WRITESET, r, w) for database (E, V), we say that tr is matched to s if and only if
r(e) s(e) for all e in READSET. We say that transaction effect tr transforms database
state s to database state if and only if tr is matched to s and

a) t(e)- w(e) for e in WRITESET
b) t(e) s(e) otherwise.
The idea behind this definition is that when a transaction that can produce effect

tr is run with a database state s matched to tr, the transaction changes the values in
database state s to obtain database state t. If this same transaction were run with a
database state u not matched to tr, then a different unspecified transaction effect would
occur, one matched to u.

DEFINITION 4.3. Given a database (E, V) and a consistency criterion C, a transac-
tion effect tr is said to be valid if and only if, for all database states s such that s is
in C and tr is matched to s, transaction effect r transforms s to a database state in C.

Intuitively, a debugged transaction can only produce valid transaction effects. If
a debugged transaction terminates when run by itself with a consistent initial database
state, the final database state when it terminates is also consistent. No matter what
the consistent initial database state matched to the transaction effect is, the transaction
effect transforms this consistent state into another consistent database state.

Note that a given transaction effect may not be matched to any consistent database
state. From Definition 4.3, such a transaction effect is valid. It could be the effect of
a debugged program presented with an inconsistent database (i.e. garbage in, garbage
out).

The running of a sequence of transactions produces a sequence of transaction
effects in the obvious way:

DEFINITION 4.4. Let O’1, O’2, ", O" be a sequence of transaction effects and let
So be a database state. The sequence is called a serial run on So if and only if there
exist database states Sl, s2," , sn such that for 1 <_- <- n, o’i is matched to si-1 and
transforms s-i to si. Database state sn is called the result of the serial run.

Note that if the si exist, they are unique. Thus, if the result exists, it is unique.
The well known fact that serial runs preserve consistency is expressed in our notation
as follows.

THEOREM 4.5. If O’1," O" is a serial run of valid transaction effects on consistent
state So and Sl, , sn are database states as given in Definition 4.4, then all the s are
consistent.

Proof By induction on using Definition 4.4.

5. Version graphs. The outcome of concurrency decisions is a flow of information
among transactions. We model this flow on two levels. One level is the "version graph"
to be defined in this section. The other (more detailed) level is the "datatrace" defined
in7.

The version graph represents those facts about concurrency decisions available to
the concurrency control. These are the facts the concurrency control can use to assure
that consistency is maintained or that a given transaction sees a consistent view of the
database. In particular, these facts do not include knowledge of specific entity values
(Assumption A3) or what the consistency criterion is (Assumption A2).

The "version graph" is a mathematical concept that models how versions of entities
flow between transactions. The version graph has a node for each transaction, plus an
extra node for the initial database state. The edges reflect the source of entity values
read or overwritten by the transactions.



CONSISTENCY, SERIALIZABILITY: CONCURRENT DATABASE SYSTEMS 513

DEFINITION 5.1. Given a set of entities E, a version graph G for E is a directed
graph with a finite number of nodes such that:

a) there is exactly one node I having no entering edges;
b) each edge is labelled Re or We where e is in E;
c) for each node x and each e in E, node x has at most one entering edge labelled

Re and at most one entering edge labelled We;
d) if there is an edge from node x to node y labelled We, then there is also an

edge from x to y labelled Re;
e) if there is an edge labelled Re or We leaving node x, then either x is the node

I or x has an entering edge labelled We;
f) for each e in E, the edges labelled We form a chain (i.e. a cycle free path,

possibly of zero length) beginning at I.
The node I with no entering edges represents the initial database state. Any other

node represents a transaction, and will be called a transaction node. A transaction
node with an entering edge labelled We for some e is called a writing transaction node,
and is considered to have overwritten entity e. A transaction node that is not a writer
is called a read-only transaction node. A node that is either I or a writing transaction
node is said to be a producer node, and is considered to produce the value of some
entity. Producer node I is considered to produce an initial value for each entity. A
writing transaction node q with an entering edge labelled We is considered to produce
a value for entity e. The entity value produced by q is considered to overwrite the
value produced by the node exited by the edge (from Definition 5.1(e) this node
produces a value for entity e).

As an example, Fig. 1 shows a version graph with E { a,/3, y}. For convenience,
the transaction nodes have been labelled with transaction names. From the graph it
is evident that transaction a reads and writes entity set {a}, transaction b reads {a, y}
and writes {3,}, and transaction c reads {a, 3’} and writes the null set. Entity/3 is not
accessed. The edge labelled R from a to c means that c reads the version of entity
a that transaction a wrote.

FIG. 1. Version graph.

The edges of a version graph can be considered to represent "information flow
relations." For each e in E there is a relation Re such that xReq holds if the version
graph contains an edge labelled Re from node x to node q, and signifies that the value
of e produced by x was read by q. Relation xWeq holds if the version graph contains
an edge labelled We from node x to node q, and signifies that the value of e created
by x was changed by q.
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Each condition of Definition 5.1 has an interpretation in terms of the application
we are modelling. Definition 5.1(a) reflects the inclusion of the initial database state
in the version graph, and the assumption that each transaction actually accesses the
database. Definition 5.1(b) merely says that an entity is associated with each read or
write. Definition 5.1 (c) reflects the assumption that the concurrency control need only
supply an appropriate entity value when a transaction makes its initial request, since it
supplies each subsequent request with the value from the preceding request. Definition
5.1(d) reflects Assumption A6. Definition 5.1(e) merely says that the source of each
entity value is actually a producer of a value for that entity. Definition 5.1(f) reflects
Assumption A7. The single version of an entity at the end of a chain is the version
that is retained in a final database state produced by the transactions in the graph.

6. Version graph analysis. In the preceding section, version graphs were used to
model the information flow between transactions. We will subsequently characterize
consistency in terms of version graph analysis. The key concepts behind this analysis
are "individual version graphs," "writers version graphs" and "augmented version
graphs." These concepts, together with certain lemmas used in later sections, are
developed below.

DEFINITION 6.1. Given a directed graph G, node x is called an ancestor of node
y if and only if there is a directed path (perhaps of zero length) from x to y. Given a
subset S of nodes for G, the ancestor subgraph for S is the graph with

a) node set A consisting of ancestors of nodes from S, and
b) edge set consisting of all edges from G connecting nodes in A.
An important fact about an ancestor subgraph of a version graph is that it is a

version graph:
LEMMA 6.2. If G is a version graph for entity set E, and H is a nonempty ancestor

subgraph of G, then H is a version graph for entity set E.
Proof. We check H for each condition of Definition 5.1. For Definition 5.1(a),

first note that since each node of H has the same number of entering edges as the
corresponding node of G, H has at most one node with no entering edges. Next, note
that from Definition 5.1(e) and (f), node I is an ancestor of every node of G. Since
H is nonempty, node I is included in H, and so H satisfies Definition 5.1(a).

Definition 5.1(b) and (c) are obvious because the edges in the ancestor subgraph
H are a subset of the edges in version graph G.

Definition 5.1(d) and (e) hold because the required edges are inherited from G.
For Definition 5.1(f), observe that the chain for e in H must have a node x which

is maximal distance from I on the chain. Because H is an ancestor subgraph, the nodes
between x and I are also in H, so the We edges in H also form a chain. [3

A node of an ancestor subgraph participates in the same chains as in the original
graph:

LEMMA 6.3. Let x be a node common to version graphs G and A where A is an
ancestor subgraph of G. Then node x is the kth node on the chain for entity e in version
graph G if and only if x is the kth node on the chain for e in version graph A.

Proof. The portion of the chain from I to x is the same in both graphs. [3
Certain ancestor subgraphs, defined below, play a key role in database consistency.
DEFINITION 6.4. Let G be a version graph. For each node x of G, the ancestor

subgraph of G for {x} is called the individual version graph (ivg) for x in G, and is
denoted as ivg (G, x).

Let WRITERS be the set of nodes of G having an entering edge labelled We for
some e. Define the writers version graph for G to be the ancestor subgraph for
WRITERS.
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For version graph G and entity e, define chainend (G, e) as the last node in G
on the chain (see Definition 5.1(f)) for e. Define ivg (G, e) as ivg (G, chainend (G, e)).

As an example, consider the version graph, G, of Fig. 1. The individual version
graph for transaction c, i.e. ivg (G, c), is shown in Fig. 2(a). The writers version graph
is shown in Fig. 2(b). Also note that chainend (G, a)= a, chainend (G,/3) =/, and
chainend (G, 7)= b.

(a) Individual version

graph for

(b) Writers version graph.

R Fy

(c) Augmented version graph.

R

(d) Augmented individual
version graph for

(e) Augmented writers

version graph.

FIG. 2

LEMMA 6.5. For every version graph G and node x of G;
a) Every node of ivg (G, x) except possibly x is a producer node;
b) Every node of the writers version graph is a producer node.
Proof. Immediate from Definition 5.1e.
LEMMA 6.6. If H ivg (G, y) and K ivg (H, x), then K ivg (G, x).
Proof. Node x has the same set of ancestors in G and H.
We now consider extra edges that can be added to a version graph in order to

indicate when one transaction reads an entity version that was overwritten by a second
transaction.

DEFiNiTION 6.7. Given a version graph G and given a database entity e, define
the relation Be among nodes of G by pl3eq if and only if p q and for some node x
in G, XRep and XWeq. Define the augmented graph for G, denoted as aug (G), to be
G with directed labelled edges added for the relations Be for all entities e.
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The relationship pBeq can be interpreted to mean that transaction p read the
value of e that was changed by transaction q. More briefly, p read the value of entity
e that existed before q overwrote that value. Note that since node I has no entering
Re or We edges, node I has no entering or exiting Be edges.

Figures 2(c), 2(d) and 2(e) show the augmented graphs for Figs. 1, 2(a) and 2(b)
respectively.

7. Datatraces. In studying consistency considerations, we are concerned not only
with information flow, but also with the actual entity values that are read and written.
This is because it is the actual values that determine if the data seen or the database
state produced are actually consistent. In the following definition, we combine a version
graph with the effects of its transactions to form a "datatrace." The datatrace represents
both the flow and values of database information involved in the running of a finite
set of transactions.

DEFINITION 7.1. Given a database (E, V), a datatrace is a triple (G, r, s) where:
a) G is a version graph for E;
b) tr is a function that maps each transaction node p of G into a transaction effect

(READSETp, WRITESETp, rp, Wp);
c) s is a database state (the initial state);
d) for each transaction node p in G, READSETp equals the set of entities e such

that an edge labelled Re enters node p, and WRITESETp equals the set of
entities e such that an edge labelled We enters node p;

e) if qRep in G then e is in WRITESETq and wq(e)= rp(e), where the notation
is extended by defining WRITESETI E and w1 (e) s(e).

Datatraces lead naturally to a concept of a final database state.
DEFINITION 7.2. Given a database (E, V) and a datatrace (G, tr, s), define the

final database state for the trace to be the function such that t(e) is given by the
output function of chainend (G, e) (so that t(e) equals Wchainend(G,e)(e)).

We now show that if a version graph is associated with a trace, then each nonempty
ancestor subgraph is the version graph of an appropriately defined subtrace of the
given trace.

LEMMA 7.3. If (E, V) is a database, (G, r, s) a datatrace and G’ a nonempty
ancestor subgraph of G, and if r’ is tr restricted to the nodes of G’, then G’, tr’, s) is
a datatrace.

Proof. From Lemma 6.2, G’ is a version graph, so condition (a) of Definition 7.1
is satisfied. The other conditions of Definition 7.1 carry over directly from G, tr and s. [3

Consider the flow of information when a set of transactions are run in order
Pl,"" ", Pn with each transaction terminating before the next one begins. Describing
this flow with a version graph, an edge pjRep is included whenever transaction Pi reads
the value written by pj. Because of the sequential order of execution, p.iRePi in the
flow graph implies ] < and further implies that e is not in WRITESET of any Pk for
] < k < i. It is this characteristic that we build into the following definition"

DEFINITION 7.4. A serialization of datatrace (G, tr, s) is an ordering Po,"’, Pn
of the nodes of G such that

a) po=I and
b) piRePi implies

max { kl k < and e is in WRITESETpk }.

A datatrace is serializable if it has a serialization.
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The "serialization" of a datatrace is thus an ordering which shows that the trace
could have resulted from a sequential running of the transactions. A "serializable
trace" is a datatrace which has such an explanation.

As defined, serializability is essentially a property of the version graph rather than
the whole datatrace. The next result addresses the entire datatrace and relates serializ-
ations of datatraces with serial runs.

THEOREM 7.5. If P0," ", P, is a serialization of datatrace G, r, s) then
a) cr(pl),’’’, tr(p,) is a serial run on s, and
b) the result of the serial run is identical to the final state of the datatrace.
Proof. (a) The database states required by Definition 4.4 are defined as follows.

For 1 _-< i-<_ n, let s(e) Wp,(e) where =max {klk <-- and e is in WRITESETp}, and
let So- s. We will show that trp, is matched to s_ and transforms s_ to s.

To prove that trp, is matched to s_, we must show that rp,(e)= S_l(e) for all e
in READSETi. From Definition 7.1, rp(e)= Wp(e) where pRp in G. By Definition
7.4(b), j=max {k[k < and e in WRITESETk}. Obviously j=max {klk <- i- 1 and e
in WRITESETk}, and so si_(e)= Wp(e) by construction of s_a.

To prove that trp, transforms s_ into s, consider e in WRITESETp,. From the
construction of s, s(e)= Wp(e) because the maximum possible value of k satisfying
k <_- is k i. For e not in WRITESETp,, { kl k _-< and e in WRITESETp} { k[ k _-< 1
and e in WRITESETp}, so s(e) and s_(e) both equal Wp,(e) for the same value of I.

(b) The result of the serial run is the constructed s. Let be the final state of
the datatrace. For the entity e, the ordering of nodes of the writers chain for e conforms
to the serialization order because of Definition 7.4(b). Let chainend (G, e)= p. Then
j=max {k[k<=n and e is in WRITESETp} and s(e)= Wpi(e) by construction of s.
Thus t(e)= s,(e).

We now characterize the serializable traces. First, given an acyclic graph, a
topological sort of the graph is an ordering of the nodes Po,""", P, such that (p, p)
an edge implies i< j. Note that an acyclic graph may have more than one topological
sort. We now show that if the augmented version graph of a trace is acyclic, then any
topological sort of the augmented version graph is a serialization of the trace.

LEMMA 7.6. Let (E, V) be a database and let (G, tr, s) be a datatrace. Suppose
the nodes of aug (G) can be ordered Po,’", P, so that (p, pi) an edge of aug (G)
implies < j. Then this order is a serialization of the trace.

Proof. To see that P0 =/, observe that every transaction node of G has an entering
edge, and so cannot be the first node in the linear sequence. Thus, Definition 7.4(a)
is satisfied.

Now assume that piRepi but that the equation in Definition 7.4(b) fails because
of a k such that i< k < j and e is in WRITESETp. Nodes p and p are both on the
chain for e (Definition 5.1(e)). Each step in the chain must by hypothesis have a larger
subscript so there must be a k’ such that pWePk’ and k’-< k. (Node Pk’ is the next
node on the chain after p and cannot come after Pk.) But piRePj and piWePk’ implies
pjBePk’ contrary to k’ -< k < j and the hypothesis. Thus k cannot exist and j must satisfy
the condition of Definition 7.4. Order Po,""", P, is therefore a serialization.

We next prove a converse to Lemma 7.6. It says that running transactions serially
imposes an order on the nodes of the augmented version graph, an order which agrees
with the direction of the edges of the graph.

LEMMA 7.7. Let (G, tr, s) be a datatrace serialized by ordering po," ", P, of the
nodes of G. Then (pi, Pi) an edge of aug (G) implies < j.

Proof. If piRePj, the equation of Definition 7.4 requires i< j. If pWep, then also
piRePj (Definition 5.1(d)) and again i<j.
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If piBepj, this means there is a Pk such that pkWePj and pkRePi. We have already
shown this implies k < j and k < i. If j < i, then

k max { 111 < and e is in WRITESETp}

because of the possibility =]. This violates Definition 7.4(b) and j<i has led to a
contradiction. Therefore j > and the lemma is proved.

THEOREM 7.8. A datatrace G, r, s) is serializable ifand only if aug G) is acyclic.
Proof. This follows from Lemmas 7.6 and 7.7.
Theorem 7.8 is the expression in our model of the well-known result from [5]

that a schedule is serializable if and only if the constructed dependency relation is acyclic.

8. Main results. We now present two "if and only if" theorems to support our
claims that serializability is equivalent to preserving consistency. The first addresses
the issue of preserving consistency of the final database. By assumption, the concurrency
control knows G and does not know V, C, tr, or s. The theorem says that consistency
of the final database is guaranteed to be preserved if augmented Gw is acyclic, and
consistency can be violated if it is not.

THEOREM 8.1. For all entity sets E and all version graphs G on E, the augmented
writers version graph is acyclic if and only if, for all sets of values V, all consistency
criteria C on (E, V) and all datatraces (G, tr, s) such that s is in C and each or(p) is
valid, the final database state is in C.

THEOREM 8.2. For all entity sets E and all version graphs G on E and all transaction
nodes of G, the augmented ivg of is acyclic if and only if, for all sets of values V,
all consistency criteria C on (E, V), and all datatraces G, tr, s) such that s is in C and
each r(p) is valid, tr( i) is matched to some database state in C.

These theorems are consequences of Theorems 9.1 and 10.1, proven in the next
two sections.

Since serializability has been equated with acyclic version graphs by the results
of the preceding section, Theorems 8.1 and 8.2 say that serializability is equivalent to
preserving consistency.

9. Assuring consistency. We are now prepared to give sufficient conditions for a
concurrency control to maintain consistency. Specifically, we combine the "only if"
parts of Theorems 8.1 and 8.2 into a single theorem. For readability, the conjunction
of the two "only if" parts is expressed in a logically equivalent form with the universal
quantifiers moved to the front.

THEOREM 9.1. Let (E, V) be a database, C a consistency criterion for the database,
and (G, tr, s) a datatrace such that s is in C and transaction effect tr(p) is valid for
each transaction node p of G. If the augmented ivg for a given transaction node p is
acyclic, then tr(p) is matched to some database state in C. If the augmented writers
version graph for G is acyclic, then the final database state for the trace is in C.

Proof. Let G’ be ivg (G, p). for a given transaction node p, and let or’ be the
restriction of r to the nodes of G’. Then from Lemma 7.3, (G’, tr’, s) is a datatrace.
If aug (G’) is acyclic, (G’, o-’, s) is serializable by Theorem 7.8 and o-(p) is matched
to a database state in a serial run (Theorem 7.5(a)). Since the transaction effects are
valid, Theorem 4.5 says the state in the serial run is consistent.

Now let G’ be the writers version graph and tr’ again be the restriction of
Again (G’, r’, s) is a trace and an acyclic aug (G’) implies that (G’, tr’, s) is serializable.
Since G’ contains all the writers from G, the final database state of (G’, tr’, s) is
identical to the final database state for (G, r, s) (from Lemma 6.3 and Definition 7.2).
Since (G’, tr’, s) is serializable, Theorem 7.5 says that the final state of the datatrace
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is identical to the result of a serial run. Theorem 4.5 implies that the result of a serial
run is consistent.

COrOLIArY 9.2. Given a database consistency criterion and datatrace as in the
statement of Theorem 9.1, the r(p) are matched to consistent database states and the
final database state is consistent if the augmented graph for version graph G is acyclic.

Proof. The augmented individual version graphs and the augmented writers version
graph are all subgraphs of augmented G and inherit the acyclic property from G.

Thus serializability of a trace is sufficient to ensure that the final database state
is consistent and each transaction has seen a consistent database. The implication for
concurrency control is the following:

COrOLIARY 9.3. A concurrency control starting with a consistent database state
and running valid transactions will maintain database consistency if the overall effect
of the granted requests is the same as if the transactions were run serially.

Proof. Lemma 7.6 tells us that the serial run does produce an acyclic augmented
version graph and the theorem applies.

We note that these results can be applied to concurrency control design without
any special knowledge about the consistency criterion. By keeping a record of which
transactions supply information read by other transactions and preventing cycles in
the augmented version graph, the concurrency control is assured that, starting with a
consistent database state, a set of valid transactions will receive and produce a consistent
database state.

As an example, consider Fig. 1. First we check if the transactions produce a
consistent final database state. The augmented writers version graph is shown in Fig.
2(e). The graph is acyclic and the one node order satisfying Lemma 7.5 is/, b, a. Thus
if the initial database state is consistent and transactions a and b are valid, the final
database state is the one obtainable by running first transaction b to completion and
then transaction a. This same order says that transactions b and a are also matched
to consistent databases. The general principle is:

COROIAY 9.4. Under the conditions of Theorem 9.1, if the augmented writers
version graph is acyclic, then each writing transaction is matched to a consistent database
state and the final database state is consistent.

Proof. The augmented individual version graph for each writing transaction is a
subgraph of the augmented writers version graph and must also be acyclic. The
conclusion is then immediate from the theorem.

There remains transaction c which only read and did not write during its execution.
The augmented individual version graph for c is shown in Fig. 2(d) and is acyclic. The
one order satisfying Lemma 7.5 is/, a, c and transaction c is matched to the result of
applying transaction a to the initial database.

Now look at the augmented version graph itself. It is shown in Fig. 2(c) and does
have a cycle, so the graph is not part of a serializable trace. The conditions of Corollaries
9.2 and 9.3 are violated, yet each transaction was given a consistent database state
and the final database state was consistent.

The loophole is that read-only transactions need not be checked in determining
the consistency of the final database state, and certain "relativity effects" can occur.
From the relative viewpoint of transaction c, the database appeared to be the result.
of applying transaction a to the initial database state. From the relative viewpoint of
the final database state, transaction a was run after transaction b.

10. The converse result. We are now prepared to address the "if" parts of
Theorems 8.1 and 8.2. We actually prove a stronger result. The theorems of 8 require
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that, given entities and a cyclic augmented version graph G, there exist some value
set, consistency criterion, initial database state and datatrace for G whereby there is
an inconsistency. We show here that, in fact, the values, criterion and initial database
can be constructed before G is given. This implies that, even if the consistency criterion
is announced in advance and the designer is permitted to tailor the control to the
criterion, serializability is still necessary for certain criteria.

We also strengthen the theorems by showing that one construction works for both
Theorems 8.1 and 8.2. We thus get the following strengthened converse to Theorem
9.1:

THEOREM 10.1. Given a set of entities E, there exist
a) a set of values V,
b) a consistency criterion C for database (E, V) and
c) an (initial) database state s in C

such that for every version graph G, there exists a function tr mapping the transaction
nodes ofG into valid transaction effects such that G, tr, s) is a datatrace for (E, V) and

d) if the augmented writers version graph for G is cyclic, then the final database
state for the datatrace is not in C, and

e) if the augmented ivg for a given transaction nodep ofG is cyclic, then transaction

effect tr(p) is not matched to any element in C.
Proof. Assume a set of entities E is given. We will construct V, C and s.
Construction of values V. Let V be the set of pairs (G, n) where G is a version

graph, n is a node of G, and G ivg (G, n).
We now define a function TE that maps a value v from V into a transaction effect.
Construction of TE. Let v (G, n). Define

as follows:

TE (v) (READSET, WRITESET, r, w)

READSET {e in EIxRen for some node x in G},
WRITESET {e in EIxWen for some node x in G},
r(e) (ivg (G, x), x) where xRen,
w(e) v.

For convenience, we write TE (G, n) as an abbreviation for TE ((G, n)).
Construction of initial database state So. Let So be the constant mapping of E into

the pair (G0, I) where G0 is the version graph consisting of a single node I and no edges.
Construction of consistency criterion C. s is in C if and only if s So or there is a

sequence of values

(G1,/’/1),’", (GI, nk)

such that TE (G1, nl)," , TE (Gk, n) is a serial run on So resulting in s.
LEMMA 10.2. For all v in V, transaction effect TE v) is valid.

Proof. If TE (v) is matched to state s which is in C because of sequence of values
Vl,"" ", v, then the result of transforming s by TE (v) is in C because this state is
the result of serial run TE (Vl),. ", TE (v), TE (v). [3

Continuing the proof of Theorem 10.1, we now assume some version graph G is
given and construct r.

Construction of datatrace from version graph G. The datatrace is (G, r, So) where
r(p) for transaction node p is TE (ivg (G, p), p).

It is easily verified that the constructed (G, r, So) satisfies Definition 7.1, the
definition of a datatrace.
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If the final database state or a state matched to an individual transaction is
consistent, then it must be producible as the result of a serial run. This run conceivably
could contain effects not part of (G, tr, So) and conceivably could contain part of this
trace more than once or not at all. The object ot the subsequent lemmas is to show
that, in all runs, the effects of producer nodes from the constructed datatrace must
appear exactly once. Furthermore, their order in the run must agree with edges in the
augmented version graph. Therefore the existence of a run will imply no cycles in the
graph.

The next lemma says that transaction effects preserve the ivg’s of nodes in the
values read. Thus the information read is not destroyed by a write operation, and in
effect the transactions only append information to an entity.

LEMMA 10.3. Let database state sl be matched to transaction effect TE (G, n)
and let s2 be the result of transforming sl by t. For some entity e, let sl(e)=(G, n)
and sz(e) (G2, n2). Let p be any node of G. Then p is a node of G2 and ivg (G, p)
ivg (G2, p).

Proof. Case 1. e is not in WRITESET of t. By Definition 4.2 of "transforms,"
s2(e) s(e), and the result is immediate.

Case 2. e is in WRITESET of t. By Definition 4.2 of "transforms" and construc-
tion of TE, s2(e)--(G, n), SO G2 G and n2 n. From the construction of function
TE, the value of e read is (ivg (G, x), x) where xRen in G. By Definition 4.2 of
"matched to," the value ot e read equals s(e). Hence

s(e) (G, n) (ivg (G, x), x).

Thus n x and G ivg (G, x). Since G G2,

G ivg (G2, hi).

Since G is a subgraph of G2, p is a node of G2 and it remains to be shown that
ivg (G1, p) ---ivg (G2, p). Substituting for G, this is equivalent to

ivg (ivg (G2, n), p)= ivg (G2, p),

which says we must show that p has the same set of ancestors in both ivg (G2, nl) and
G2. Obviously ancestors of p in subgraph ivg (G2, hi) are in G2, so we must show
ancestors of p in G2 are in ivg (G2, n1).

By hypothesis, p is in G which is ivg (G2, n1), so p is an ancestor of n in G2.
This implies all ancestors of p in G2 are also ancestors of n and so belong to
ivg (G2, nl). []

The next lemma says that a noninitial value read during a serial run must
correspond to an earlier transaction in the run.

LEMMA 10.4. Suppose a consistent database state results from So by a serial run of
transaction effects

TE (G, n),...,TE (Gk, nk).

Suppose for some (Gj, nj) in the run, there is a transaction node x of G and an entity
e such that xRen in Gi. Then there exists an < ] such that (Gi, ni) (ivg (Gi, x), x).

Proof. Let s,..., Sk be the sequence of states specified in Definition 4.4. Since

s.-1 is matched to TE (Gj, n), the definition of TE implies that Si_l(e) (ivg (Gi, x), x).
Since si_(e) does not equal so(e), one of the transactions must have written sj_a(e).
The only transaction effect that writes this value is TE (ivg (@, x), x). lq

Next, the preceding lemma is generalized to show that every transaction node in
a graph written during a serial run must correspond to an earlier transaction in the
serial run.



522 D. J. ROSENKRANTZ, R. E. STEARNS AND P. M. LEWIS II

LEMMA 10.5. Suppose a consistent database state results from So by a serial run of
transaction effects

TE (G1, nl),""", TE (Gk, rig).

Suppose for some (Gj, nj) in the run, x is a transaction node of @. Then there exists an
<= j such that (Gi, ni) (ivg (@, x), x).

Proof. Because x is in ivg (@, n), there is a path from x to ni in @. Let the nodes
on this path be xl x,. , x,n nj such that for all satisfying 1 -< < m there is an
entity e such that xtRex+. The lemma is true if x nj. Assume the lemma is true for
x related to n by a path of length m or less, and consider x related to n by a path
of length m + 1. Then there is a y such that xRey in G and a path of length m from
y to nj. From the induction hypothesis, there exists q<-j such that (Gq, nq)=
(ivg (Gi, y), y). Since xRey in G, we also have xRey in Gq. Thus from Lemma 10.4
there exists < q such that (Gi, hi) (ivg (Gq, x), x). From Lemma 6.6, ivg (Gq, x)
ivg (Gj, x). Thus (G, ni) (ivg (Gi, x), x). [3

COROLLARY 10.6. If S is a consistent state, s(e) =(G, n) for some entity e, and x
is a transaction node of G, then every serial run of transaction effects that results in s
includes TE (ivg G, x), x).

Proof. In a serial run that results in s, the last transaction effect whose WRITESET
contains e must be TE (G, n). Apply Lemma 10.5 with (Gj, ni)= (G, n). [3

Corollary 10.6 has established that for each node of the final value of entity e, a
transaction effect occurs in the serial run. Next we show that members of the writers
chain for an entity e actually occur in their chain order.

LEMMA 10.7. Let s be a consistent database state resulting from So by a serial run
of transaction effects, let e be an entity, and let TE (G1, n1),"" ", TE (Gk, nk) be the
subsequence of the transaction effects which have e in WRITESET. Let s(e)=(G, n).

Then n1,’", nk is the sequence of transaction nodes on the writers chain for e in
G, and for l<=i<=k

G ivg (G, hi).

Proof For 1 =< j =< k, let P. be the following predicate:

for 1 <= <= j, ni is the ith transaction node on the chain for e in Gi
and Gi ivg @, ni).

We want to prove P by induction on j.
Consider j 1. The only permitted value of is i-1. Because (G, nl) is in the

constructed set of values V, nl is in G1 and G1 =ivg (Ga, nl). Thus to prove P1, we
need only show that na is the first transaction node on the writers chain for e in G1.
We know nl is on the writers chain because e is in the WRITESET for TE (G1, n).
Let x be the node such that xWenl (and hence also xRenl) in G. Since xRenj, the value
of entity e read is (ivg (G1, x), x) by construction of TE. This value equals the value
of e in the database state transformed by the transaction effect. Since the transaction
effect is the first to write entity e, the value read is the value from the initial database
state So, namely (G0, I). Thus x L and so n is the first transaction node on the chain
for e in G.

Now assume that Pj is true for some j < k, and consider P+I.
Case 1. i<j+ 1. Transaction effect TE (G/I, n+) reads the value (@, n.) that

was written by the preceding writer of entity e, and writes the value (G./, n./l). Since

P is assumed to be true, ni is the ith transaction node on the chain for e in G and
G ivg (G, hi). From Lemma 10.3, ni is a node of G.+1 and ivg (G, ni) ivg (@+1, ni).
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From Lemma 6.3, the ith transaction node (namely ni) on the chain for e in
is also the ith transaction node in ivg (@, ni). Thus ni is the ith transaction node in
the identical graph ivg (G+I, ni) and (from Lemma 6.3 again) is the ith transaction
node in @+1.

Case 2. i= j+ 1. Because (Gj+I, n+l) is in the constructed set of values V,
is in G+I and G+I =ivg (G+I, n+l). We now show that n+l is the (j+ 1)st transaction
node on the writers chain for e in G+I. We know n+l is on the writers chain because
e is in the WRITESET for TE (G.+I, n+l). Let x be the node such that xWen+ (and
hence also xRenj+l) in @+1. Since xRen+l, the value of entity e read is (ivg (G+I, x), x)
by construction of TE. This value equals the value of e in the database state transformed
by the transaction effect, namely the value (@, ni). Therefore x =nj and niWen+l
(definition of x). From case 1, letting , node nj is the jth transaction node on the
chain in @+1. Since nWertj+ is in @+1, node n+l is the (j + 1)st transaction node on
the chain in

The proof of Pj is now completed. To prove the lemma, observe that since the
last value written on e is (Gk, nk), s(e)=(Gk, nk), and hence Gk G and nk n. With
these substitutions, Pk implies G ivg (G, n).

Finally, Corollary 10.6 implies that for every transaction node x on the writers
chain for e in G, the serial run of transaction effects includes TE (ivg (G, x), x). Since
every such x has e in WRITESET, the transaction effect appears in the subsequence,
and x is one of the n. Thus n nk is the entire writers chain.

COROLLARY 10.8. Let o" TE (G, n) be a transaction effect in a serial run on So.
Then if WRITESET (o-) is nonull, TE (G, n) occurs only once in the serial run.

Proof. Let e be an entity in WRITESET of r. Let s be the result of the run. From
Lemma 10.7, the subsequence of transaction effects from the serial run which have e
in WRITESET are distinguished by their position on the chain for e in s(e). IS]

We now complete the proof of Theorem 10.1.
Proof of Theorem 10.1(d). Assume the final database s for the constructed

datatrace (G, r, So) is consistent and results from the serial run
TE (G, n),..., TE (G, n) applied to So. Let Gw be the writers version graph for
G and let x be any transaction node of Gw. Node x writes some entity e (Lemma
6.5(b)) and is a member of the writers chain for e in Gw. Value s(e) is the
output of o-(chainend (G, e)) which is constructed to be (ivg (G, chainend (G, e)),
chainend (G, e)). Let H=ivg (G, chainend (G, e)). Thus s(e)=(H, chainend (G, e)).
Since x is on the chain for e in G, x is a transaction node of H. From Corollary 10.6,
the serial run of transaction effects includes TE (ivg (H, x), x). From Lemma 6.6,
ivg (H, x) ivg (G, x). Thus the serial run includes TE (ivg (G, x), x), which is the
constructed r(x). Since this transaction effect has a nonnull WRITESET, Corollary
10.8 applies and r(x) only occurs once in the serial run.

We now know that each transaction node x of Gw corresponds to a unique
transaction effect r(x) in the serial run. Define the serial order of the transaction nodes
of Gw to be the order in which the corresponding transaction effects occur in the serial
run. The serial order extends to all nodes of Gw by putting node I first. We want to
show that the edges in aug (Gw) always go from an earlier node in the serial order to
a later node. This will imply that aug (Gw) is acyclic.

Suppose xRey in G. Node y must be a transaction node. Assume x is also a
transaction node. The corresponding transaction effects in the run are r(x) and r(y).
Event r(y) by construction reads (ivg (ivg (G, y), x), x) from entity e because xRey
in ivg (G, y). By Lemma 6.6, this value read is (ivg (G, x), x). This value can only have
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been written by tr(x), so the one occurrence of tr(x) in the run must precede the
occurrence of or(y). In the case where x L node x is defined to precede y in the
serial order.

Suppose XWey. Then also xRey (Definition 5.1(d)), and again x precedes y in the
serial order.

Suppose XBey. Then there is a z such that 7.Rex and zWey. The value of e produced
by z is the value read and overwritten by tr(y). This value cannot be the value of
entity e after tr(y) occurs in the serial run. Since this value is the value read by
tr(x), tr(x) must precede tr(y) in the serial run.

Proof of Theorem 10.1(e). Assume that transaction effect tr(p) is matched to
a consistent database state, say s. Then s results from a serial run
TE Gl, n), , TE Gk, nk) applied to So. Without loss of generality, it can be assumed
that each transaction effect in the serial run has a nonnull WRITESET, since a
transaction with a null WRITESET can be deleted, yielding a shorter serial run that
also results in state s.

Since s is matched to tr(p) we can append or(p) to the above serial run, and
obtain a longer serial run,

TE (G1, n,),..., TE (Gk, nk), TE (ivg (G, p), p).

The remainder of the proof refers to this longer serial run.
From Lemma 10.5, since TE (ivg (G, p), p) is a member of the run, then for all

transaction nodes x in ivg (G, p), the serial run includes TE (ivg (ivg (G, p), x), x).
From Lemma 6.6 ivg (ivg (G, p), x) ivg (G, x), so the serial run includes
TE (ivg (G, x), x) which is the constructed r(x).

From Lemma 6.5(a), every node in ivg (G, p), except possibly p, is a producer
node and, from Corollary 10.8, occurs only once in the serial run. If p is not a producer
node, then r(p) has a null WRITESET, and so o,(p) occurs only once in the serial
run (since the original serial run resulting in s was assumed to have no read-only
transactions).

We now know that each transaction node x of ivg (G, p) corresponds to a unique
transaction effect r(x) in the serial run. As in the proof of Theorem 10.1(d), we can
define the serial order of these nodes, and extend the order to all nodes of ivg (G, p)
by putting node I first. In a manner similar to that in the proof of Theorem 10.1(d),
it can be shown that the edges of aug (ivg (G, p)) always go from an earlier node in
the serial order to a later node. This implies that aug (ivg (G, p)) is acyclic, lq

Discussion of proof techniques. The version graphs in the proof can be thought of
as "generalized Herbrand values." Each entity value incorporates the total historic
record of the flow of information used to create the value. The usual Herbrand technique
[12] involving strings as values does not work here because the strings can only be
defined if the values are developed in a sequential manner (each string includes as
substrings the relevant previously computed values). However, our model does not
have sequential evaluations and, when a version graph (not augmented) is cyclic, there
is no sequence of operations which represents the flow.

Theorem 10.1 shows the necessity of serializability for both the consistency of
the final state (part (d)) and the consistency of the view seen by individual transactions
(part (e)). The complexity of the proof is due to part (e). If Theorem 10.1 were stated
without part (e), a much simpler proof would suffice. Instead of writing version graphs,
the transactions would need to write only enough information so that the edges of the
version graph could be deduced from the final database state. The consistency criterion
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would be that the augmented deduced graph be acyclic. For example, a transaction
could append to entities written a set of pairs each of which is the name of an entity
read and the name of the producer node that created the value read.

11. The read-before-write assumption. As discussed in 4, Definition 4.1(b)
embodies Assumption A6 that a transaction reads an entity before it writes. Here we
want to consider the possibility that a transaction could instruct the concurrency control
to write an entity without having read the entity. Will Theorem 10.1 generalize to
such situations? We show here by example that the answer is "no."

Consider three transactions P, Q, and R which are run concurrently and access
the database with the following schedule of events:

Writes a (and terminates)
Reads a

Reads a

Writes/3
Writes a (and terminates)
Reads/3
Writes y (and terminates).

The "generalized augmented version graph" showing the information flow is
shown in Fig. 3. It is no longer appropriate to show We edges because writes may not
replace a specified value. Instead the entities written are indicated beside each transac-
tion node. The augmented edge from R to Q was added because the value of a read
by R was read and then overwritten by Q.

FIG. 3

As indicated by the cycle in the graph, the schedule of events is not serializable.
Entity/3 was written by O and then read by R so O must be scheduled before R. On
the other hand, the value of a written by P was read by R before being overwritten
by O so R must be scheduled before O.

If Theorem 10.1 were generalized, an interpretation would exist such that R was
not matched to any consistent database state and the final database state was not
consistent. However, this cannot be true since R sees the database state obtained by
running the sequence

P,Q,P

and the final database is that obtained by running the sequence

P,Q,P,R.
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Remark. In going from a schedule to a "generalized version graph," information
about the final database state can be lost as the chainend concept depends on the
read-before-write assumption, and the information flow may not show which value
was written last. Thus the graph may be inadequate for further study of the write-
without-read case.

Remark. It should be remembered that the counterexample is for the consistency
concept given in Definition 3.2. It is possible that some intuitive but stronger criteria
can be found which do imply serialization. Producing the example result of P, Q, P, R
is intuitively unsatisfactory when transaction P has in fact been initiated only once by
a system user.

Remark. Another example is provided by the following schedule, where all reads
of a transaction occur in a single combined access, and all writes of a transaction occur
in a single combined access:

S Writes a (and terminates)
R Reads a

P Writes a and/3 (and terminates)
Q Reads/3 and y
Q Writes 6 (and terminates)
R Writes y (and terminates).

The final database state is consistent because it can be obtained by running the sequence
P, Q, S, R, P. Any serial schedule producing the final database state must repeat a
transaction.

12. Time assumptions. By looking at datatraces in terms of information flow
instead of schedules, certain timing information is lost. For example, the version graph
makes no distinction between the following two schedules:

P READS a P READS a

P READS/3 P WRITES
P WRITES a P READS/3

The second schedule gives the illusion that the value written into entity a is unrelated
to the value read from /3, since a was written before the value of /3 was known.
However, it must be remembered that the schedule is not a program, and the transaction
might have produced a different schedule had the data read from the database been
different.

To be more specific, suppose P read the value 1 from a, wrote the value 2 into
a, then read the value 2 from/3. Is it a coincidence that the transaction leaves a and
/3 with the same value? It would be if the program for the transaction were the following:

I ENTITY (a)
ENTITY (a) I + 1
J ENTITY (/3).

If, however, the program were

I - ENTITY (a)
ENTITY (a) I + 1
J - ENTITY (/3)
If J I + 1 THEN ENTITY (/3) - I + 1,
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then the transaction would always produce a database state with ENTITY (c)=
ENTITY (/3). The two programs often produce different results, but they have the
same effect when presented with a database state with value 1 for a and 2 for/3.

The point is that the values read and the values written could have any relationship,
regardless of the order in which the reads and writes are performed in the particular
running of the transaction. Thus it is reasonable to work with a model (the datatrace
in our case) where the ordering is not considered.

Some authors have worked with models in which transactions are taken to be
straight-line programs accessing a fixed sequence of entities. In this case, the order of
access operations influences consistency.

For example, consider the following sequences of actions by two consistency-
preserving straight-line programs P and Q:

P reads
P writes
P reads

These programs can be run concurrently as follows so that the information flow is that
shown in Fig. 4(a):

P reads

P writes

P reads

The version graph and its augmented graph are cyclic. The run is not serializable: P
must precede (2 because P reads the value of c written by (2, and Q must precede
P because of

However, it programs P and Q are modified to end atter the final write and to
omit subsequent reads, the programs produce the same effect on the database as the
original. The modified programs therefore also preserve consistency when run alone.
Concurrent running of the modified programs produces:

P reads

P writes

which gives the information flow shown in the version graph of Fig. 4(b) (which is Fig.
4(a) with the two read operations deleted). Augmented 4(b) is acyclic (hence serializ-
able) and produces a consistent final database state. But the two sequences of operations
produce the same database state, and the final database state is the same for both 4(a)
and 4(b). The final database state in 4(a) is consistent in spite of not being serializable.
Thus the "if" part of Theorem 8.1 fails for straight-line programs.

a

P
W,

R

(a) (b)

FIG. 4
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Understanding consistency for the straight-line case involves the concept of a
"trailing read." We refer to READ operations after the last WRITE operation
performed by a process as trailing READs. These reads are the ones that do not affect
the values written and can be deleted from the straight-line transactions without
affecting their validity.

The following can be proven for the straight-line case:
Modify the version graph by deleting edges corresponding to trailing READs. If

the transactions are valid, if the original database is consistent, and if the augmented
version graph is acyclic, then the final database state is consistent. If the augmented
version graph is cyclic, there exist a consistency criterion, a set of valid straight-line
transactions, and an initial consistent database state such that the given history trans-
forms the initial state into an inconsistent state.

Thus the straight-line case provides a loophole for trailing reads.
The problem of describing the consistency of data read is more complex. Consider

the following three straight-line programs P, Q, and R:

P reads a O reads/3
P reads , O writes
P writes a O reads
P reads fl O writes
P reads 6
P writes

R reads
R reads

FIG. 5

These programs can be run concurrently as follows, so that the information flow is
that shown in the augmented version graph of Fig. 5:

P reads a

P reads y
P writes
O reads/3
O writes
P reads/3
R reads a

R reads/3
O reads
O writes
P reads 6
P writes
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In spite of the cycle in the ivg of transaction R, R does see consistent data as
demonstrated by running the transactions in order P, Q, R. This serial schedule pro-
duces a different version graph from Fig. 5, but R gets the same information in both
cases. This example shows that the "if" part of Theorem 8.2 fails for straight-line
programs.

The information from Fig. 5 relevant to the consistency of data read by transaction
R is shown in Fig. 6. A number of edges have been deleted because they did not
impact on the data seen by R. For example, the edge from Q to P labelled R was
deleted because the value read does not affect any entity value read by R. A new kind
of edge labelled y between P and Q was added because transaction R read a value
of a reflecting the fact that P read the original version of y. Since the straight-line
program for Q requires that Q write 7, from R’s viewpoint P must precede Q. The
serialization P, Q, R is a topological sort of Fig. 6.

FIG. 6

13. Conclusion. We believe the model used above is the correct one for general
purpose concurrency controls. "General purpose" means the control must maintain
consistency no matter what the criterion happens to be and regardless of the structure
(straight-line or otherwise) used to program the transactions. The only imposition on
the user is that he or she start with consistent data and only run transactions which
preserve consistency if run alone. For consistency, the concurrency control need
remember no information other than the version graph. The control must operate to
keep the augmented version graph acyclic, for any cyclic augmented (writers) version
graph is associated with an instance of inconsistency.

There is also danger in allowing a temporary cyclic flow of information, even
when the control plans to break the cycle later with a rollback. The danger is that any
cyclic augmented individual version graph is associated with an inconsistency and the
individual transaction may be processing garbage.

There is a loophole for read-only transactions, although it is probably not worth
exploiting in practice. Also, such exploitation may be considered unsatisfactory if one
takes a stronger view of consistency than our admittedly weak mathematical definition.
The definition is good for inferring things that should not be allowed (e.g. cyclic
information flow), but additional criteria may be appropriate in deciding what should
be allowed.

The general conclusion is that general purpose concurrency controls should be
designed so that the augmented version graph is acyclic. Except for the minor read-only
loophole, this is the only way to maintain consistency.
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THE ORGAN PIPE PERMUTATION*

M. KEANE,I A. G. KONHEIM,$ AND I. MEILIJSON

Abstract. Let (Pl, P2,"’’, Pn) be a probability distribution, r (Trl, 7r2, 7rn) be a permutation of
1, 2,..., n and X1, X2,’", Xk be k independent and identically distributed random variables with
distribution P(X i) pTri. It is known that the organ pipe permutation r* makes the range

D (k, rr) max X. min Xj
l<=j<=k

a stochastic minimum for k= 2 (P. P. Bergmans, Information and Control, 20 (1972), pp. 331-350), and
minimal on the average for general k (J. R. Bitner and C. K. Wong, 8 (1979), pp. 479-498). We prove
the stochastic minimality for general k and study a natural extension of the organ pipe permutation that is
optimal when certain constraints are placed on the possible choices of 7r

Key word’s, file storage, disk, optimization

1. Introduction. Let x (Xl, X2,’" ", Xn) be a vector of positive real numbers and
let s YI xi. For each permutation 7r of N (1, 2,..., n), let x denote the vector
with x x=i, 1 <= <- n.

The present note deals with the following two subjects"
1. For s 1, let F be the distribution of a random variable X defined by

(1) P(X==i)=xi l <-i <=n.

For a random sample XI, X, ., X" from F’, let D(k, 7r) be its range, i.e.,

(2) D(k, rr)= max X7- min XT.
l-ik li=k

A permutation 7r is an organ pipe permutation if

(3) =< =< "< < =<...Xl "--Xn ---X2 ---Xn-1 ---X3

or if

(4) < < < < < <Xn --’X1 ---Xn-1 ’-’X2 ---Xn-2 X3 ---"

Bergmans 1 has shown that the organ pipe permutations minimize D (2, r) stochasti-
cally, i.e., for every permutation r, every organ pipe permutation 7r* and every
nondecreasing function b" R R,

(5) E(4 (D(2, 7r*)))-<_E(b (D(2, 7r))).

We will prove:
TI-IFORFM 1. The organ pipe permutations minimize D(k, r) stochastically ]:or

every k >-2. If 7r is not an organ pipe permutation and da is strictly increasing on
{1, 2,..., n 1}, then the inequality in (5) (with k replacing 2) is strict.

2. Let f be a symmetric concave function of one real variable (with a vertical
axis of symmetry somewhere in the plane), x (Xl, X2,’’’ ,x,) a vector of positive
real numbers, s =x+xz+...+x and c a real number. Let r (rrl,’", 7r,) be a
permutation of the vector (1, 2,..., n). (Tn is used to denote that coordinate of
(1, 2,..., n) which is mapped into the ith coordinate of r.) For each permutation r

* Received by the editors October 23, 1981, and in final revised form May 12, 1983.
+ Technische Hogeschool Delft, The Netherlands.
$ Department of Computer Science, University of California, Santa Barbara, California 93106.
Department of Statistics, Tel-Aviv University, Ramat Aviv, Israel.
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of (1, 2, , n) let

(6) V(f, rr, a,x)= V(rr)=f(a)+
i=1

Suppose that x <-x2<="’-<_xn. Define a permutation zr to be greedy (on the
triple (f, x, a)) recursively as follows:

If f(a <f(a + s) set zra 1.
If f(a)= f(a + s)set 71"1 1 or 7r,- 1.
If f(a >f(a + s) set 7r, 1.

Having defined either the first or the last coordinate of 7r (i.e., 7/’1 or T/"n) consider the
reduced vector x’= (x, x3,""", x,) and the modified value of

|a +xa if 7/" 1,
a if 7r, 1,

and apply the rule specifying zr or zr,, to the reduced triple (f, a’, x’). The remaining
values of zr are determined recursively by this procedure.

To be more specific, suppose that f(a)= f(a + s). Then the following are greedy
permutations (since f is symmetric about a + s/2):

(1, 3, 5,...,n-l,n,n-2,..., 6, 4, 2)

7r*=
or (2, 4, 6,...,n-2, n,n-1,...,5,3,1) ifniseven,

(1, 3, 5,...,n-2, n,n-1,..., 6, 4, 2)
or (2, 4, 6,...,n-l,n,n-2,...,5,3,1) ifnisodd.

Clearly, V(zr) is the same for all greedy permutations.
THEOREM 2. Thefunction V(zr), given by (6), defined on the set ofallpermutations,

attains its minimum at the greedy permutations.
For each of exposition, consider f to describe the roof of a house (see Fig. 1)

with one-dimensional floor and rooms having preassigned lengths {xi}. Theorem 2
claims that the greedy builder, who minimizes at every stage of the construction the
height of the current wall being built, makes the sum of the heights of the walls
actually minimal.

It should be observed that the optimality of the greedy permutations does not
necessarily hold for concave, nonsymmetric functions. We will provide a counter-
example in which f is the minimum of two straight lines at different absolute slopes.

The connection between subjects 1 and 2 is that a weaker form of Theorem 1,
the minimization by the organ pipe permutations of the expectation of D(k, zr),is an
immediate corollary of Theorem 2, because when f(a)=f(a + s), r is greedy if and
only if it is in an organ pipe permutation, and for s 1 and f(t)=-(tk + (1- t)k),

(7) E(D(k, zr))= n + V(f, 7r, 0, x).

The minimization of E(D(k, zr)) by the organ pipe permutation has been proved
recently by Bitner and Wong [2]. Related work was done by Wong [5]. The motivation
for this question is the need for specifying the order in which data should be recorded
on a disk. A disk is a storage device in a computing system consisting of several
surfaces like phonograph records sharing a common spindle. Data is recorded magneti-
cally on the concentric tracks of these surfaces. A storage location on the disk is
specified by the triple (r, 0, z) where z specifies the surface, r the track on the surface
and 0 the angular position on the track. A cylinder on a disk is the set. of all locations
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Case 1.

Case 2.

FIG.

Case 3.

(r, 0, z) with r fixed. The time to access information stored on the arc {(r, 0, z ): 01 -<_ 0 <
02} is composed of the seek latencywthe time to move the reading head from r’ to r,
and the rotational latency--the time for the surface to rotate to the position (r, 01, z).
Now suppose that information on a disk is organized into units each requiring one
cylinder. A sequence of k requests

X1, X2, , Xk read cylinder X1, read cylinder X2, , read cylinder Xk
will be processed by moving the reading head to one of the extremes MINi Xg or
MAXX (the initial movement) and thereafter accessing the information in the order
of the cylinders encountered (the scanning period). To minimize the access time we
wish to distribute the information on the n cylinders so as to minimize some expression
related to the range MAXXi-MINt X, assuming that Xg =/" with probability p=j.

Bitner and Wong [2] consider three simple rules for moving the reading head.
The leftist rule (move to MINi X, read through MAX Xi, leave the head there), the
rightist rule (the other way around) and the alternating rule (if the last batch was read
from MIN to MAX, the present one is read MAX to MIN and vice versa). They prove
the organ pipe to minimize the total expected traveling time of the reading head under
each one of these rules, besides minimizing the expected range of the batch.

We will show all of these optimal properties of the organ pipe permutations to
be immediate consequences of Theorem 2, by exhibiting in each case the corresponding
roof function f. These optimal properties remain true if the reading head moves at
higher speed during the initial movement than during the scanning period, or even if
these speeds are different for outward or inward movements.
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A novel contribution provided by Theorem 2, beyond the optimality of the organ
pipe permutation, is the following. Suppose that some of the data must be recorded
at the inmost cylinders and some at the outmost cylinders. The best permutation of
the central part need no longer be the organ pipe nor need it be the same for all
abovementioned rules. The sum of the probabilities of the inmost cylinders takes the
role of a (see (6)), the probability of the central section is s, and Theorem 2 implies
that the best permutation is built greedily on the corresponding ]’.

In an entirely different direction, Meilijson and Tamir [4] have applied Theorem
2 to a scheduling problem on many processors. The total flow time on parallel identical
processors with nonincreasing unit processing time is minimized by shortest processing
time scheduling: start with the shortest tasks and assign the shortest unassigned task
to the first processor that becomes available.

Theorem 1 claims the stochastic minimization rather than the (weaker) average
minimization of the range by the organ pipe. There is an important distinction between
the two. It may happen that not only the long run average head moving time is
relevant, but also, for some timing requirements involving, say, parallel computation,
all reading ought to be performed within a preassigned time span. Whatever this span
is, Theorem 1 states that the organ pipe will maximize the probability of meeting it.
More generally, if the penalty for memory access time is the head moving time under
any of the abovementioned rules plus any nondecreasing function of the scanning
time, then both theorems are needed to infer that the organ pipe permutations are
optimal.

2. Proof of Theorem 1.
DEFINITION 1. The T.x of a vector x, for 2-</" _-< n + 1, is the vector with

(8)
min (Xi, Xj-1) if _-</’/2,

(T]x)i=]max(xi, Xi_l) if/’/2 <
[,.Xi if =>].

The 2-flip of x is, of course, x itself. The flip Tax of x is the vector with
(TlX)i =x+l-i, for all 1_-<i _-<n.

LEMMA 1. For every permutation r of N and every organ pipe permutation r*,
there exists a finite sequence jl, j2, ", jm with 1 <- ji <- n + 1, such that T T2 TIx

Proof. Let x denote x We may assume that x satisfies (3), as, had it satisfied
(4), TlX would have satisfied (3).

Let

(9) jl- 1 + min {il x-- xa}, j2 1 +min {il( TI T]l X Xtl }.

The vector T1T2 T1T,x agrees with x on the first and last coordinates.
To see the inductive step, assume that we have a vector that agrees with x on

the first m and on the last m coordinates, for some m with 2m _-< n -2. Remove those
2m coordinates and perform the construction (/’1,/’2) described above on the (n-
2m)-dimensional vector that is left, thus bringing x2,,+1 to its first coordinate and
X2m+2 to its last. Whenever a f-flip is performed in this construction, its effect on the
(n 2m )- dimensional vector is identical to the effect on those (n-2m) coordinates
of the application of the (/’ + 2m)-flip to the full n-dimensional vector. As is easy to
infer from (3), this (/’ + 2m)-flip leaves the first and last m coordinates unchanged.
The inductive step is complete.
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The random variable X is said to be stochastically larger than the random variable
Y if for all real x, P(X > x)>=P(Y >x). It is well known (see, e.g., Lehmann [3,
Lemma 1, p. 73]) that X is stochastically larger than Y if and only if, for some joint
distribution of (X, Y) with the given marginals, P(X_-> Y)= 1. From this it follows
that X is stochastically larger than Y if and only if Ec(X)>=Ec(Y), for every
nondecreasing function 4 for which E&(X), E&(Y) exist (use X _-> Y ::), b (X) _->b(Y)
for one direction and the functions &x (y)-0 if y _-< x, & (y)- 1 if y > x for the other).

We thus have to show that for all integers d->_ 1 and k >_-2, any permutation zr
and any organ pipe permutation zr*,

P(D(k, 7r) >-d) <-P(D(k, 7r*) <-d).(10)

In view of Lemma 1, it is enough to prove (10) with 7r* replaced by the application
of T. to x =, for arbitrary/’ =>- 3 (as T1 and T2 obviously yield equality of the distributions
of the two D’s in question). This will be proved in Lemma 3.

LEMMA 2. Let 7r be the identity permutation and omit it as a superscript. Then,
for all integers d 1, n 2],

E {P({X,,X2,"" ,Xk}_[m-d, m])
m=l

-P({X1, X2,""", Xk} [m -d, m 1])}
(12)

/=max(l, m-d) /=max(l,

Xi Xi
/=1 i=l /=2 i=l

If D(k) is the range of a random sample of size k with distribution given by the
probability vector x (see (2)) and j is an integer with j 3, then let Di(k) be the
corresponding range for the probability vector x and define

(13) A(x,i,d,k)=P(O(k)d)-P(D(k)d).

LEMMA 3. For all probabi6ty vectors x and all integers k 2, j [3, n + 1 ], d 1, n 2],

(14) A(x,/,d,k)O.

Proof. The proof will be divided into three cases:
(i) i-d 2;
(ii) f- d is even and exceeds 2;
(iii) j-d is odd and exceeds 2.
Case (i).

k k

(x,f,d,k, {(ldi=l (.X)i) (ldxi)
()

+d [kil (’X)i) --( (’X)i)--
/=2 i=l -l i=l

P(D(k <-d) xi
\ i__ xi

/=1 i=l /=2

Proofi

P(D(k) <- d) .=, P(D(k) <- d, imax xi m)

(11)
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The first term on the right-hand side of (15) is zero, because (i) implies that
l+d l+d

Y ,.x) Z x.
i=1 i=1

We will now show that each summand in the second term is nonnegative. Fix
l[2, n-d].

,-,l+d-1Let a denote yt+a-1 (Tix)i xi.i=t and/3 denote
By assumption (i), (Tx)t+d x+a. Let 3’ denote this value.
By definition of T, a =>/3.
Because the function f(t)=t is convex, the summand in question, which is
) )((a +y -a )-((/3 +3, -/3 ), is nonnegative.

Case (ii). Every set of indices which is symmetric with respect to if2 is mapped
onto itself by T; in particular this holds for the set {/*, l*+ 1,..., l*+d}, where
l*=(i-d)/2.

,g-,l*+dVI*+d (Tjx)i /-i=l*Hence, i--t* xi. Set L =/"-d- 1 By eliminating a zero and shifting
the location of some of the negative sums in (11), A may be expressed as

A(x, ], d, k
= d Tjx )i Tjx )i xi @ xi

i=l i=/+1 i=l i=/+1

(16) + Y (Tx)i (Txli xi + x,
/=/*+1 i=l i=l i=l \ i=l

IL ld
k

1+-1 i)
k

(l+dxi)
k

(l+-lxi) k].-[" l[(i=l (TI’x)i) --(
i=l

(TI"X) -\i=l -[-
i=l

By the proof of Case (i), it is seen that each summand in the third term of the right-hand
side of (16) is nonnegative. (Remark: So is each one in the second term, but not in
the first. The second will now be seen to compensate for the first.)

The sum of the first two terms on the right-hand side of (16) may be expressed as

11 ld i)
k

(ild i)
k

(l+dxi)
k

(l+d, Xi)S--" [( (T]x)-- (TI"X)-\il -[-

k

I=1 i=l =l+1 \i=-rl

(17)
i-l

=i--d
(Tjx )i) k_ (i ,--I T]x )i) k_ (i=i_i_d Xi) k_[.. ( ]--1 xi) k]

=j-l-d =i-l-d

We claim that each summand (in square brackets) in (17) is nonnegative. Fix
[1, l*- 1]. Let St denote the corresponding summand. Let a,/3, y, 6, A, B, C, D be
defined by the following relations:

l+d

Ol E (TlX)i (TlX)lJl-,
i=l

(18t
l+d

T xi=xl+6,
i=!

Then

(19)

j-l

=j-l-d
Tjx )i B -b Tjx )j_l,

j-l

C E Xi D + Xj-- I.
=i-l-d

k k ,yk k k k k kSl-a --[3- +8 +A-B-C +D.

We will show that Sl 0 for each of two cases Xl (TjX)l and Xl (Tl.x)j-l.
First case. Xl TX)l.
Set

(20) h=(T/x)/_t-xt>=O, B’=A-xt=B+h, D’=C-xt=D+h,
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and let S be the expression Sl with B replaced by B’ and D replaced by D’. St- St,
and S will be shown to be nonnegative.

(21) St-St,=(B +h)k-Bk-(D+h)k +Dk

is nonnegative because B _>-D (by the definition of T) and f(t)= k is convex. If a
function f has a convex derivative, then for fixed u >_-0 and v >_-0, the function

(22) g(t)=f(t+u +v)-f(t+u)-f(t+v)+f(t)

is nondecreasing. Set f(t) k, U Xl and

+d j-l-d-1 min( +d,j-l-d-1)

(23) v 6 E (Xi TI"X )i 2 (Xi (TI"X)i E (xi TI’X )i ).
=l =l i=l

Then v _>-0 because every summand in the last sum is nonnegative.
Now,

(24)

and

(25)

SI (Ak B,k Ck +D,k) (yk 6k k k ,)a +/3 )=g(D -g(fl)

l+d j-l-d-1

D’-fl >-D-fl E (xj-i-(Tx)i) E (xj-i-(TlX)i) 0,
i=/+1 i=/+1

so the right-hand side of (24) is nonnegative.
Second case. Xl Tx)j_t. Repeat the proof of the previous case with a redefinition

of B and 6 (rather than B and D) as B’ and 6’ in A- B’ -’ X-l.
Instead of (24), use

k k(26) S =(Ak-B’k-yk +6’k)-(Ck-Dk-a + )=g(6 -g(),

where in the definition of g, u Xi-l and v D-.
D- was shown to be nonnegative in (25), and 6’--, which was shown

to be nonnegative in (23).
l*+d l*+d

Case (iii). Set l* (j-d-1)/2. Then =.+ (x) =/*+1 xi.

Set L j-d-1. By adding two zeros and conveniently shifting the indexing of
the sums, we have

A(x, ], d, k) IE x)i E x)i xi + xi
i=l i=/+I i=l i=/+1

k k]/=/+1 (l+d k_ k_(l+dxi) (+-lxi)(27) + [kill (x)i) (l;l(X)i) kil
+ l__( )i (X)i Xi

i=l =l i=l

From this point on, the proof is identical to that of Case (ii).
It should be observed that the proof of the nonnegativity of the summands in

Case (i), the proofs of the nonnegativity of Si-Sr for the summands corresponding
to N l* 1 in Case (ii) and to N l* in Case (iii), as well as the proof of the nonnegativity
of the summands corresponding to L + 1 in Cases (ii) and (iii) depend on the
convexity of and not on the convexity of its derivative. Hence, for all k 2, ifx x
then A(x, f, d, k) is strictly positive simultaneously for all d e [1, n 2]. So, the organ
pipe permutations are the only stochastic minimizers of Dk.

This finishes the proof of Theorem 1.
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3. Proof of Theorem 2.
LEMMA 4. For fixed x and f (symmetric and concave), let W(a) be the value of

V(zr) for greedy permutations zr, as a function of the left endpoint of the house. Then
W(a is continuous.

If a’<-a and f(a)<-f(a +s) or if a’>-a and f(a)>-f(a +s), then W(a’)<-_ W(a).
In particular, iff(a)=f(a + s ), a is a maximum point of W.

Proof. We first prove the continuity of the function W(a). Let a and a 2 denote
the leftmost maximum and rightmost maximum of f, respectively. In particular each
x such that al <_-x <-a2 is a maximum point of f. It is clear that W is continuous at
all points a at which the greedy permutation does not change, since the heights of
the walls vary continuously. (For example, W is continuous for a _>-a2 or a

Consider a point a at which the greedy permutation changes. Such an a is reached,
when "sliding" the house to the right, whenever two walls become of the same height.
At any such point reverse the order of the rooms in the subhouse between these two
walls. (If more than two walls become of equal height, consider the two walls, having
the same height, which are furthest away from each other.) This reversal will not
affect W at a, and will give an equivalent permutation that will remain greedy when
a is increased. Therefore W is continuous at a.

Next we prove that f(a) <- f(a + s) implies that W is monotone nondecreasing on
the interval (-c, a). (The proof for the case f(a) >f(a + s) will then follow from the
symmetry of f.) Let/3 < a. The monotonicity at/3 is obviously satisfied if/3 + s < a2.

Thus, suppose/3 < a ---0/2 [ + S, and consider the n + 1 walls defining W(/3). Those
walls to the right of or at O 2 can be mapped in a one-to-one way into the walls to
the left of that point in such a way that each wall on the right is mapped into a wall
of strictly smaller height. (The shortest wall to the right of or at O 2 is mapped into
the shortest wall to the left of a z, the second shortest wall to the left of or at O 2 is
mapped into the second shortest wall to the left of a2, etc.) Because of the concavity
and symmetry of f, the sum of the heights of the walls on the right will decrease (as
/3 increases) by an amount which is less than or equal to the amount by which the
sum of the heights of the walls they are mapped into will increase. Since the sum of
the unmapped excess walls on the left will obviously not decrease, our local argument,
coupled with the continuity of W, completes the proof.

Proof of Theorem 2. Using an inductive argument, it is enough to prove that
any permutation 7r that places a nonminimal room at a lowest end and proceeds
thereafter greedily on the remaining subhouse, can be improved by some 7r’ that
places a minimal room at a lowest end. For concreteness suppose that x <= x 2 -<" -< xn
and

(28) f(a)<-f(a +s).

Let r be a permutation that places first (at a) a room of length z > X l. We may
assume that on the remaining house, with floor [a + z, a + s l, it behaves greedily.
There are three cases to consider (see Fig. 1):

Case 1. f(a + z)<-f(a + s) and zr places in second place a room of length Xl.
Case 2. f(a + z)>-_f(a + s), zr places in second place a room of length y > x and

f(a + z <-- f(a + s x 1).
Case 3. f(a + z) >- f(a + s), zr places in second place a room of length y >x and

f(-b’z)>f( q-S--X1).
In Case 1, exchange the first two rooms. Since f is monotone nondecreasing on

[a, a +z], f(a +Xl)<-f(a +z). The change in V produced by this exchange is the
difference f(a + x ) -f(a + z =< 0.
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In Case 2, consider the subhouse with floor Ice + z, a + s -Xl]o Keeping the lengths
of its rooms constant and their inner order greedy, "slide" the subhouse to the left
until its leftmost point is at a distance X to the right of a. By Lemma 4, this sliding
process does not increase the value of V. The result is a permutation as required.
Finally, in Case 3, we cannot slide the house as in Case 2 because that may increase
V for some sliding distance. To circumvent this difficulty, observe that the subhouse
with floor [c + z, a / s-Xl] is the mirror image (with respect to the axis of symmetry
of f) of another subhouse, with floor [A,B] (see Fig. 1). Note that the induced
assignment of the n-2 rooms to the interval [A, B] is greedy and has the same V
value as the original assignment of these rooms to the interval [c + z, a + s x 1]. Thus,
consider the subhouse with the floor [A, B instead of that with floor [a + z, a + s x 1].
Now, since f(A)=f(a+ S-Xl)<f(c + z)=f(B), the sum of the heights of the walls
does not increase when we slide this subhouse to the left (as in Case 2) until its
leftmost point is at a distance X to the right of c. (Note that f(A)= f(cr / s-Xl) and
f(c) <_-f(c /s) imply that A is at a distance of at least Xl from c.) Again, the result
is a permutation as required. 71

COROLLARY 1. For n, k >-2 the organ pipe permutations are optimal ]:or the range,
the leftist, rightist and alternating rules.

Proof. Following [2], let MINi Xi L, MAXi Xi R and let (L0, R0) be distributed
like and independently of (L, R). Let COST stand for expected head moving time under
leftist or rightist (L) and alternating (A) rules. Let R-L RANGE. Then (see [2,
Thm. 1])

COSTc=2 Y P(L<-i)P(R>i)=2 (1-( p 1- p.
i=1 i-1 j=i+l

(29)

where

=2 ft. p
i--1

(30) fc(x)- (1 -x g)(1 -(1 x)).

This function is obviously symmetric around 1/2. It is enough to check concavity on
[0, 1], as fc may be extended outside [0, 1] by straight lines.

dx--T -k (k 1)[ 1 (1 x -2)(1 (1 x -2)] 2k (2k 1)(x (1 --x ))g-l,

which is clearly negative on [0, 1].
As for the range, (see [2, Lemma 1])

(31)

where

(32)

n-1 )k (E(RANGEk)= (1-P(L>i)-P(R<-_i))= (1-( p, p
i=1 i=1 j=i+l j=l

j=l

f(x)- 1-x k-(1-x)

is obviously symmetric and concave on [0, 1]. As for the alternate rule, (see [2, Thm.
2])

(33) COSTA E(RANGE2k). [
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We will now present a counterexample to Theorem 2 to show that the symmetry
assumption may not be dropped.

Counterexample. The greedy permutations can be described in two different forms
that are equivalent when/" is a symmetric function;

(i) place the shortest room at the lowest end; or
(ii) minimize the height of the first wall to be erected.
When ]" is not symmetric, (i) and (ii) are not necessarily equivalent. Neither yields

an optimal permutation. We will show by example that even a permutation satisfying
both (i) and (ii) may fail to be optimal. Let x =0.2, X2--X3 =0.4 and define f on
[0, 1] by

f(x) min {0.5 +x, 0.75(1 -x)}.

If xl is placed last (lowest end, lowest first wall of height 0.15) the sum of the heights
of the two inner walls is f(0.4) +f(0.8) 0.45 + 0.15 0.6; whereas, if x is placed first
(highest end, first wall of height 0.25), the sum of the heights is f(0.2)+f(0.6)=
0.25 + 0.3 0.55. The greedy and optimal solutions are shown in Fig. 2.

0.5

0.4

0.3

0.2

0.1

0.0
0.2 0.4 0.6 0.8 1.0

FIG. 2. Comparison o] greedy and optimal wall placements,
Optimal Greedy
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A MATHEMATICAL MODEL FOR THE VERIFICATION
OF SYSTOLIC NETWORKS*

RAMI G. MELHEM" AND WERNER C. RHEINBOLDT$

Abstract. A mathematical model for systolic architectures is suggested and used to verify the operation
of certain systolic networks. The data items appearing on the communication links of such a network at
successive time units are represented by data sequences and the computations performed by the network
cells are modeled by a system of difference equations involving operations on the various data sequences.
The input/output descriptions, which describe the global effect of the computations performed by the
netwOrk, are obtained by solving this system of difference equations. This input/output description can then
be used to verify the operation of the network. The suggested verification technique is applied to four
different systolic networks proposed in the literature.

Key words, systolic networks, verification, data sequences, causal operators

1. Introduction. Systolic architectures, pioneered by H. T. Kung, are becoming
increasingly attractive because of continuous advances in VLSI technology. This type
of network architectures has two properties very desirable in VLSI implementations,
namely, regularity and the local nature of the interconnections.

A systolic network can be viewed as a network composed of a few types of
computational cells, regularly interconnected via local data links and organized such
that streams of data flow smoothly within the network. For an introduction to systolic
architectures, we refer to [1] where further references to specific examples are given.

As an introductory example, we briefly review a simple systolic network for the
computation of one-dimensional convolution expressions [1]. More specifically, given
a sequence of numbers (Xl, x2,’", xn}, and a sequence of weights (Wl, w2," , Wk),
we want to compute the sequence (Yl, Y2," Yn+l-k} where each Yi is defined by

k

(1.1) y, wix,.j_1.
j=l

Figure 1 shows the building cell of the one-dimensional convolution network
under discussion. It is a multiply/add cell with a one-word memory to store a real
number w.

At each clock pulse, the cell receives two input data items, Xin and Yin, performs
its computation, and delivers at the next clock pulse the outputs x0 Xin and Yo
Yin + WXin. Figure 2 shows three such cells connected into a network that performs the
convolution calculation for the case k 3. The elements Xl, x.,. , xn are pumped in
at the left end of the network, each separated from the other by one time unit, and
zeros are pumped in at the right end. To illustrate the operation of the array, we show
in Fig. 3 the relative location and value of each data item at times 3, 4, 5 and 6,
where 1 is the time at which the array started its execution. By following the data
paths, we can convince ourselves that the output of the array will include the sequence
{Yl, Y2,’""", Y,,+-,}.
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Although the concept of systolic networks is very well developed, few techniques
appear to be known for a formal verification of the operation of such networks. In [2]
and [3], methods for proving correctness properties of systolic networks were given
based on proof techniques similar to those used in the verification of programs and
distributed systems [4]. These methods do not make use of the special properties of
systolic networks and hence give only rather general results.

In [5], a formal approach for the representation of computational networks was
proposed. This approach was elaborated in [6], [7], [8] where the so-called wave-front
notation was used to map algorithmic descriptions into systolic implementations.
Although this notation provides a powerful tool that can be used in the automatic
design of systolic arrays [9], it does not appear to have the flexibility needed to describe
general systolic networks.
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In this paper, we suggest a technique designed specifically for verifying the
operation of systolic networks for which the pattern of the input is known in advance.
This excludes networks for which the arrival time of the inputs is not predictable, as
in the case with the systolic priority queue suggested in [10]. In 2.1 the data sequences
are introduced to represent the data appearing on the communication links at successive
time intervals. In the same section, we discuss the causal operators which model the
computations performed by a cell of the network. This concept was primarily inspired
by corresponding approaches in systems theory [11].

In 2.2 and 2.3, we present the mathematical model on which the verification
technique is based. This model carries some of the properties of a model called
"automaton networks" [12], which in turn is a modification of the von Neumann
cellular array [13], [14]. It also carries some properties of an abstract model [15] used
by Leiserson and Saxe to prove that any synchronous system can be converted to an
equivalent systolic system.

In 3 we describe the different steps of the suggested techniques and give a simple
illustrative example. Finally, in 4, 5 and 6, we demonstrate the technique by applying
it to the verification of some realistic systolic networks that have appeared in the
literature.

2. An abstract systolic model.
2.1. Data sequences and causal relations. We define a data sequence to be an

infinite sequence whose elements are members of the set R R tO {6}, where R is the
set of real numbers and 6 denotes a special element, not belonging to R, called the
"don’t care element". We extend any operator defined on R to R in one of the
following two ways: 1) By adding the rule that the result of any operator involving 6
is 6. For example,

6 "op" x x "op" 6 6 for all x R.
This class of operators on R will be called 6-regular operators, 2) By treating 6 as a
special symbol that affects the result of the operation. This class will be called non-6-
regular operators. For example, we will consider later the binary operator @ such that
for any x, y R
(2.1) xy=x+y ifx, y#6, x6=6x=x.

Two other non-6-regular operators that will be used in 6 are the operators min and
max defined on an ordered pair (x, y), x, y R, by

and

f
min (x, y)

Y

max (x, y)={ax{x’ y}

if x, y # 6,
ifx=6or y=6,

if x, y # 6,
if x= 6 or y= 6,

where min { and max { } carry the usual meaning on R. The reason for distinguishing
between 6-regular and non-6-regular operators will become clearer in 2.3.

Let N be the set of positive integers. Then any data sequence r/ is defined as a
mapping from N to R; that is, the image element r(i), e N, is the ith element in
the sequence. The set of all data sequences, that is the set of all such mappings, will
be denoted by R * { flirt" N --> R}.
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Any arithmetic operation on R is extended to R* by applying the operation
elementwise to the elements of the sequences with 3 being the result of any undefined
operation. For example, if "op" is a binary operation defined on R, then for all
’01, ’02 R*, we have ’01 "op" ’02 ’03 where for all i N. ’03(i) is given by

"op" ’0z(i) if ’03(i) is defined,
’03(i)

3 otherwise.

We will also use scalar operations on sequences. For example, the scalar product
of a sequence ’0 R and a number w R is defined as the sequence r w.’0 R*
for which ’(i) w’0(i), N.

Given the previous definition of data sequence, we define the set of bounded data
sequences/ R* to contain those sequences having only a finite number of non-3-
elements. It is then natural to introduce the termination function T" R N such that,
for any ’0 R, T(’0) is the position of the last non-3 element in ’0; in other words"

for any ’0 R, T(’0) i--’0(i) 3 and ’0(j) 3 for j> i.

In this paper, we will denote bounded data sequences by small Greek letters and simply
refer to them as sequences. This will not cause any confusion because we will never
consider anything but bounded data sequences.

In addition to the operators extended from R to R, we may also define operators
directly on R. In general, an n-ary sequence operator F is a transformation F" [R]
R where [R] R R . R is the cartesian product space of n copies of R.
Two basic unary operators that will be frequently used in this paper are the shift
operator f and the spread operator O defined by"

fk ’0 and or ,
where

3 if i-<_ k,
’0(i)=

:(i-k) if i> k,

f3(i+:) i=1 r+2 2r+3,... (n-1)r+n,...,
st(i) r+

otherwise.

More descriptively, 1) k inserts k 3-elements at the beginning of a sequence, while 0
inserts r 3-elements between every two elements of a sequence. For example, if a l,

a2, a3, a4, 3, 3,. , then T(s) 4 and

(i) a,, 1 =< iN T(),

-3 3, 3, 3, al, a2, a3, a4, 3, 3, 3,"

02- al, 3, 3, a2, 3, 3, a3, 3, 3, an, 3, 3,. ..
It is easy to verify that the termination function generally satisfies

T(k) T(:) + k, T(Or)=(r+ 1) T(:)- r.

It is also clear that we can define a sequence operator by combining previously
defined sequence operators. For example, we might define an operator F’R R
R R as follows:
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where square brackets are used for grouping and parenthesis for enclosing the argu-
ments of the operator.

We next define a causal operator to be any n-ary sequence operator F" [R] R
which satisfies the causality property in the sense that the ith element of any of its
operands can only affect the ]th element of its image for ] > i. In order to formulate
this more precisely, assume that for any given sequences fir R, r 1, 2,’’ ", n, the
image under F is F(rtl,. , r," , n). Then F is a causal operator if by replacing
any operands fir by another sequence rt’r satisfying

7’r(t) /r(t), 1 -< < i,

the resulting image ’ -F(/1, , /’r, , /n) satisfies

sc’(t) :(t), l<-t<-i.

In other words, the value of (i) depends only on the first 1 elements of Tr, 1 -< r _-< n.
Similarly, we may define weakly causal operators for which the ith element of

the image sequence :(i) depends only on the first elements of the operands )r,
1-<_ r-<_ n, instead of the first i-1 elements. With this, it is easily seen that the
combination F1F2 (or F2F1) of a causal operator F and a weakly causal operator F2

is a causal operator. For instance, the shift operator -k is causal and the spread
operator 0 is weakly causal; hence, the combined operator kor is causal.

2.2. The abstract model. In order to define the mathematical model used in our
verification technique, we define as usual a loopless multigraph G( V, E, q_, q+) to be
composed of

(a) a set V of nodes,
(b) a set E of directed edges,
(c) two functions 0_, 0+" E V satisfying the condition that for any edge e E

(2.2) 0_(e) q+(e).

For each edge e E, the nodes q_(e) and 0+(e) are the source and destination
node, respectively, of that edge. Clearly, the condition (2.2) prevents any direct loops
in the graph. This definition of a multigraph allows any two nodes to be connected by
more than one edge in the same direction, a property that may be useful when we
represent systolic networks by this abstract model.

As usual in graph terminology, for any node v V, the edges {e; o_(e) v} directed
out of v are termed the OUT edges of v, while the edges {e; 0+(e)= v} directed into
v are termed the IN edges of v. Accordingly, the IN-degree and OUT-degree of v
are the number of IN edges and OUT edges of v, respectively. Any node v V with
IN-degree zero or OUT-degree zero is called a source or a sink, respectively. All other
nodes are called interior nodes of G. We shall use the notation Vs, VT- and Vt for
the subsets of V containing the source, sink and interior nodes of V, respectively. Of
course, the condition Vs VT-U Vt V is always satisfied.

With this notion of a multigraph, we define our abstract systolic model to be
composed of the following components:

[A1 A multigraph G( V, E, _, q+).
[A2] A coloring function col: E Cz, which maps E into a given finite set of

colors C, and hence assigns a color to each edge in E. The coloring function is assumed
to satisfy the condition that the different IN edges of a node have different colors, and
correspondingly that the different OUT edges of a node have different colors. Edge
colors y =col (e) will be denoted by lower case letter.
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[A3] For each edge e E, a sequence e R is specified.
[A4] For each interior node v e V with IN-degree m and OUT-degree n, we are

given n causal m-ary operators Fir" [/] / which specify the "node I/O descrip-
tion". More specifically, if 97J, j 1, 2,. , m, and :i, 1, 2,. , n, are the sequences
associated with the IN and OUT edges of v, respectively, then the n relations

r  (971,972, 97m), i=l,2,...,n,

are the I/O description of v. The different IN and OUT edges of v are distinguished
in the I/O description by their colors.

Since by condition [A2] all edges terminating at a given node v have different
colors, it follows that any edge e E is uniquely identified by a pair (y, v), where
y col (e) and v 0+(e). To simplify the notation, the pair (y, v) will often be written
in the form yv, and the sequence associated with that edge will be identified by the
symbol 97, where we replaced the letter y by its corresponding Greek letter 97.

For practical applications, it is generally desirable to identify the nodes of the
network by appropriate labels which correspond to the problem at hand. This means
that we introduce a set L of labels together with a one-to-one function q: V- L from
V onto L. In our examples, we usually identify the nodes with their labels directly.

Having defined the general abstract model, we next show how it can be used to
define a general systolic network.

2.3. The general systolic network. By giving a physical interpretation to each
component in the general abstract model we obtain a general systolic network. The
basic idea of this interpretation may be summarized as follows:

Each interior node represents a computational cell and each source/sink node
corresponds to an input/output cell for the overall network. To distinguish in our
figures the computational cells from the I/O cells, we depict computational cells by
circles and I/O cells by squares.

Each edge x E represents a unidirectional communication link between the two
cells it connects. The sequence associated with x then comprises the data items that
appeared on it in consecutive time units. More specifically, if : is the sequence
associated with xv, then the ith element of :, namely :(i), is the data item that
appeared on x at time t- units, where t- 1 is the time at which the network started
its operation.

For an interior node, the node I/O description describes the computation per-
formed by the cell corresponding to that node. We illustrate this with two simple
examples.

Example 1. The node shown in Fig. 4 represents a simple latch cell which produces
at any time > 1 on its output link the same data item that appeared on its input link

FIG. 4

at time t-1. At time 1, we have 97(1)= 6, which corresponds to the fact that at
the beginning of the network operation, no specific data item appeared on the output
link.
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Example 2. The operation of the multiply/add cell mentioned in 1 and shown
in Fig. 1 may be represented by the following node I/O descriptions:

(2.3a) :o ":in,

(2.3b) rto-- ’[in d’- W" :in]

where w R is a given real number and SCin, rtin, SCo and rio are the input and output
sequences of the node as shown in Fig. 5.

17o "rJin

FIG. 5

Since in any practical dynamical system any data item produced by a computational
cell at time depends only on the data provided to that cell at times less than t, we
immediately see the importance of the condition imposed in 2.2 on the node I/O
descriptions, namely that only causal operators in the sense of 2.1 are used. We also
note that with the model described above, the computational power of each cell is not
limited to simple arithmetical operations. In other words, a cell could be an intelligent
cell that can perform elaborate calculations provided that we can express these calcula-
tions in terms of causal operators.

At this point, it may be useful to note that if a 6-regular operator is used to model
a computational cell, then this cell treats 6 as a "don’t know" quantity, and con-
sequently, the result of any operation cannot be known if any of the operands is not
known. On the other hand, non-6-regular operators are used to model computational
cells which treat as a special symbol that affects the result of the operation. Hence,
each physical communication link in networks containing cells of this type should be
augmented by an additional wire to indicate whether the link carries valid data or not.
The operation of each cell is then dependent on this additional piece of information.

We call "network output sequences" those sequences associated with the IN edges
of sink nodes, and "network input sequences" those associated with the OUT edges
of source nodes. Then the system of all node I/O descriptions provides a specification
of the computation performed by the network in the form of an implicit relation
between the network input and output sequences. This relation will be called the
"network I/O description".

As a simple example, consider the hypothetical network with the graph shown in
Fig. 6. In this graph, we assume that the edges directed to the left are given the color
y and those directed to the right the color x. We also follow the naming convention
mentioned in 2.2 in identifying the different edges in the graph. To complete the
network description, a node I/O description has to be specified for each node in the

FG. 6
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graph. Assume that these are given by the following causal relations:

(2.4a) For node 1: sea f[:a+’0a],

(2.4b) no 12[a * ’0a],

(2.5) For node 2: :3 f:2,

(2.6) For node 3: ’01 =1[3’’03].

For this network, ’03 and :a are the network input sequences and "0o is the network
output sequence. In order to obtain the network I/O description explicitly, we have
to solve (2.4), (2.5) and (2.6); that is, we have to obtain an explicit expression for "0o
in terms of :a and ’03"

Generally, it is very difficult, and sometimes impossible, to derive an explicit
solution of the system of node I/O equations. In the next section, we show that this
task may be greatly simplified in the case of certain networks with a homogeneous
structure.

3. Homogeneous systolic networks. By condition [A2], any edge e E is uniquely
identified by its color and one of its incident nodes. In fact, we used this already as a
convenient means for identifying edges by their color and terminal node. Let M c CE
V1 be the set of all pairs (y, v), y CE, v VI, for which there is an edge e E with
y=col (e) and v q_(e). Then the terminal node u q/(e) is uniquely given, and
hence the successor function/z:M- VI U VT. is well defined by the association

(y, v) M, y=col (e), v q_(e)-/z(y, v) q+(e).

In other words, if there exists an edge e with color y and starting node v, then/x (y, v)
is the terminal node of e.

Given a systolic network based on the graph G { V, E, q_, q/}, a subset V[ c V1
of interior nodes is said to be a homogeneous set if:

[H1] All the nodes in V have identical IN and OUT degrees, say m and n,
respectively.

[H2] The m colors of the IN edges of any interior node v V[ are identical and
so are the n colors of the OUT edges of v. Denote the colors of the IN and OUT
edges of v by yl, y2,... ym and z 1, z2, , z n, respectively.

[H3] The node I/O descriptions of any interior node v V[ are generic in the
sense that they may be written in the form:

’/( F 2
v) (’0v,’0,.. ,’0), i=1,2, ..,n,

where Fi, 1, 2, n are given n-ary operators which are independent of the
particular node in V,/z is the successor function defined earlier in this section, and
’0,j 1,2, re, and sr,z,.), 1, 2,. , n, are the sequences associated with the
IN and OUT edges of v, respectively.

A network is said to be homogeneous if the set of interior nodes V1 in its graph
G is a homogeneous set. More generally, if there exists a partition VI=
V LI V2 U’.. U Vtk of V into k nonempty homogeneous subsets Vt1, Vt2, V/k,
then the network is said to be k-partially homogeneous.

The main advantage of having a homogeneous (or partially homogeneous) network
is that the resulting system of equations has a repetitive pattern, which, in many cases,
allows us to obtain an analytical solution to the system. This should become clearer
as we proceed with the different examples.
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To verify the operation of a systolic network, we are generally interested in its
behavior for specific inputs; that is, we wish to find the form of the network output
sequences for specific network input sequences. This is usually accomplished by sub-
stituting the given input sequences in the network I/O description and manipulating
the resulting equations to obtain the description of the network output sequences.

As a first example of our verification technique, we consider again the one-
dimensional convolution network described in 1. The graph of this network is shown
in Fig. 7, where we assumed that the edges directed to the left have the color s, while

k+2 Pk Pk-l Pk-2
"(node] node

k+

FIG. 7

those directed to the right have the color p. The nodes of the graph are identified by
the integers -I, 0, I, 2,. , k + 1, k + 2, where nodes -I and k + 2 are source nodes,
nodes 0 and k + I sink nodes, and nodes 1 through k interior nodes. The successor
function is defined for any interior node 1, 2,. , k by

i+l ify=s,
i)

i-1 if y =p.

Our goal is to verify that the network indeed produces the results of (1.1) for the
network input sequences described by

(3.1a)

(3.1b)

where

T(,) n-(k- 1), ,(t) =0, T(:) n, :(t)=

The I/O description of a typical interior node in the graph, 1 =< _<-k, is given
by the following causal relations:

(3.2a) 7ri_ 1) 7ri,

(3.2b) O’i+ "[O" -- W "lTi].

This system of difference equations is easily solved. First, note that the solution of
(3.2a) obviously is

(3.3) "n’i fk-i’n’k.
By substituting this in (3.2b) we obtain

(3.4) O’i+ -0" -t- W [-k-i+lTrk].
The solution of (3.4) is then given by Lemma 1 in the appendix as:

k

O’k+l ’ko’l - E -j-l[Wk-j+l ’ k-(k-j+l)+l "lTk]

(3.5)
j=l

k

’kO’l "- 2 "2j-l[ Wk-j+ ’lTk ]"
j=l

This is the I/O description for the network.
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In order to find the specific form of the output sequence O’k+ for the input
sequences (3.1), we substitute these sequences into (3.5) and obtain

k

-2k-1 1[O’k+ 0, %. E ,-2j- Wk_j+l 0].
j=l

By the properties P1, P2, P3 and P4 in the Appendix, this may be rewritten as

k
,-2k-1 -2(j-1)+

1=1

k

2-0 +0
1=1

k

’2k-10[’ %. ’ 0
j=l

where T(7.) T() n and Tj(t)= Wk-j+l(t)= Wk-+lXt. Finally, applying P5 of the
Appendix we find:

’2k-1 k-1 -2k-10[[, %" ,2k-1(3.6) O’k+ 0b

where 7 is defined by

T(q) n-(k-1),
k k k

(t) E qi(t+ k-j)= Y W_+,Xt+k_ Y WqXt+q-1, 1 <- t<= T(I).
j=l j=l q=l

In the last summation the index was changed to q k-j+ 1 in order to provide for
the same expression as in (1.1).

Evidently, (3.6) represents the output of the array in a clear and precise form; it
indicates that after an initial period of 2k-1 time units, the elements 7(t)= y,,
1-< t_-< n- (k-1), will appear on the output link, each separated from the other by
one time unit.

In the previous example we applied our technique to a homogeneous network.
The technique is equally applicable to k-partially homogeneous networks if k is
reasonably small. In that case, a system of difference equations is formed by writing
the generic I/O description for a typical node from each homogeneous subset of
interior, nodes V, i= 1, 2,..., k. The network I/O description is then obtained by
solving this system of equations. The back substitution network and the sorting networks
discussed in 5 and 6 are examples of 2-partially homogeneous networks. The LU
decomposition network described in [1] is a 4-partially homogeneous network that
can be verified by the same technique.

Finally, we note that the explicit derivation of the network I/O description depends
on our ability to solve the resulting system of difference equations. However, even if
these equations cannot be solved explicitly, we may still verify the operation of the
network if we have an idea about the network behavior and consequently about the
sequences on the different edges of the graph. In fact, we need to show only that for
the given input sequences, the expected sequences satisfy the system of difference
equations. We demonstrate this procedure in 6 by verifying the operation of a sorting
network for which we could not solve the system of equations explicitly.

4. A band matrix multiplication network. In [1], Kung and Leiserson suggested
a systolic network for the computation of the product of two band matrices C A, B,
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where both A and B have lower bandwidth kl and upper bandwidth k2. In this section,
we shall consider only the case k k2 k and prove formally that the suggested
network indeed produces the product matrix C. Moreover, the sequence notation used
in the verification procedure will provide an accurate representation of the I/O data
including the input required for proper operation and the timing of the output data.

In Fig. 8a we show the directed graph of the matrix multiplication network. The
nodes of the graph are regularly laid out so that each node can be labeled by a pair
(i, j) of integers, where and j are the relative position of the node with respect to
the two perpendicular axes shown in the figure. The set of colors Ce has three elements,
namely p, r, and s, and the coloring function col (.) maps the edges directed to the
southwest, southeast and north to the colors p, r and s, respectively.

The network is homogeneous; it consists of only one type of computational cell,
namely the multiply/add type shown in Fig. 8b. Its generic I/O description is given
by the causal relations"

(4. la) pi,.i-1 fpi,j,

4.1 b) "n’i- 1,j ’rri,j,

(4. lc) O’i+l,j+l ’-[O’i,j "- Pi,j * 7Ti,j]"

In line with the definition of homogeneous networks, this description is valid for any
cell (i,j), -k<-_i, j<-k.

As an illustration of the network topology and its different data streams, we show
in Fig. 8c the general network for the special case k 1, that is, for the case of two
tridiagonal matrices A and B. In the figure, the source/sink cells were omitted for
clarity.

J-axis i-axis

\ /

/

rs

color p color

FIG. 8a
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Si-1 ,J+l

Pi-1 ,J ri,j_
si,j

FIG. 8b

1,1 s, Pl

rO’l
s1’2 s2,1

Pl,0

P ,-1

FIG. 8C

In order to obtain the I/O description of the network, we have to solve the system
of difference equations (4.1), and express the network output sequences rq.,/l and
r,/l.q, -(k-1)<= q =< k + 1 in terms of the network input sequences
and tr.._,, -k <= u-<_ k. For this, consider first the simple equations (4.1a) and (4.1b)
which have the solutions

Pi,j [-k-JPi, k, 71"i,j ’k-i"tTk,j
By substituting these values into (4.1c) we obtain

(4.2) O’i+l,j+ "[O’i, + Ai,j]

where A, flk-Pi,k * ll k-irrk,.
By an inductive argument similar to the one given in the Appendix for Lemma

1, it is easily shown that for -(k 1) _-< i, j =< k + 1, (4.2) has the solution:

k+i

O’_k,j_i_ k -Jc" Ai_q,j_q,
< j,

q=l

O’i’J I k+j

[’J+ko’i_j_k,_ k d- -qAi_q,j_q, > j.
q=l

With the definition of Ai, and properties P1 and P4 we find the network output
sequences to be

i+k

i+kO.ri,k+l -k,l-i -I- q-lpi_q,k * q+k-ik,k_q+l
(4.3a)

q=l

if -(k-l)=<i= k+l,
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(4.4a)

(4.4b)

(4.4c)

(4.4d)

where

k+j

O.k+l, k+jO’l-j,-k q- E E’2q+k-ltOk-q+l,k * ’2q-17"l’k,j-q]
(4.3b)

q=l

if -(k-1)<-]<-_k.
These are the network I/O descriptions. Of course, the network is not expected

to produce the elements of the product matrix C unless the elements of the matrices
A {ai,j} and B {bi,j} are fed into the proper input links of the network with the
right timing. We will now prove that the network output sequences will contain the
elements of C if the input sequences are specified as follows:

Pu,k ’2( k+u) O2 Olu, k <-_ u <= k,

7rk, -2(k+u) 02u, -k <- u <-_ k,

O._k,u -2(2k+u) 026u, -k <- u <- k,

O’u,-k 1)2(2k+u) 02u, -k < u _-< k,

T(flu) T(au) n, T(u) n-(k + u),

and the sequences flu, au are defined as follows:
For u < 0,

0 if 1 =<t<--u,
(4.5a) tu( t)

at,t+u if -u < <- n,

0 if 1_-< t<--u,
(4.5b) flu(t)

bt+u,t if -u < <- n.

For u -> 0,

u(t) =0

fa if l_--< t_< n-u,
(4.5c) tu( t)

if n-u<t=<n,

u=(t)=bt+u,t if l<=t<=n-u,
(4.5d) to ifn-u<t<-n.

Roughly speaking, the input link Pk, -k _-< u-<_ k, contains the uth off-diagonal of the
matrix B, while the input link ru, k, -k _-< u -< k, contains the (-u)th off-diagonal of the
matrix A. Of course the exact timing of the input data is defined by the formulas (4.4).

For the sake of brevity, we consider here only (4.3a) and show that the output
links si, k+ 1, -( k 1) <_- <- k + 1, will carry the elements in the lower band of the product
matrix C A. B, including the diagonal. By a similar procedure, one can use (4.3b)
to show that the links sk+l,, -(k- 1)-< j_-< k, will carry the upper band of C.

By introducing the specifications (4.4) of the network input sequences into (4.3a),
we obtain for -(k 1) -< _-< k + 1 the following formula:

k+i
5k t+2 2

O’i,k+l I’i q" E [[-2k+2i-1020li_q :g [’ 0 jk-q+l]
q=l

k+i

/’-/’1-[’2k+2i-1 Z 020/’i-q *[’3(k-i+l)o2[3k-q+l]
q=l

k+i

/,-/q_ -2k+2i-102 E [Oi--q * ’k-i+l[3k-q+l]
q=l
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where -i fSk-i/202/‘1-i. With property P7 the product term becomes

k+i

(4.6t ri,k+l -i +f2k+2i-102 2 fk-i+ly
q=l

where T(7q) n (k + 1) and

Yqi t) tXi_q( -+" k + 1) * flk-q+l( t).

Simplifying (4.6) and using the definition of -i, we find that

k+i

-5k-i+202/,1 -5k-i+202 -5k-i+2
O’i, k+ -- 2 ")/ 02[/‘1-i "- ’ii]

q=l

where T(i) n (k + 1) and

k+i k+i

(4.7) r/i(t) 2 yq(t)= 20i-q(tff k-i+ 1)*flk-q+l(t),
q=l q=l

Finally, from the definition of /‘l--i we obtain that

’5k-i+2 02(4.8) O’i,k+l i, -( k 1) <- <- k + 1.

-(k-1)<-i<__k+l.

(4.8) describes the timing of the output data on any link si,k+l,-(k- 1) -< =< k + 1.
It indicates that on si, k+l, there will be an initial setup time of 5k-i+ 2 units, after
which the elements r/i(t), 1,2,..., n- (k- i+ 1), will appear separated each from
the other by two time units. We still need to show that r/i(t)= Ct+k_i+l,t, that is, that
si, k+l carries the (k- i+ 1)st subdiagonal of the matrix C.

To evaluate r/i(t) from (4.7), we use the definitions (4.5) to write ai-q(t + k + 1)
and/3k-q+l(t) for the values of between 1 and n-(k-i+ 1), which are the values
of assumed in (4.7). The resulting formulas are

0 if u <0 and

a(t,i,q) ifu<0 and

a(t,i,q) ifu=>0 and

0 if u=>0 and

l<-t<-q-(k+l),

q-(k+l)<t<-_n-d,

l<-t<-_n+q-(k+l),

n+q-(k+l)<t<-_n-d;

(4.9a) au(t+ d)

(4.9b)

0 if v<0 and

(t)=
b(t,q) if v<0 and

b(t,q) if v>-0 and

0 if v=>0 and

l<-t<-q-(k+l),

q-(k+l)<t<-n-d,

l<-t<-n+q-(k+l),

n+q-(k+l)<t<-n-d

where, for simplicity, we introduced the notation u q, v k q + 1, d (k + 1) i,
a(t, i, q) at+a,t+a+, and b(t, q) bt+,,, which will be used repeatedly in the remainder
of this section.

It is clear from (4.9) that the evaluation of r/i(t) by (4.7) is nontrivial and depends
on the relative values of and q. For this purpose, we consider two different cases.

Case 1. If -(k 1) <- <= O. In this case and for 1 =< q -< k + i, the inequalities
u q < 0 and v k q + 1 => 0 always hold. Moreover, we have q (k + 1) _<- 0 and
n + q (k + 1) > n d. Accordingly, we can use the above conditions to determine the
appropriate values of au(t + d) and/3(t) from (4.9), and with these in (4.7) we obtain

k+i

r/i(/) at+d,t+k+l-qbt+k+l-q,t,
q=l

l<__t<=n-d.
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By changing the summation index to j + k + 1-q this is indeed
t+k

(4.10) 7(t) at+cubj, t, l<-t<-n-d.
j=t+d-k

Case 2. If l=<i-<k+l. In this case we always have u=i-q=<v=k-q+l.
Accordingly, we divide the sum in (4.7) into the three partial sums

k+i k k+i

Y=2+ 2 + Y
q=l q=l q=i+l q=k+l

For simplicity, we refer to these three sums as Z1, Z2 and Z3, respectively, and evaluate
them separately.

In the case of Z1 Yq=l y(t), we note that the condition 1 =< q _-< implies that
v _-> u-> 0. Hence, by (4.9) we have

a(t,i,q)b(t,q) ifl<=t<=n+q-(k+l),
yq(t)

0 ifn+q-(k+l)<t<=n-d.

By standard rules of operations with summation symbols, E1 can be expressed as

a(t,i,q)b(t,q) ifl<=t<-n-k,
q=l

(4.11) 1--
Y a(t,i,q)b(t,q) ifn-k<t<=n-d.

q=t-n+k+l

kWe turn next to E2=q=i/l y(t). In this case, we have u<0<= v, q-(k+l)<0
and n + q (k + 1) > n d. Hence, from (4.9) it follows that

which gives directly

yq(t) a(t, i, q)b(t, q), l <_t<__n-d,

k

(4.12) E2 2 a(t,i,q)b(t,q), l<=t<=n-d.
q=i+l

Finally, in the case of E3 the inequality u <- v < 0 holds. Therefore, we have

which gives

y(t) {0 if l<=t<-q-(k+l),
a(t,i,q)b(t,q) ifq-(k+l)<t<-n-d,

a(t,i,q)b(t,q) if l<=t<-i,

(4.13) Y-3=q=k+l

I i a(t,i,q)b(t,q) if i<t<=n-d.
l,.q=k+l

Now rh(t) is obtained by adding the sums (4.11), (4.12) and (4.13) on three
different intervals for t. This sum is given by

k+t

a(t, i, q)b(t, q),
q=l

k+i

rh(t)= a(t, i, q)b(t, q),
q=l

k+i

2 a(t,i,q)b(t,q),
q=t-n+k+l

l<__t<_i,

i<t<-n-k,

n-k<t<=n-d.
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By changing the summation index to j + k + 1-q and substituting the appro-
priate values for a(t, i, q) and b(t, q), we obtain

"t+k

at+a,b,t, 1 <= t<= i,
j=l

t+k

(4.14) rh(t) E at+a,b,t, < t<= n- k,
j=t+d-k

at+a,b,,, n k < <- n d.
j=t+d-k

Note that (4.14) is valid for 1 -<_ _-< k / 1 while (4.10) is valid for -(k- 1) <_- _-<0.

These two formulas are equivalent to those resulting from multiplying the two band
matrices A and B, which proves that for 1, 2,. , n (k + 1) and -(k 1) _-< _-<

k / 1, we have indeed

rli(t Ct+d, Ct+k_i+l,t"

5. A back substitution network. In this section, we apply our verification tech-
nique to a systolic network that contains two different types of computational cells,
namely the back substitution network suggested in [16]. This network performs the
back substitution operation to solve the linear system of equations

(5.1) Lu=y

where L is an n n nonsingular, banded, lower triangular matrix with the band width
k + 1, and y is a given n-dimensional vector. The solution of the system (5.1) is given
by

Yi
li,

i--1
Yi .i= li, i--jUi--j

U 2 <= <- k,

Yi- f=l li,i-ui- k < <= n,
li,

where 1, is the (i, j)th element of the matrix L, and Yi and ui are the ith elements of
the vectors y and u, respectively.

Figure 9 shows the graph of the suggested network. It is a 2-partially homogeneous
network, composed of k multiply-add (M/A) type cells, and one subtract-divide (S/D)
cell. The computational cells are labeled by integers such that the cells 1 through k
are of the M/A type, and the cell 0 is the S/D cell. As for the I/O cells, we must be

si-1 si

k k+l

FIG. 9
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careful to assign labels to the sink cells because these labels will be used to identify
the network output links. The labels given to source nodes are immaterial, as they do
not affect the verification procedure, and consequently they are not shown in Fig. 9.

In the regular layout shown in Fig. 9, the edges directed to the south, north, east
and west are given the colors a, b, r and s, respectively. The set Vz of interior nodes
in G is divided into two homogeneous subsets V {0} and V {i" i= 1, 2,..., k}.
The operation of the cell represented by node 0 is described by the causal relation

(5.2) , [[0-0]+ 0]

and the operation of any M/A cell represented by a node i, 1-<_ =< k, is described by
the generic I/O description

(5.3a) Pi+l fPi, 1, 2,. , k,

(5.3b) o’i_l-’’[o’ioli*Pi], i= 1, 2,..., k,

where the 03 was defined by (2.1).
To solve the system of difference equations (5.2), (5.3a, b), we first write the

solution of (5.3a) as

(5.4) Pi -i--1/91, 1 < -< k + 1,

from which we find that

(5.5) Pk+l ’kpl"

Substitution of (5.4) into (5.3b) then gives

(5.6)

where Ai a. (C-lpl). Using an inductive argument similar to that in the Appendix
for the proof of Lemma 1, we can show that the solution of (5.6) is

k

(5.7) tr0 fktrk0) Z’ ’J[olj:’J--lpl]
j=l

where Y/is defined by j--1 ’oj ’O1 ( ’o2)" "() "Ok.
For given/91, the network output sequence Pk/ is easily obtained from (5.5). The

next step will be to eliminate r0 from (5.2) and (5.7) and to obtain pl explicitly in
terms of the network input sequences rk, /30 and cj, 0, 1,..., k. Unfortunately, if
we try to solve (5.2) and (5.7) simultaneously, we will obtain a recursive equation in
Pl, which is very difficult to manipulate in general. For this reason, we consider only
specific forms of the network input sequences, namely those required for the proper
operation of the network. They are given by

(5.8a) Ol ’k+ioAi, O, 1," ", k,

(5.8b) /30 fk0’o,
(5.8c) r 0,

with T(Ai) n- i, T() T(’O) n and

li( t) It+i,t, 1 <= <= n i,

’o(t) yt, l<=t<--n,

(t)=O, l<=t<-n.
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Substituting (5.8) into (5.2) and (5.7), we find that

(5.9a) o, a[[a0n o] + a"0o],
k

(5.9b) O-o flk0 Y’
j=l

Since 6-x 6 for any x R, (5.9a) implies the existence of a sequence : such that

(5.10) p "k+l0

whence, by (5.9b), we find that

o=a0 ,.(R) E’
j=l

where we used property P2 to interchange -2j and 0. If in addition we let

(5.11) y= t E’ f[Xj, ],
=1

then we can substitute for ro and 01 in (5.9a) and obtain

a+’0 [[a0,7 -a0r] + 0Xo],
which reduces to

(5.12) = [r/- 7]+ Ao.

For an explicit description of the sequence 3’, we need to examine (5.11) more

closely. We start by evaluating the product term, namely

W[;, :] Wm
where

(5.13a) T(tz) =min {T(&j), T()}-< n-j

and

(5.13b) (t) hi(t), (t).

This enables us to rewrite (5.11) as

k

(5.14) 3’= t) E’ J]JLj,
j=l

From (5.14) and the definition of the @ operator, we conclude that T(3’)=
max {T(), T(/zi) +} n, and consequently from (5.12) that

T() min { T(r/), T(3’), T(ho)} n.

Using this in (5.13a) we easily see that T(tzj)= n-j. Now, we apply property P6 to
(5.14) and explicitly describe 3’ by

T(3")= T(,)= n
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and

Z /zi(t- j),
y(t)

Z /zj(t- j),
j=l

t=2,3,... ,k,

t=k+l,k+2,... ,n.

Finally, with these specific descriptions of r/, Ao and y, we directly find the explicit
form of the sequence in (5.12) to be

( t) rl t) y( t)
A0(t)

that is,

((t)

Yt
It,

Yt--E=I (t--j)lt,t-y

Yt--’,=l (t-j)lt,t-
It,

2=< t=< k,

k+l<__t<=n.

A comparison of this expression with the formula given in the beginning of the
section for the solution of (5.1) shows readily that

Pk+l 2k+l0
where T(s) n and :(t) ut.

6. A sorting network. The sorting network [17] described here accepts an indexed
set X={Xl,..., Xk} of k different real numbers, xiR, iK ={1,..., k}, and pro-
duces as output the same numbers sorted in ascending order. Figure 10 shows the
general graph of the network and the labels given to each node. In the figure, the
edges directed to the right and left are colored p and s, respectively.

k+2 Pk Pk-1 Pk-2

k+l Sk-1

FIG. 10

For any j K, let Yl,""", Y be the result of sorting the j elements Xl,""" Xj of
X in ascending order. Then for all (i, j) of D {(i, j) K K; 1 =< =< j =< k }, the ranking
function fx D --> X is defined by fx i,

With this, we will prove that if the network input sequence rrk is given by

(6.1) 7rk =0
where T()= k and (t)--xt, then the network output sequence O’k+ has the form

-2k-1(6.2) O’k+ 0Y]

where T(r/)= k and r/(t)=f(t, k).
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The network considered in Fig. 10 is a 2-partially homogeneous network. The
cell labeled 1 is a simple latch cell whose operation is described by

(6.3a) 0"2 ’ 7’/"

while the I/O description of the cells 2,. , k is given by

(6.3b)

(6.3c)

’77"i-- [- max ’71"i, O" ),

O’i+ [’ min "B’i, O"

where max and min were defined in 2.1. In other words, the cells 2,..., k are
comparison cells which operate as follows: At any time t, if neither one of the two
inputs ri(t) or ri(t) is a "don’t care element" 6, then the cell compares the two inputs,
and produces as output at time + 1, the largest and the smallest numbers on the links

Pi-1 and si/l respectively. However, if any of the inputs is 6, then the cell acts as a
simple latch cell; that is, if O’i(t)= 6 or ,-/7-i(t)= 6 then

7ri_a(t+ 1) Try(t) and o’i+(t+ 1) o’s(t).

To obtain the network I/O description, the system of equations (6.3a, b, c) should
be solved for rk/l. However, the recursive nature of (6.3b) and (6.3c) makes this very
difficult, if not impossible. One alternative is to suggest a tentative value for the
sequences ri and o’i, and then to verify that these suggested solutions indeed satisfy
(6.3). Of course, any assumed value for ri should reduce to the input sequence (6.1)
for k.

Let us assume that ri and ri are given by

(6.4a) 7"i" ’ k ooli,

(6.4b) O" [- k+i-20i

where T(ai) T(fli) k,

and

l<=i<=k,

2=<i=<k+1,

Oti( t) ! xt’

tmax {x, fx(t- i, t- 1)},

fx(t,t+i-2), l<=t<=k+l-i,
fli(t)

fx(t,k), k+l-i<t<=k.

It is very easy to verify that (6.4a) reduces to (6.1) for k. Hence, our next step
will be to check that (6.4) does satisfy (6.3). For i= 1, (6.4a) reduces to

71" [’ k O0l

where T(a)= k, and

al(t) {xt, 1,

max {xt, fx(t- 1, t- 1)}, 1 < t<= k.

Since fx(j, ]) is the maximum element in {Xl, x2," ’, xj}, it follows that xl fx(1, 1)
and max {x,, fx (t 1, 1) } fx (t, t). Hence, we may write

al(t)=fx(t,t), l<=t<=k.

But from (6.4b), we obtain for i= 2
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where T(fl2) k and f12(/)=fx(t, t), 1 =< t=< k, which proves that 2--’ O1, and hence
0"2 ",7./.1.

The next step is to show that (6.4) does satisfy (6.3b). For this, we substitute (6.4)
into the right-hand side of (6.3b) and denote the resulting sequence by p. This gives

p fl max (flk-ioai, 2<_i<__k.

Using property P2 to interchange 1)2(i-1) and 0 in the second operand of max,, we obtain

(6.5) p -k-(i-1)Oy

where i =max, {i, [-i--l[i}" By definition of max,, it follows that T(yi)= T(ai)-- k,
and

"j/i (t)
max {ci(t), fli(t- + 1) },

Hence with the definition of cei(t) and i(t) we obtain

xt, 1 <= <- i- 1,

yi(t)= max{xt, fx(t-i+l,t-1)}, t=i,

max{max{xt, fx(t-i,t-1)},fx(t-i+l,t-1)}, i<t<=k.

Because max {max {a, b}, c} =max {a, b, c}, and fx(t-i, t-1)<fx(t-i+ 1, t-l),
we may rewrite yi as

xt, 1 <= t<= i- 1,
y(t)

tmax {x,, f(t-(i- 1), t- 1)}, i- 1 < t<_- k,

from which we find that yi(t)= ai-l(t), and hence, by (6.5) and (6.4a), that p qTi_ 1.

This proves that (6.3b) is satisfied for the values of tri and 7ri given by (6.4).
Finally, to check that (6.4) does satisfy (6.3c), we substitute (6.4) into (6.3c) and

denote the resulting sequence by r. This gives

" f min {[’k-iooi,[-k+i-Zofli}--’[-k-i+lOmin6 {Ogi,[’i--li}, 2<=i<=k.

In view of

where T(q) T(fli) k and

[min {ai(t+ i- 1), fli(t)},
Pi( t) [.[3i( t)

we write

(6.6) ’k+(i+1)-2 0(49i.

l<-t<-k-(i-1),
k-(i-1)<t<-k,

l<_t<_k-(i-1),
k-(i-1)<t<-k.

min {max {xt+i_l, f(t- 1, t+ i-2)}, f(t, t+ i- 2)},
pi( t)

[fx(t,k),

From (6.6) and (6.3c), it follows that " ri+l only if (i--" Ji+l" To prove this, we
substitute the definitions of i(t + i--1) and fli(t) into Pi(t) and obtain
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But from Lemma 2 in the Appendix, and the fact that fx(t, t+i-1)=fx(t, k) for
k-i+ 1, we may write i(t) as

qi(t)=fx(t,t+i-1), l<=t<-k-i,
fx(t,k), k-i<t<=k.

It follows that i(t)= fli+l(t) and therefore that -= tr+l. This completes the proof that
the sequences 7ri and cr of (6.4) indeed satisfy the system of equations (6.3).

Now that (6.4b) is known to be a valid formula for the sequence tri, we can easily
obtain the network output sequence trk/l by setting k + 1. This gives

O’k+ =’2k-lOk+l

where T(flk+l) k and flk+(t) --fx(t, k), 1 <- t=< k, which is identical with the expected
output sequence (6.2).

7. Concluding remarks. This work is meant to contribute to the area of systolic
architectures in three different ways by providing, namely, a mathematical model for
systolic networks, an unambiguous description of its input and output data, and a
technique for the verification of its operation.

The central concepts in the present model are those of data sequences and sequence
operators. Although we only defined the few operators that were used in the examples,
it should be clear that other sequence operators may be introduced to model other
types of computational cells.

Because of the nature of our examples, the non-8 entries in the data sequences
were restricted to be members of the set R of real numbers. In a more general setting,
R may be any set of items that can be transmitted on the communication links of the
network, provided that the operators are defined appropriately.

A further step in this area is to develop a more complete sequence algebra to
provide a basis for a solvability theory of the resulting system of difference equations
on sequences. More specifically, it would be desirable to determine under which
conditions an explicit analytical solution for the system of difference equations can be
obtained. For a given network, this might determine the properties to be satisfied by
the successor function /z and the node I/O operators in order to verify analytically
the operation of the network. If a sufficiently flexible algebra of this type were available,
our model might prove to be very powerful in the design of new systolic networks.

At this point, we note that even if we cannot solve the resulting system of equations
analytically, we can still use a numerical iterative procedure to solve it. This approach
is very close to the simulation of systolic networks, but appears to be more general
and systematic [18].

Finally, we note that throughout this paper we assumed the systolic network to
operate synchronously. However, the same model and techniques can be used for
asynchronous networks. The only difference is in the interpretation of the ith element
of a data sequence, which now has to denote the ith data item that appeared on a
communication link instead of the data item that appeared on that link at time i.

Appendix. In the first part of this Appendix, we list some properties of sequence
operators that have been used in the paper. The verification of these properties is
straightforward from the definitions of the operators involved. In the second part of
the Appendix, we prove two lemmas; the first gives an analytical solution to a difference
equation that appears frequently in the verification of networks containing multiply/add
cells, while the second one proves an equality that was needed in 6.
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Let s, " and /j, j 0, 1, 2, , k, be sequences in R, and w 6 R. Then"
Property P1.

Property P2.

Property P3.

’-(r+l)kor= or"k,

w. [o] O[w. ], w. [’:] ’[w. ].

Property P4. For any binary operator "op" extended from R to R with the
property that "op" 6 6, we have

kEs "op" ’] kS "op"Sr, or[ "op" ’] or "op" or.
Property P5. If /j, j 1, 2,. , k, are such that T(,/j) n, then

k

j=l

where T(rt) n-(k- 1) and r(t) =Ej r/j(t+ k-j).
The next result uses the (R) of (2.1).
Property P6. Let the sequences rb, 0, 1," , k, satisfy T(rh.)= n-]. Then

where T(y) n and

t-1

2 rb(t-J),
j=O

,(t)

E rb(t- J),
j=o

Property P7. Given , " /. Then

where y is described by

T(y)=min {T(r)-r, T()} and

LEMMA 1. The difference equation

(A.1) cr/ fr + +/-, 1, 2," , k + 1,

has the solution

r-1

(A.2) err --’-r-lo" -- Z ’J-lAr-p
j=l

t=l,2,... ,k,

t=k+l,k+2,. ,n.

T(t)=(t+r).(t).

r=2,3,...,k+l.

Proof. The proof uses induction on i. Evidently, for i= 1 in (A.1) we obtain

O-2 ’O- -- mwhich is identical to (A.2) for r 2. Hence, assume that for any r 1, 2,..., k, O’r is
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given by (A.2); then from (A.1) it follows that

O’r+ =-O’rr-Ar=- ’r-lo" -t-" ]-lr_

r-1=+ r-i+r
r--1

+ r-
]=0

+ -+1-,

which proves that + is also given by (A.2).
LEMMA 2. LetL be the ranking function for the setX {x, x2, , x, }, as defined

in 6. Then

(A.3) min {max {x, L(i- 1, k- 1)}, L(i, k- 1)} =L(i, k).

Proof. Let y,..., y_ be the result of sorting x,..., x_ in ascending order,
and let z,. ., z be the corresponding result for x,. , x. Hence, f(i- 1, k- 1)
y_, L(i, k-1)= Yi and L(i, k)= z. Now consider the following cases:

Case 1. If x, < y_ < y then the left side of (A.3) is

min {max {x, Yi-}, Y} min {Yi-, Yi} Y-.

Since z, , z are obtained from y,. , y_ by inserting x in some position before
Y-I, we immediately see that y_ z.

Case 2. If Y-l < x < y, then the left side of (A.3) is

min {max {x, Yi- }, Yi} x,

and in this case it is clear that x z.
Case 3. If y_ < y < x, then the left side of (A.3) is equal to y, which in turn is

equal to z because, in this case, x is inserted in some position after y.
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SIMPLE LINEAR-TIME ALGORITHMS TO TEST CHORDALITY OF
GRAPHS, TEST ACYCLICITY OF HYPERGRAPHS, AND SELECTIVELY

REDUCE ACYCLIC HYPERGRAPHS*

ROBERT E. TARJAN? AND MIHALIS YANNAKAKIS"

Abstract. Chordal graphs arise naturally in the study of Gaussian elimination on sparse symmetric
matrices; acyclic hypergraphs arise in the study of relational data bases. Rose, Tarjan and Lueker [SIAM
J. Comput., 5 (1976), pp. 266-283] have given a linear-time algorithm to test whether a graph is chordal,
which Yannakakis has modified to test whether a hypergraph is acyclic. Here we develop a simplified
linear-time test for graph chordality and hypergraph acyclicity. The test uses a new kind of graph (and
hypergraph) search, which we call maximum cardinality search. A variant of the method gives a way to
selectively reduce acyclic hypergraphs, which is needed for evaluating queries in acyclic relational data bases.

Key words, graph algorithm, acyclic data base scheme, sparse Gaussian elimination, graph search,
hypergraph

1. Introduction. We shall use more-or-less standard terminology from the theory
of graphs and hypergraphs [3], some of which we review here. A hypergraphH V, E)
consists of a set of vertices V and a set of edges E; each edge is a subset of V. A graph
is a hypergraph all of whose edges have size two. The graph G(H) of a hypergraph
H is the graph whose vertices are those of H and whose edges are the vertex pairs
{v, w} such that v and w are in a common edge of H. Two vertices of a graph G are
adjacent if they are contained in an edge. A path in G is a sequence of distinct vertices
V0, /’)1,""", Vk such that vi and vi+ are adjacent for 0 =< < k. A cycle is a path v0,

Vl,"" ", Vk such that k => 2 and v0 and Vk are adjacent. Vertices vi and 1A(i+l)mod(k+l
for 0_-< =< k are consecutive on the cycle. A clique of G is a set of pairwise adjacent
vertices. A hypergraph H is conformal if every clique of G(H) is contained in an edge
of H. A graph G is chordal if every cycle of length at least four has a chord, i.e., an
edge joining two nonconsecutive vertices on the cycle. A hypergraph H is acyclic if
H is conformal and G(H) is chordal.

Chordal graphs arise in the study of Gaussian elmination on sparse symmetric
matrices [12]. Acyclic hypergraphs arise in the study of relational data base schemes
[1], [7], [21]; they are powerful enough to capture most real-world situations but
simple enough to have many desirable properties [1], [2], [9], [18]. Rose, Tarjan and
Lueker [15] have given an O(n+m)-time algorithm (henceforth called the RTL
algorithm) to test whether a graph is chordal. Yannakakis [19] has extended the
algorithm to the problem of testing whether a hypergraph is acyclic. In this paper we
propose a simplified version of the RTL algorithm that can be used for testing both
chordality of graphs and acyclicity of hypergraphs. In 2 we develop the algorithm as
it applies to graph chordality testing. In 3 we modify the algorithm for hypergraph
acyclicity testing. Besides leading to a method simpler than the RTL test, our analysis
provides additional insight into the structure of chordal graphs and acyclic hypergraphs.
In 4 we use this insight to develop a simple linear-time algorithm for selectively
reducing acyclic hypergraphs, a problem that arises in evaluating queries in acyclic
relational data bases.

* Received by the editors October 7, 1982, and in revised form May 23, 1983.

" Bell Laboratories, Murray Hill, New Jersey 07974.
1We shall use n to denote the number of vertices and m to denote the total size of the edges in a

hypergraph.
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2. Testing chordality of graphs. In this section we shall freely use results of [14],
[15]. A discussion of chordal graphs and their importance in Gaussian elimination can
be found in [14]. Let G =(V, E) be a graph. Let a: V->{1, 2,..., n} be a numbering
defining a total ordering of the vertices of G. We shall use the notation v < w to
mean a(v)< a(w). The fill-in produced by this ordering is the set

F(a) {{v, w}]{v, w} E and there is a path from v to w containing only v, w,
and vertices ordered before both v and w}.

7(8)

6(7)

8(9)

/ 5(6)

1(3)
4(5)

4(5)[ 5(6)

7(8)

8(9)[
9(10)

2(3 o)

1(2)

FIG. 2. A chordal graph numbered by maximum cardinality search. Ordering is zero fill-in. Followers
of vertices are in parentheses.

The elimination graph of G with ordering a is G(a)=(V, EUF(a)). (See Fig. 1.)
Note that G(a) is a subgraph of the transitive closure of G. If F(a) =, a is a zero
fill-in ordering of G. (See Fig. 2.)

LEMMA 1 [15]. A pair {v, w} is in EU F(a) if and only if either {v, w} E or
there is a vertex u such that {u, v}, {u, w} E U F(a) and u is ordered before both v
and w.

LEMMA 2 [15]. An ordering is zero fill-in if and only if for all distinct {u) v},
{u, w} in E such that u is ordered before both v and w, { v, w} E.

LEMMA 3 [15]. Any ordering is a zero fill-in ordering of the corresponding graph
G().
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THEOREM 1 [14]. A graph G is chordal if and only if it has a zero fill-in ordering.
Remark. Lemmas 1 and 2 and Theorem 1 are implicit in the work of Dirac [6]

and Fulkerson and Gross [8] on chordal graphs, although they did not consider the
notion of fill-in.

The RTL chordality-testing algorithm consists of two steps:

Step 1. Compute an ordering a of G that is zero fill-in if and only if G is chordal.
Step 2. Compute the fill-in produced by a. G is chordal if and only if F(a)= .
The algorithm we shall describe consists of simplified methods for carrying out

steps one and two. Step 1 of the RTL method consists of numbering the vertices from
n to 1 in decreasing order using lexicographic search, defined as follows: For each
unnumbered vertex v, maintain a list of the numbers of the numbered vertices adjacent
to v, with the numbers in each list arranged in decreasing order. As the next vertex
to number, select the vertex whose list is lexicographically greatest, breaking ties
arbitrarily. Although somewhat complicated, lexicographic search can be implemented
to run in O(n / m)-time.

We shall derive a sufficient condition for an ordering of a chordal graph to be
zero fill-in. This condition holds not only for lexicographic search but also for a simpler
kind of search that we call maximum cardinality search: Number the vertices from n
to 1 in decreasing order. As the next vertex to number, select the vertex adjacent to
the largest number of previously numbered vertices, breaking ties arbitrarily. (See
Figs. 1 and 2.)

LEMMA 4. Let G V, E) be a chordal graph and let
has the following property, then a is zero fill-in:

(P) If u < v < w, u, w} E, and { v, w} E, then there is a vertex x such that
v <x, {v,x}E, and {u,x}eE.

Proof. Suppose a has property P. Let Vo, Vl,’", Vk be an unchorded path for
which a(vg) is maximum, such that k-> 2 and

(Q) For some in the interval2 [1, k-1], the following inequalities hold:

I)0 /-)k a /)1 a /)2 a /)i and vi <a /)i+1

(A path is unchorded if any two nonconsecutive vertices are nonadjacent.) We shall
derive a contradiction, thus showing that no unchorded path has property Q.

Since v0 and Vl are adjacent but not Vo and Vk, there is by property P a vertex x
such that Vk < X and uk but not /)1 is adjacent to x. Let j> 1 be minimum such that

v is adjacent to x. Since (3 is chordal, x is not adjacent to v0, for otherwise Vo, Vl, , v,
x would be an unchorded cycle. Thus if v0 > x, the path Vo, Vl," v., x has property
Q; if x > Vo, the path x, v, v_,. , v0 has property O. Either case contradicts the
choice of Vo, v,. , Vk as the path with c (Vk) maximum having property Q. Therefore
no path has property Q.

Now suppose {u, v} and {u, w} are distinct edges such that u is ordered before
both v and w by a. If v and w were not adjacent, either v, u, w or w, u, v would
have property O. Thus v and w must be adjacent. Since this holds for any such {u, v}
and {u, w}, it follows from Lemma 2 that a is zero fill-in.

THEOREM 2. Any ordering a generated by maximum cardinality search hasProperty
P and thus is zero fill-in if G is chordal.

Proof. Let a be an ordering generated by maximum cardinality search. Suppose
u <, v < w and w is adjacent to u but not to v. When v is numbered, v must be

Throughout this paper we shall use the notation [il, i2] to denote the set of integers {ilil -<- _-< i2}.
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adjacent to at least as many numbered vertices as u. Thus, since u but not v is adjacent
to w, v is adjacent to some other numbered vertex x not adjacent to u. Since this
holds for all such u, v, w, ordering c has Property P.

Remark. It is easy to show that any ordering generated by lexicographic search
also has Property P.

We can implement maximum cardinality search as follows. We maintain an array
of sets set (i) for 0-< _-< m- 1. We store in set (i) all unnumbered vertices adjacent to
exactly numbered vertices. Initially set (0) contains all the vertices. We maintain the
largest index j such that set (j) is nonempty. To carry out a step of the search, we
remove a vertex v from set (j) and number it. For each unnumbered vertex w adjacent
to v, we move w from the set containing it, say set (i), to set (i+ 1). Then we add one
to j and while set () is empty repeatedly decrement ]. If we represent each set by a
doubly linked list of vertices (to facilitate deletion) and maintain for each vertex the
index of the set containing it, the search requires O(n + m) time. (Since j is incremented
n times and is never less than -1, the total time to manipulate j is O(n).)

The following program written in a variant of Dijkstra’s guarded command
language [5], implements maximum cardinality search. For any unnumbered vertex v,
size (v) is the number of numbered vertices adjacent to v. If v is a numbered vertex,
we define size (v) to be-1.

MAXIMUM CARDINALITY SEARCH.

local L v;
for e [0, n- 1 ]-> set (i):= rof;
for v vertices -> size v) := 0; add v to set (0) rof;
i:= n; j:=0;
do i_> 1->

v := delete any from set (j);
a(v) :: i; c-(i) :: v; size (v) := -1;
for { v, w} such that size (w) >= 0

delete w from set (size (w));
size (w) := size (w) + 1;
add w to set (size (w))

rof;
i:=i-1;
j:=j+l;
do j -> 0 and set (j) --> j := j- 1 od

od;

Let us turn to Step 2 of the chordality test. We shall describe an algorithm that
computes the fill-in produced by an arbitrary numbering c of an arbitrary graph G
in O(n+m’) time, where m’ is the number of edges in G(a). The algorithm, a
simplification of the RTL metho4, was discovered by Greg Whitten [17], who presented
it at the SIAM Symposium on Sparse Matrix Computations, held in Knoxville, Ten-
nessee in 1978, but never published it, even in the conference proceedings.

Let G be a graph, let c be an ordering of G, and let G(c)- (V, E U F(c)) be
the elimination graph of G with ordering a. For any vertex v, let f(v), the follower
of v, be the vertex of smallest number that is both adjacent to v in G(a) and has
number larger than that of v. (See Figs. 1 and 2.) Note that a vertex need not have
a follower. We define fi(v) for i=>0 by f(v)= v, fi+l(v)--f(fi(v)).

LEMMA 5. If {v, w}6EUF(c) with v <4 w, then fi(v)=w for some i>=l.
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Proof. We use induction on a(v) from n to 1. If f(v) w, then v <4f(v) <4 w
by the definition of f. By Lemma 1, {f(v), w} E U F(a). By the induction hypothesis
fi(f(v)) w for some i_> 1, i.e., fi+l(v)= w.

THEOREM 3. A pair {v, w} with v < w is in E U F(a) if and only if there is a
vertex x such that {x, w} E and fi(x)= v for some i>-O.

Proof Let {v, w} be a pair with v < w. Suppose there is a vertex x such that
{x, w} E and fi(x) v for some -> 0. Then x --<4 v by the definition of f. Since a is
a zero-fill-in ordering for G(a) by Lemma 3, {v, w} EtA F(a) by the definition of
fill-in.

Conversely, suppose {v, w} E F(a). We prove by induction on a(v) that there
is a vertex x such that {x, w} E and fi(x) v for some i=>0. If {v, w} E, x v and
i=0 satisfy the theorem. Otherwise, by Lemma 1 there is a vertex u such that {u, v},
{u, w} E t,J F(a) and u <4 v. By the induction hypothesis there is a vertex x such
that {x, w}E and fi(x)=u for some i_->0. By Lemma 4, fJ(u)=v for some j>_-0.
Thus x and i+j satisfy the theorem. [:]

Theorem 3 leads to a fast algorithm for computing fill-in. We process the vertices
in order from the vertex numbered 1 to the vertex numbered n. When processing
vertex w, we compute the set A(w) of all vertices v such that {v, w} E U F(a) and
v <4 w; we also find all vertices v such that f(v) should be w, and define f(v)= w.
To compute A(w) we initialize it to contain all vertices v such that {v, w} E and
v < w. Then we repeat the following step until it no longer applies" Select a vertex
v A(w) such that f(v) has been computed (i.e., f(v) < w) and f(v) A(w), and
add f(v) to A(w). After constructing A(w), define f(v) to be w for all vertices v A(w)
such that f(v) has not yet been defined.

We shall implement a variant of this algorithm to run in O(n + m’) time. We use
two arrays, f and index. When a vertex v with a(v)= is processed, we initialize f(v)
to be v and index (v) to be i. The first time we process a higher numbered vertex w
adjacent to v, we define f(v) to be w. Every time we process a higher numbered vertex
w adjacent to v, we define index (v)= a(w). Thus index (v) is always the maximum
number in the set v} U w[{ v, w} E and w has been processed}. This idea of an index
array is due to Gustavson [11]. To process a vertex w, we repeat the following step
for each vertex v such that {v, w} E and v < w"

General step. Initialize x to v. While index (x)< a(w), set index (x)= a(w), add
{x, w} to E U F(a), replace x by f(x), and repeat. When index (x) a(w), if f(x) x
set f(x)= w.

The following program implements this method"

FILL-IN COMPUTATION.

local v, w, x;
for [1, n]-

w:=a-l(i); f(w) := w; index (w):=
for v, w} E such that a(v) < -x:--
do index x <

index (x) := i;
add {x, w} to E U F(a);
x:-f(x)

od;
if f(x) x - f(x) :-- w fi

rof
rof;
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This fill-in algorithm can be used not only in Step 2 of the chordality test, but
also in the symbolic factorization step of Gaussian elimination on sparse symmetric
matrices [16]. If we only want to test for zero fill-in, as is the case in Step 2 of the
chordality test, we can restate the algorithm as follows. Compute f(v) for every vertex
v. For every {v, w} E such that v <4 w, verify that either {f(v), w} E or f(v) w.
The following program performs this test:

TEST FOR ZERO FILL-IN.

for [1, n]-
w:= a-l(i); f(w) := w; index (w):= i;
for v such that v, w} E and a(v) < -index (v) := i; if f(v) v -> f(v) := w fi
rof;
for v such that { v, w} E and a (v) <

if index f v < - reject fi
rof;

rof;
accept;

Since the zero-fill-in test terminates as soon as it detects a fill-in edge, it runs in
O(n + m) time, rather than in the O(n + m’) time needed to actually compute the fill-in.

This completes our implementation of Steps 1 and 2 and gives us a simple
O(n + m) -time chordality test.

Remark. In both the fill-in computation and the zero-fill-in test we can replace
the array index by a bit array, say test, such that test (v)=true when vertex w is
processed if and only if index (v)= a(w). This saves space but requires an extra pass
after each vertex is processed, to reset test (v) to false for each v such that {v, w}
E UF(a) and v <4 w.

3. Testing acyclicity of hypergraphs. Let H (V, E) be a hypergraph. We shall
assume without loss of generality that every edge is nonempty and every vertex is
contained in at least one edge. H is acyclic if and only if either of the following
equivalent conditions holds [1]:

(1) All the vertices of H can be deleted by repeatedly applying the following two
operations:
(i) delete a vertex that occurs in only one edge;
(if) delete an edge that is contained in another edge.

(2) There is a forest F (called the join forest) with the edges of H as vertices,
such that for every vertex v of H, the subgraph of F induced by those vertices
(edges of H) that contain v is connected.

Condition (1) leads directly to an algorithm for testing the acyclicity of a hyper-
graph [10], [20]. Another algorithm based on condition (2) appears in [4]. Both of
these algorithms run in time quadratic in the size of the hypergraph. Yannakakis [19]
has given a linear-time algorithm based on the definition of acyclicity, using techniques
from the RTL algorithm. We shall use the techniques of 2 to obtain a simplified
linear-time test.

Our algorithm for testing hypergraph acyclicity consists of two steps, analogous
to those of the graph chordality test:

Step 1. Compute an ordering a of G(H) that is guaranteed to be zero fill-in if
H is acyclic.

Step 2. Check that a is zero-fill-in and that H is conformal.
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Since G(H) is chordal if H is acyclic, we could carry out Step 1 by applying
maximum cardinality search to G(H). However, G(H) may have size quadratic in
the size of H; consider for example the case of a hypergraph with only a single edge,
containing all the vertices. Therefore we shall use the following variant of maximum
cardinality search, which operates directly on H: Number the vertices from n to 1 in
decreasing order. As the next vertex to number, select any unnumbered vertex in an
edge of H containing as many numbered vertices as possible, breaking ties arbitrarily.
We call this method maximum cardinality search on hypergraphs.

THEOREM 4. SupposeH is acyclic. Then any numbering a generated by a maximum
cardinality search ofHcan also be generated by a maximum cardinality search of G(H),
and is thus zero-fill-in on G(H).

Proof. Consider applying maximum cardinality search in parallel to H and G(H).
We must show that each time we choose a vertex v to number in H, we can choose
the same vertex to number in G(H). Suppose vertices have been numbered identically
in H and G(H), for some i_-> 0. For any vertex v, let B(v) be the set of numbered
vertices adjacent to v.

We first prove that if w is any vertex that can be numbered next in G(H), then
there is some edge R of H such that B(w) is exactly the set of numbered vertices in
R. Let w be such a vertex, i.e., suppose IB(w)l is maximum among unnumbered
vertices. Since G(H) is chordal and maximum cardinality search generates zero-fill-in
numberings on chordal graphs, every pair of vertices in B(w) must be adjacent in
G(H). Thus w} B(w) is a clique in G(H). Since H is conformal there is some edge
R of H such that {w}t_J B(w)_ R. Furthermore R cannot contain any numbered
vertices not in B(w), since all vertices in R are adjacent to w in G(H). This means
that B(w) is exactly the set of numbered vertices in R.

Now let w and R be as above and suppose v can be numbered next in H; that
is, v is an unnumbered vertex in an edge S of H containing as many numbered vertices
as possible. Then S contains at least as many numbered vertices as R, and since every
numbered vertex in S is adjacent to v in G(H), the choice of w means that [B(v)[
IB(w) I. Thus v can be numbered next in G(H). [3

During a maximum cardinality search of a hypergraph, we call an edge exhausted
if all vertices contained in it are numbered and nonexhausted otherwise. If R is a
nonexhausted edge containing as many numbered vertices as possible and we number
a vertex in R, then if R is still nonexhausted it still contains as many numbered vertices
as possible. Thus after selecting a nonexhausted edge having as many numbered vertices
as possible, we can number all its unnumbered vertices consecutively before selecting
another edge. This restricted form of maximum cardinality search facilitates testing
G(H) for chordality and H for conformity. The following program implements this
method. (See Figs. 3 and 4.) In addition to numbering the vertices, the program
performs the following computations: It numbers the selected edges from 1 to k in
order of their selection; if S is the ith edge selected, then S=R(i) and fl(S)= i. It
extends this numbering to the vertices by defining/3(v) =min {fl(R)IR is selected and
v R}. Note that v < w implies v >= w. Finally, for each edge S it computes y(S),
defined to be max {/3(v)lv S} if S is not among the selected edges and max {/3(v.)]v S
and fl(v)<fl(S)} if S is among the selected edges. (If fl(v)=fl(S) for all vS, y(S)
is undefined.) As an aid to the computation, the program maintains size (S) for each
edge S, which is the count of numbered vertices in S if S is nonexhausted and minus
one if S is exhausted. For 6 [0, n 1], set (i) is the set of nonexhausted edges containing
numbered vertices. Index ] is the maximum such that set (i) is nonempty; index k

counts the number of numbered edges.
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X(, 2) / k
3) Z(,-)

Y(2,)

FIG. 3. Restricted maximum cardinality search of a hypergraph. Numbers on vertices are a-numbers;
numbers in parentheses are The first number associated with an edge is its if any; the
second number is its y-number. Edge Yfails the acyclicity test, since y(X) =/3(Y) but X CI v[/3(v) </3( Y)}
{3} Y.

RESTRICTED MAXIMUM CARDINALITY SEARCH ON HYPERGRAPHS.

local i, j, k, S;
for [0, n 1 - set (i) := rof;
for S E -> size (S) := O; y(S) := undefined; add S to set (0) rof;
i:=n+l; j:=k:=O;
do j=>O-
S := delete any from set (]);
/(S) := k := k + 1; R(k):= S; size (S):= -1;
for v S such that v is unnumbered-

c(v) :- i:- i+ 1; /3(v) :- k
for S E such that v S and size (S) >- 0 ->

y(S) := k;
delete S trom set (size (S));
size S) := size S) + 1;
if size (S)< [SI-* add S to set (size (S))
[3 size (S) Isl-* size (s) := -1

roI
rof;
j:-j+l;
do j _-> 0 and set (j) - j := j 1 od

od;

Remark. The assignment "c(v) := := i- 1" in this program is a sequential assign-
ment that computes i-1 and assigns its value to and then to c(v).

As it happens, we can test the acyclicity of H using only/ and y; c is unnecessary
and its computation can be dropped from the program. The following theorem gives
our acyclicity test (see Figs. 3 and 4):

THEOREM 5. H is acyclic if and only if for each e [1, k] and each edge S such
that y( S) i, S 71{ vlfl( v) < i} c_ R i). (Since fl( v) implies v R i), this condition is
equivalent to S 71{ v[fl( v) <- i} c_ R i).)

Proof. Suppose H is acyclic. Then c is a zero fill-in ordering of G(H). Consider
any e [1, k]. Suppose y(S) i. Then there is a vertex u e $ such that (u) i. Vertex
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FIG. 4. Restricted maximum cardinality search of an acyclic hypergraph. Notation is as in Fig. 3. All
edges pass the acyclicity test. Note that edge Y is never selected.

u and its adjacent larger numbered vertices (with respect to a) form a clique in G(H),
which since H is conformal must be contained in an edge of E, say T. Since u S fq R (i),
S fq {rift(v) < i}

_
S f3 {via(v)>- a(u)}_ T and R(i) fq {via(v) >- a(u)} T. When u is

numbered R(i) contains at least as many numbered vertices as T, which means
R(i)fq{v]a(v)>-a(u)} Tfq{vla(v)>=a(u)}, and Sc{v[(v)<i}R(i).

To prove the converse, we use acyclicity condition (1). Suppose that for each
[1, k] and each edge S such that y(S) i, S fq vl/3(v) < i}

_
R (i). We delete vertices

and edges from H by processing the sets R(i) from i= k to i= 1. To process R(i),
we delete every set S such that y(S)= and every vertex v such that/3(v) i. This
deletion method maintains the following invariants: Just before a set R (i) is processed,
every remaining vertex v has/3(v)-< i. Every remaining set S such that y(S)= thus
satisfies S=Sf-l{vl(v)<=i}c__R(i), and by rule (ii) S can be deleted when R(i) is
processed. Once all such sets are deleted, a vertex v with/3(v) is contained only
in R(i) and can be deleted by rule (i). (A set S R(i) containing v has y(S)=> i; if
y(S) > i, S was deleted previously.) Thus we can delete all the vertices of H, and H
is acyclic. [3

We obtain a linear-time algorithm from Theorem 5 by performing together all
the set inclusion tests involving a given R(i).

ACYCLICITY TEST.

for [1, k]-
for S E such that y(S) -if S f3 { vlfl( v) < i} ct R i) -> reject fi
rof

rof;
accept;
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The following program fills in the details of this method. During testing of a set
R (i), index (v) if v R (i); index (v) < if v R (i).

for v V --> index v) := 0 rof;
for e [1, k]->

for v R -. index v := rof;
for S/ such that 7(S) ->

for v S -> if/3 (v) < and index (v) < --> reject fi rof
rof

rof;
accept;

This gives an O(n + m)-time acyclicity test.
Remark. As in the fill-in computation, we can replace the array index by a bit

array if we are willing to reset it after processing each R (i).
If the hypergraph is acyclic we can construct a join forest for it (acyclicity condition

(2)) from the parameters y. Beeri et al. [2] show that if a hypergraph H passes the
acyclicity test (1) then a join forest F for H can be constructed as follows: The vertices
of F are the edges of H; if an edge R was deleted by operation (ii) of the acyclicity
test (1) because it was contained in some other edge S, then F has an edge {R, S}. (If
there were several edges containing R when R was deleted, then we arbitrarily pick
one such edge S.) From the proof of Theorem 5 is follows that the forest F with the
edges of H as vertices and with edges {S, R(y(S))} for all S with y(S) defined is a
join forest for the acyclic hypergraph H.

4. Selectively reducing an acyclic hypergraph. We conclude this paper by
considering the following problem. Suppose we are given a hypergraph H and a set
of marked vertices. We wish to selectively reduce H by repeating the following two
operations until neither is applicable"

(i) delete an unmarked vertex that occurs in only one edge;
(ii) delete an edge that is contained in another edge.
Selective reduction is necessary in computing queries in acyclic relational data

bases. A relational data base is a collection of relations; each relation is a table over
some set of attributes. A relational data base can be modeled by a hypergraph whose
vertices are the attributes and whose edges are the relations (see [1], [21] for more
information). Suppose now that we want to compute the relationship among the
attributes in a given set X. If the hypergraph is acyclic this is done as follows: First,
we mark the vertices of X and selectively reduce the hypergraph H. After the reduction
we are left with a collection of partial edges (i.e. subsets of some of the original edges)
Y1, , Yk. (It is easy to see that the selective reduction process has the Church-Rosser
property; that is, the final collection of partial edges is the same, regardless of the
order in which the operations (i), (ii) are applied.) For each Yi we find all the edges
of H that contain Yi. We project the relations corresponding to such edges onto the
attributes Yi and take the union of the resulting relations, giving a single relation for
each Yi. Then we take the join of the relations obtained for Y1," Yk (see [13], [18]).

As an example of selective reduction, consider a hypothetical data base for storing
information about research papers. Figure 5 illustrates the relations, which correspond
to the schemes RI={AU, AF}, R2={PT, AU}, R3={PT, Y, JN, VN}, R4--"
{PT, Y, CN}, R.s { CN, CL, Y}, R6 {PT, S}, where the abbreviations are as indicated
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AU =AUTHOR
AF =AFFILIATION
CN=CONFERENCE NAME
JN=JOURNAL NAME
CL CONFERENCE LOCATION
VN=JOURNAL VOLUME, PAGE NUMBERS
Y=PUBLICATION YEAR

PT= PAPER TITLE
S SUBJECTS

(b)

AU

FRE[

SUE

AF

IBM
BELL

NICE RESULTS 1982

JN

SICOMP

VN

I0, 820-830,

PT

NICER RESULTS

y

1983

CN

STOC

CN’
STOC EYgSTON 1983 ICE RESULTS

NICER RESULTS
SORTING
SORTING

FIG. 5. A relational data base for research papers. (a) Abbreviations of attributes. (b) Relations. Only
the entries for two papers are shown.

RI(-)

R6(2) R4( 3 )Y..._.v.R
5 (4)

FIG. 6. Hypergraph corresponding to relational schemes in Fig. 5. Relations are indexed in E-order of a
restricted maximum cardinality search. Numbers in parentheses are y-numbers. Applying the selective reduction
algorithm, we delete VN, JN and CL (which are unmarked and in only one edge), then R (now contained
in R4), then CN, then R3, leaving R1, R2, R6 and {PT, Y}.

in Fig. 5. Figure 6 shows the hypergraph corresponding to this relation scheme. Suppose
we wish to know whether any Bell Laboratories authors published any papers on graph
theory in 1983. To answer this query, we must compute the relationship among the
attributes in X {AF, S, Y}, select those tuples with AF "Bell Laboratories," S
"graph theory," and Y "1983," and check whether the result is empty.

After carrying out the appropriate selective reduction, the edges remaining are
RI={AU, AF}, R2={PT, AU}, R6={PT, S}, and {PT, Y}, the last of which is con-
tained in two original edges, R3 and R4. Thus we join R1, R2, and R6 with the union
of projections of R3 and R4 on {PT, Y}.

Kuper describes a nonlinear algorithm for the selective reduction of an acyclic
hypergraph [12]. We shall present a simple linear-time algorithm. In order to
solve this problem, we first consider a related but simpler problem: given an acyclic
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hypergraph, determine which of its edges are maximal (in the set-theoretic sense). The
edges that are not maximal can always be deleted from H in any selective reduction
of H, by operation (ii). It is easy to see that if H is acyclic, all its maximal edges are
selected during a maximum cardinality search. (Thus any nonselected edge can be
deleted during the selective reduction process.) However, not all selected edges
need be maximal. We can ensure that only maximal edges are selected by breaking ties
according to cardinality (largest edge preferred). However, there seems to be no
easy way to incorporate this into the algorithm while preserving the O(n+ m) time
bound. The following theorem gives an alternative characterization of maximal edges.
If R is a selected edge, let R’ be the set {vRl(v)<(R)}. (Note that
,(R) max {(v)lvR’}.)

THEOREM 6. Suppose we carry out a restricted maximum cardinality search on an
acyclic hypergraph H, selecting edges R (1), R (2),. , R k). Then the maximal edges
of H are exactly the selected edges R i) such that k or

Proof Suppose S is a nonselected edge. Let 3,(S) i. Then S= S(-l{v[(v) <- i}c__
R (i) by Theorem 5, and S is not maximal.

Suppose R (i) for some < k is maximal. If T(R (i + 1)) i, then R’(i + 1)
___
R (i)

by Theorem 5, which means IR’(i / 1)1 < IR(i)], since R’(i + 1) R(i) would contradict
the maximality of R(i). If y(R(i+l)) i, then }R’(i+l)l-JR(i+
[R’(i)[ < IR(i)[ by the definition of maximum cardinality search.

Conversely, suppose R(i) is not maximal. Then there is some maximal edge
containing R (i), which must be R (j) for some j > i. Consider R (i + 1). Just before
R (i) is selected, R (i + 1) contains at most JR’(i)I numbered vertices; just after R (i)
is selected, R (i+ 1) contains at least as many numbered vertices as R (j), and hence
at least IR (i)}. Since exactly JR(i)- R’(i)J new vertices are numbered when R (i) is
selected, R (i + 1) contains every vertex in R (i) R’(i), and IR’(i +. 1

We can compute the maximal edges of an acyclic hypergraph in O(n + m) time
by carrying out a restricted maximum cardinality search and applying the test in
Theorem 6 to each selected edge. Suppose we have done this. Let R(1),
R(2),..., R(k) be the list of selected edges according to the restricted maximum
cardinality search on the acyclic hypergraph H, and suppose that R (i) is not maximal.
By the proof of Theorem 6, just before R (i) is selected, both R (i) and R (i + 1) contain
the same number of numbered vertices, and R (i + 1) contains all unnumbered vertices
in .R (i). Thus we could have selected R (i + 1) in place of R (i) during the search. After
selecting R(i+ 1), R(i) would be exhausted and not eligible for later selection, and
the rest of the edges R (i+ 2),..., R (k) could be chosen in the same order as before.
Thus R (1),. , R (i 1), R (i + 1),. , R (k) is also a valid selection order (according
to maximum cardinality search) for the hypergraph. This means that if we delete from
the list of selected edges all nonmaximal edges we are left with a list that corresponds
to a valid selection order. The selective reduction process can always begin by deleting
all edges not in this list, since each is contained in some edge in the list.

Redefine R(1),..., R(k) to be the remaining (selected) edges, all incomparable,
and suppose that some vertex v occurs in only one edge R (i). Consider what happens
if we delete v. The remaining hypergraph H’ is also acyclic [2]. If the new R (i) (without
v) contains only vertices that appear in earlier sets R(j) (i.e. with j<i), then R(i) is
exhausted when its turn comes, and therefore cannot be selected. However, since v
occurs only in R(i) no other edge is affected and therefore R (1),. , R(i- 1),
R (i + 1),. , R (k) is a valid selection order for H’. Since R (i) is not selected and
H’ is acyclic we know from the previous section that the new R(i) (without v) is
contained in some other edge R(j).
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If the new R(i) contains some vertex that does not appear in any earlier R(]),
then the same order R (1),. , R (i),. , R (k) continues being a valid selection order
for H’. From Theorem 6 we know that all these edges are incomparable, unless
IR (i)l IR’(i + 1)[, in which case R (i) c__ R (i + 1) and R (i) can be dropped from the
list of selected edges without violating the validity of the selection order.

Our discussion suggests the following algorithm for the selective reduction of an
acyclic hypergraph. (See Fig. 6.)

Step 1. Carry out a restricted maximum cardinality search of the hypergraph.
Apply Theorem 6 to discard the selected edges that are not maximal. Let
R(1),..., R(k) be the list of remaining edges, and let ]R’(i)] be as defined before
Theorem 6. For each unmarked vertex v, compute the number of remaining (selected)
edges in which v appears.

Step 2. Repeat the following operation until it does not apply"
Delete any unmarked vertex v that occurs in exactly one edge R(i); decrement

]R (i) I. If IR (i)] [R’(i) or ]R (i)[ ]R’(i + 1)1 then do the following: Delete R (i). For
each vertex v R(i), decrement the count of edges in which v appears. Decrease
IR’(i+ l) by IR(i)l-IR’(i) I. For j=> i, replace R(j) by R(j+ 1).

The selected edges that remain after the execution of these steps are exactly those
that cannot be deleted by the selective reduction process. If we maintain a list of the
unmarked vertices occurring in exactly one edge and maintain the set of remaining
edges R(1), R(2).. as a doubly linked list, we can carry out this computation in
O(n + m) time. We leave the implementation of this algorithm as an exercise. The
correctness of the method follows from our previous discussion.

Note that in the data base application, Step 1 will be executed only once (when
the data base is set up), and only Step 2 will be executed to answer a query. Let
Y1," , Yk be the remaining sets of vertices when the algorithm terminates. We have
to find now for each Yi the edges of the original hypergraph H that contain Yi. Let
W be the set of remaining vertices, i.e. the union of the Yi’s. Let/ be the h,evpergraph
with set of vertices W and an edge S (-I W for each edge S of H. Then H is acyclic
[2]. (Strictly speaking,/ is a multihypergraph; i.e., it might have edges that consist
of exactly the same vertices. However, everything we have said about hypergraphs
also holds for multihypergraphs.) A valid selection order for/_it according to maximum
cardinality search is YI," ", Yk. For a vertex v in W, let/(v) =min {i[v Yi}, and
for an edge S of H let 4/(S)=max {/(v)lv }. From the last section we know that

S f’) W Y4s) for each edge S of H. If S contains some Y then this can be only
Y/s) (since all the Y’s are incomparable), and this is true if and only if IS f3 W[
IY  s)l, Therefore, all we have to do is compute/(v) for each v W, compute 3(S)
for each edge S of H, and compare IS f’l W[ to g(sl.
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EFFICIENT PARALLEL ALGORITHMS FOR A CLASS OF
GRAPH THEORETIC PROBLEMS*

YUNG H. TSIN?t AND FRANCIS Y. CHINt

Abstract. In this paper, we present efficient parallel algorithms for the following graph problems:
finding the lowest common ancestors for vertex pairs of a directed tree; finding all fundamental cycles, a
directed spanning forest, all bridges, all bridge-connected components, all separation vertices, all biconnec-
ted components, and testing the biconnectivity of an undirected graph. All these algorithms achieve the
O(lg n) time bound, with the first two algorithms using n[n/lg n] processors and the remaining algo-
rithms using n[n/lg n] processors. In all cases, our algorithms are better than the previously known
algorithms and in most cases reduce the number of processors used by a factor of n lg n. Moreover, our
algorithms are optimal with respect to the time-processor product for dense graphs, with the exception of
the first two algorithms.

The machine model we use is the PRAM which is a SIMD model allowing simultaneous reads but
not simultaneous writes to the same memory location.

Key words, parallel computation, analysis of algorithms, graph algorithms, directed spanning forests,
lowest common ancestors, fundamental cycles, bridges, bridge-connected components, separation vertices,
biconnected components, SIMD machines, PRAM

1. Introduction. The design of efficient parallel algorithms for graph problems
has been investigated by many people [2], [3], [4], [5], [7], [8], [12], [15], [16], [17].
In particular, Chin, Lam and Chen [3], [4] designed parallel algorithms for several
graph problems in which the processor-time products achieve the lower bounds for
the corresponding sequential algorithms for dense graphs. In this paper, we present
efficient parallel algorithms for other graph problems in which the processor-time
products differ from the lower bounds for their sequential counterparts for dense
graphs by at most a factor of lg n.

We are interested in the following graph problems" finding the lowest common
ancestors for q(1 _-<q-<n 2) vertex pairs of a directed tree; finding a complete set of
fundamental cycles, a directed spanning forest, all bridges, all bridge-connected
components, all biconnected components, all separation vertices and testing the
biconnectivity of an undirected graph. This class of problems has also been studied
by Savage [15] and Savage and Ja’Ja’ [16]. They designed parallel algorithms for these
problems and achieved an O (lg2 n time bound with the processor-time products being
O(n 2 lg2n) for the directed spanning tree problem and being 0(/’/3) or O(t/E(lg n)m),
where m => 3, for the remaining problems. In this paper, we present parallel algorithms
for the same class of problems. Our algorithm for the lowest common ancestors
problem takes O( [q/nK] lg n + n/K) time with nK(K > 0) processors. The algorithm
for the fundamental cycles problem takes O([]EI/nK] lg n + n/K + lg2n) time with
nK(K -> 1) processors, where E is the edge set of the undirected graphs. The algorithms
for the remaining problems all take O(n/K +lg2 n) time with nK(K >-1) processors.
In particular, an O(lg2 n) time bound can be achieved with K [n/lg n for the first
two problems and with K [n/lg:Zn] for the remaining problems. As the processor-
time products of our algorithms are at most O(n21gn), for l<=K<=[n/lgn], our
algorithms are better than the previously known results in all cases, and in most cases

* Received by the editors April 5, 1982 and in final revised form June 1, 1983. This research was

supported by the Natural Science and Engineering Research Council of Canada under grant NSERC-A4319.
-I-Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada T6G 2H1.
t Present address: Department of Computer Science, Memorial University of Newfoundland, St. John’s,

Newfoundland, Canada A1C 5S7.
Throughout this paper, we use lg n to denote [log2 hi.
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use less processors by a factor of n lg n. Except for the algorithms for the first two
problems, the processor-time products of our algorithms are O(n2), which is optimal
for dense graphs.

The computation model we use is the single-instruction stream multiple-data
stream (SIMD) model. We assume that all processors have access to a common
memory, and that simultaneous reads from the same location are allowed but simul-
taneous writes on the same location are prohibited. This model is called PRAM in [6].

In describing our parallel algorithms, we use the instruction introduced by Pre-
parata and Vuillemin [11]. Specifically, parallel operations are controlled by

for all :P(i) pardo instructions dopar;

where P(i) is a predicate of i.

2. Definitions and notation. A graph G(V, E) consists of a finite nonempty set
V of vertices and a set E of pairs of vertices called edges. If the edges are unordered
pairs, then G is undirected; otherwise G is directed. Without loss of generality, we
assume V {1, 2,..., n} throughout this paper. If for every two vertices u, v in V,
there is a path in G joining u and v, then G is connected. Each connected maximal
subgraph of G is called a component of G. An adjacency matrix M of G is a n x n
Boolean matrix such that M[u, v] 1 if and only if (u, v)6 E. A tree is a connected
undirected graph with no cycles in it. Let T( V’,/’) be a directed graph, T is said to
have a root r, if r V’ and every vertex v V’ is reachable from r via a directed path.
If the underlying undirected graph of T is a tree, then T is a directed tree. If, moreover,
the underlying graph of T is a subgraph of a connected undirected graph G(V, E)
and V’ V, then T is a directed spanning tree in G. A directed forest is a graph whose
connected components are directed trees. If T is a directed forest such that each
directed tree in T is a directed spanning tree of a component of an undirected graph
G and vice versa, then T is called a directed spanning forest of G. If the edges of T
are all reversed, the resulting graph is called an inverted spanning forest of G. Inverted
spanning trees, inverted trees, inverted forests, etc. are defined similarly. Throughout
this paper, we denote the "undirected" path from vertex a to vertex b in a (directed)
tree by [a,-> b], and by [a,-> b) if vertex b is to be excluded. If the path consists of
at least one edge, then the "," is removed from the notation.

An inverted tree T is called an ordered tree if the sons of every vertex in T are
ordered. If v is the ith son of a vertex in T, then the rank of v is i.

Let T(V’, E’) be a directed tree, and u, v V’, the lowest common ancestor
(LCA (u, v)) of u and v in T is the vertex w 6 V’ such that w is a common ancestor
of u and v, and any other common ancestor of u and v in T is also an ancestor of w
in T. If T is a spanning tree of a connected, undirected graph G, let (u, v) be an edge
in G-T, then the cycle in G consisting of the paths [u ,-> LCA(u,v)],
[LCA (u, v) .4 v] and the edge (v, u) is a fundamental cycle in G. Let e E’, e is a
bridge in G if and only if e is not on any cycle in G. Let B be the set of bridges in
G, every connected component of the graph G’(V,E-B) is a bridge-connected
component of G. Let a V, if there exist u, v V such that u, v, a are all distinct and
such that every path connecting u and v in G passes through a, then a is called a
separation vertex of G. A graph is biconnected if it contains no separation vertex.
Every maximal biconnected subgraph of G is called a biconnected component of G.
To test the biconnectivity of G, is to test if G is biconnected.

3. Two useful lemmas. In this paper, we will frequently use the following two
lemmas in analyzing the time and processor complexities.
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LEMMA 3.1. Given n elements {ao, a , , a._l}, let f be a function to be applied
to every element. Ifcomputingf(ag takes time units andK(>- 1) processors are provided,
then f(ai), O<-i <-n 1, can be computed in ([n/K] t) parallel time units.

LEMMA 3.2 [3], [4]. Given n elements {ao, a, ., a,_} andKprocessors, A(n)
ao * a, a2 *’’’ * a,_ can be computed in T parallel time units where is any
associative binary operator and

I [n/K] l + lg K if[n/Z]>K,T
lg n if [n/2] -<K.

4. Finding all paths from the vertices to the roots in an inverted forest. In this
section, we present a method for constructing an array, denoted by F/, in which each
row contains a path from a vertex to a root in an inverted forest. The array will be
very useful in the design of parallel algorithms presented in the following sections.

Let T(V’, E’) be an inverted forest with ]V’] n, without loss of generality, we
assume V’= {1, 2,..., n}. Let {T/} be the set of all inverted trees in T and {r.} be the
set of all their roots.

DEFINITION. F" V’-’ V’ is a function such that

F(i) the father of the vertex in T for i {r.},
F(r) r Vr 6 {ri}.

The function F can be represented by a directed graph F which can be constructed
from T by adding a self-loop at each root r. in T.

From the function F, we define Fk, k > 0, as follows"
DEFINITION. Fk" V’-> V’, k >= 0, is a function such that

F(i)=i Vi6V’,

Fk(i)=F(Fk-I(i)) Vi V’, k>0.
If is a vertex in T., Fk (i) is the kth ancestor of in T. or r..

DEFINITION. For each 6 V’, if is in T., for some/’, then

depth (i)=min{klFk(i)=ri and 0<_-k <_-n -1}.

The concepts Fk(i), k >-_0 and depth (i), 1 <_-i <_-n, were first introduced by Savage
in [15]. She showed that given the function F of a directed forest T (T could be a
directed forest or an inverted forest), Fk (i), 0 <= k <- n 1, and depth (i), 1 _-< _-< n, can
be computed in O(lg n) time with n 2 processors and n [n/lg n processors respectively.
In the following, we will show in Theorem 4.1 that Fk(i), 0<= k <-n-1, 1 <-i <- n, can
indeed be computed in O(lg n) time with n[n/lg n] processors or in O(lg2 n) time
with n [n/lg2 n processors, and then depth (i) can be computed in O(lg n) additional
time with n processors.

THEOREM 4.2. (i) Given the function Fof a directed or an inverted forest T, Fk(i),
V’, 0 <- k <- n 1 can be computed in O(n/K + lg n time with nK (K > O) processors.

(ii) Given Fk(i), O<=k<-_n-1, l<-i<-_n, and nK(K>O) processors, depth (i),
l<-_i<=n can be computed in O(lg(n/K)) time ilK>=1 or in O([1/K] lgn) time if
0<K < 1.

Proof. To compute F, for all 0 <-_ k <_-n 1, we proceed in two steps:

1. for i: =<i _<-n pardo F(i):= i; FI(i):= F(i) dopar;
2. fort:=0tolg(n-1)-ldo

for s <_-s -<_2’, i: l <_-i <_-n pardo
F2’(i) := F’(F(i))

dopar;
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If nK processors are given, it is clear that step 1 can be computed in O([1/K]) time
(Lemma 3.1). Step 2 can be computed in

lg (n--1)--i lg (n--1)--I

X [2’/K ]) lg K + _, [2t/K ])
t=0 t=lg K

lg (n-1)-1

< lg K + 1/K 2 + lg (n 1) lg K
t=lg K

O(n/K / lg n) parallel time units.

Once Fk(i), 1 <--i =<n, 0=<k _-<n-1, are computed, depth (i), 1-<_i-<_n, can be found
by performing a binary search on the ordered sequence F(i), F(i), .., F"-(i), for
each i, searching for the left-.most occurrence of r. using F"-l(i)(=rl) as the key. This
takes a total of l/K] lg n time units if 0 <K < 1. For K => 1, the search is performed
in the following way" divide the sequence into In segments, assign one processor
to each segment and perform simultaneously a binary search on each segment. After
this step, every processor compares the element it finds with the preceding and
succeeding elements in the sequence. There is exactly one processor which does not
have all the three elements distinct or identical and this processor locates the left-most
occurrence of r.. This takes a total of lg [n/K] + 3 parallel time units.

The actual computations of Fk (i), ] --< N rt, 0 =< k _-n 1, and depth (i), 1 -<_ _-< n,
are performed in an array F/ in which F/[i, k] contains Fk (i). After the computations
are finished, each row of F/ is right shifted so that all the r’s except the left-most one
are eliminated. As a consequence, the right-most column of the array contains only
the roots from {r.}. Furthermore, for each vertex i, all occurrences of appear only
in column (n-1)-depth (i). For each row i, a number, n+ i, acting as an undefined
value, is inserted into the first (n 1)-depth (i) entries. These adjustments are done
for convenience and not out of necessity and they take O(n/K) time with nK(K >0)
processors (Lemma 3.1). The adjusted array, F/, of a directed tree is depicted in Fig.
4.1. Note that the ith row in F/ contains the path from vertex to a root in T.

5. Finding a directed spanning forest in an undirected graph. In this section, we
present an efficient parallel algorithm for finding a directed spanning forest in an
undirected graph G(V, E). In view of the fact that it is the inverted spanning forest
of G which is useful in the design of other parallel algorithms in the following sections,
the algorithm presented below actually constructs an inverted spanning forest.
Nevertheless, converting an inverted spanning forest into a directed spanning forest
is straightforward. This algorithm will serve as the backbone of the other algorithms
presented in the following sections.

This algorithm is based on the algorithm for finding an undirected spanning forest
presented in [3] and the array F+ presented in the last section. The latter is used to
assign a direction to each edge in the undirected spanning forest generated by the
former.2

We first give a general description for the strategy used in our algorithm. In the
course of running the algorithm for finding an undirected spanning forest [3], a number
of 1-tree-loop’s [7]3 are generated. Each of the 1-tree-loop’s is a directed graph whose
vertices are supervertices generated during the previous iteration (a supervertex is a

We assume the reader is familiar with the undirected spanning forest algorithm. For those who are
not, we refer them to reference [3].

A 1-tree-loop is a directed graph in which every vertex has outdegree and in which there is exactly
one cycle and the length of the cycle is 2.
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0
16 16

2 i7 17
3 18 18
4 19 19
5 20 20
6 21 21
7 22 22
8 23 23
9 24 24
0 25 25
26 26

2 27 27
3 28 28
4 29 29
5 30 30

2 3 4 5 6 7 8 9 10 11 12 13 14
16 16 16 16 ,16 16 16 16 16 11 13 12
17 17 17 17 17 1718 17 17 17 2 3 14 12
18 18 18 18 18 18 18 18 18 3 14 12
19 19 19 19 19 19 19 19 19 4 3 14 12
20 20 20 20 20 20 20 20 20 5 7 15 12
21 21 21 21 21 21 21 21 21 6 7 15 12
22 22 22 22 22 22 22 22 22 22 7 15 12
23 23 23 23 23 23 23 23 23 23 8 13 12
24 24 24 24 24 24 24 24 24 9 11 13 12
25 25 25 25 25 25 25 25 25 10 11 13 12
26 26 26 26 26 26 26 26 26 ’26 11 13 12
27 27 27 27 27 27 27 27 2727 27 27 12
28 28 28 28 28 28 28 28 28 28 28 13 12
29 29 29 29 29 29 29 29 29 29 29 14 12
30 30 30 30 30 30 30 30 30 30 30 15 12

FIG..4.1. A directed tree and its array F+. Note that since n 15, any number greater than 15 serves
as an undefined value in the array.

vertex in G or a 1-tree-loop). The edges of these 1-tree-loop’s will be included in
the undirected spanning forest and all these edges are directed edges, whose directions
are ignored by the algorithm in [3]. If the only loop in a 1-tree-loop is destroyed by
eliminating the out-going edge from the smallest-numbered-vertex, the resulting graph
is an inverted tree. As a result, when the loops of all the 1-tree-loop’s are destroyed
in this way, the resulting graph (built by embedding the modified (acyclic) 1-tree-loop’s
created during one iteration into the modified (acyclic) 1-tree-loop’s created during
the following iteration) may well be an inverted spanning forest. Unfortunately, this
is not the case in general, because some vertices may end up with two fathers. This
situation is depicted in Fig. 5.1, where a directed edge (a, b) is selected during iteration
/’ + 1 to connect two supervertices $1 and $2 created during iteration/’. The two graphs
resulting from the two supervertices are inverted trees. However, since a is not the
root rl of $1, a will have two fathers after $1 and $2 have been included into a single
supervertex. Therefore, the graph S1 U $2 is not an inverted tree, by definition, unless
the directions of all the edges on the path from a to rl are reversed. The same situation
occurs in $2 U $3 when the directed edge (c, d) is selected to connect $2 and $3. To
overcome this difficulty, we have to reverse the directions of all edges on the path
from a to rl and those on the path from c to r2. The array F/, described in 4,
contains the path from any vertex to a root in an inverted forest T; hence we can
generate the array F+ covering both $1 and $2. By retrieving the ath row and the cth
row of F+, we can identify the set of all edges whose directions are to be reversed in
S and ’-2 respectively.
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The direction of every edge

FIG. 5.1.

Our algorithm runs in two stages.

ALGORITHM DSF.
Stage 1 (, The first stage is basically a modified version of the algorithm for
finding an undirected spanning forest. We refer the reader to reference [3] for
the details.,)
Execute the algorithm for finding an undirected spanning tree; during each
iteration j, 1 _<-j =< lg n, record the following information"

a. Convert the forest of all 1-tree-loops generated during this iteration into a
forest of inverted trees by eliminating the edge from the smallest-numbered-
vertex of each 1-tree-loop and store the forest in a vector F/. (, Note: This
vector acts as the function F defined in 4.,)
b. Record the "actual" edges in G establishing the connection specified in F..
(, Note: The edges recorded in F. are pseudo edges which connect "superver-
tices". They do not exist in G. However, for each pseudo edge, there exists a
corresponding actual edge in G.*)
c. The vector D[1 n] generated during this iteration is stored as Dj. (, Note:
Dj[v] is the supervertex containing vertex v when iteration j is completed.*)

Stage 2
1. Generate F-’s from Fi, 1 <=j =< lg n.
2. (, Adjust the directions of the edges, starting from those recorded during
iteration lg n, gradually down to those recorded during interation 1. ,)
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R’ :- {v V]D,, .[v]-- v};
(, Note: In the following tot loop, R’ contains the tails of those actual edges in
O which connect two supervertices in the inverted trees generated during iteration
i, where ] < <-lg n. It includes all those vertices which have two or more fathers
in the directed graph formed upon the inverted trees. ,)
for ] := lg n downto 1 do

begin
i) For every r’R’,

reverse the direction of every "pseudo" edge lying on the path from the
supervertex Di[r’] to the root of the inverted tree, in F., containing D.[r’];

ii) Output all the"actual edges"in G corresponding to the pseudo edges in F.;
iii) R’=R’{ve Vlv is the tail of an "actual" edge output in step ii)}
end;

A complete example is given in Fig. 5.2 and a detailed implementation using the
method described above is given in the Appendix.

FIG. 5.2(i) G(V, E).

FIG. 5.2(ii). A potential inverted spanning tree of G. a directed edge selected during the first iteration;

a directed edge selected during the second iteration; a directed edge selected during the third
iteration.
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FIG 5.2(iii). An inverted spanning tree of G.

THEOREM 5.1. Algorithm DSF correctly generates an inverted spanning forest for
an undirected graph.

Proof. (Backward induction.) In stage 1, an inverted forest F is correctly generated
during each iteration ], 1-]_-<lg n[3]. In stage 2, supposing that after processing Fi,
j <_-i_< lg n, an inverted forest F is created. Clearly, F and F must have the same
vertex set V. When processing F-I, it should be clear that there exists a one-to-one
correspondence between the vertices in Vj and the inverted trees in F_I. This implies
that no two instances of r’ in R’ will belong to the same inverted tree in F-I. As a
result, after step i, each inverted tree in F._ is effectively modified so as to root at
the supervertex Dj_a[r’]. These modified inverted trees are then embedded into the
inverted forest F in step 2ii), the resulting directed graph F-I is clearly an inverted
forest. But Fg, Fig is an inverted forest initially, therefore, by induction, F must
be an inverted forest and hence an inverted spanning forest for G. 13

THEOREM 5.2. Finding an inverted spanning forest takes O(n/K + lg n time with
nK (K >= 1) processors.

Proof. Stage 1 takes O(n/K +lg2n) time with nK(K >= 1) processors [3]. Since
the total number of edges in the inverted forest is at most

lg

E [n/2i-aJ <2n,

the creation of F;, 1 =< ]_-< lg n, in step 1 of stage 2 can be done in O(n/K + lg n) time
with nK(K >= 1) processors. Steps 2ii) and iii) each takes O(1) time for each iteration.
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Since the size of F-, 1 _<-j_-<lg n, is [n/2J-1] [n/2J-1], step 2i) requires

lg Ig., [[n/Zi-1]2/nK] < 2 [n/Zi-1]2/nK+lg n
j=l j=l

O(n/K + lg n) time for lg n iterations.

Hence the theorem. [
Note that the processor-time product is O(n2), when 1-<K_<-[n/lg2rt], the

algorithm is thus optimal for dense graphs.

6. Finding the lowest common ancestors of q vertex pairs in a directed tree. Let
T(V’, E’) be a directed tree and V’= {1, 2,..., n}. We shall make use of the array
F+ to design a parallel algorithm for finding the lowest common ancestors of q vertex
pairs in T. Let a and b be a vertex pair, if c is their lowest common ancestor, then
row a and row b of F+ will have identical contents between column (n 1)-depth [c]
and column n -1, inclusive, and will have different contents in the other columns. As
a result, to determine c, we can perform a binary search on row a and row b
simultaneously in the following way" if the two entries being examined in row a and
row b (in the same column, of course) are different, the search is continued on the
right-half, otherwise it is continued on the left-half. It takes lg n + 1 time units to find
c with one processor. In general, we have"

THEOREM 6.1. Given q vertex pairs, 1 <=q <-n 2, finding the lowest common
ancestors for these vertex pairs takes O([q/nK] lgn +n/K) time if nK(K>O) pro-
cessors are available.

Proof. Finding the lowest common ancestors of the q vertex pairs takes
[q/nK] lgn time units, if nK <-_q <=n 2 (Lemma 3.1) or lgn + 1 time units, if nK >q.
Constructing the array F+ takes O(n/K + lg n) time, thus finding the lowest common
ancestors of q(l<-_q<=n 2) vertex pairs, takes O([q/nK]. lgn +n/K) time with nK
(K > 0) processors. [

In particular, when K n and [n/lg n ], this algorithm takes O(lg n) and O(!g2 n)
time, respectively.

7. Finding all fundamental cycles of a connected, undirected graph. Without loss
of generality, we assume that the undirected graph G(V, E) is connected from this
section onwards.

It is known that a set of fundamental cycles of a connected, undirected graph
G(V, E) can be determined from a spanning tree T(V, E’) of G [14]. Specifically, if
(a, b) is an edge in G- T, then (a, b) together with the paths [b.-> LCA (a, b)] and
[LCA (a, b) .-> a form a fundamental cycle.

Based on the above observation, we can find a set of fundamental cycles of G
as follows" First, an inverted spanning tree T of G is found, using the algorithm
presented in 5, which takes O(n/K+lg2n) time with nK(K>=I) processors.
The lowest common ancestor algorithm is then called to determine the lowest common
ancestor for every pair of vertices (a, b) in G- T. The algorithm returns the ordered
pair (LCA+, F+) and the vector depth, where LCA+[a, b] contains the lowest common
ancestor of (a, b). A vector P+ is then created such that P+[v] contains the value
(n- 1)-depth [v], which is the column number of’v in F+. Hence, for each (a, b) in
G- T, the path from column P+[a] to column P+[LCA+[a, b]] in row a and the path
from column P+[b] to column P+[LCA+[a, b]] in row b of F+ and the edge (a, b)
determine a fundamental cycle in G.
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The correctness of the algorithm is easily verified. Since the number of vertex
pairs q ]E -E’I, the algorithm obviously takes O( [IEI/nK] lg n + n/K + lg2 n) time
with nK (K >-_ 1) processors. In particular, the O(lg? n) time bound is achieved with
K n/lg n. Note that the output of the algorithm is stored in an O(n 2) compact data
structure, which consists of the triple (P+, LCA+, F+).

8. Finding the HLCA(u)’s. The algorithms we present in the following sections
rely heavily on the function, HLCA(u), Vu V, (note: The prefix H stands for highest),
which is defined as follows.

DEFINITION. Let G(V, E) be an undirected graph, T(V, E’) be its inverted
spanning tree and u V. HLCA (u) =LCA (u, v), where (u, v)E-E’U{(u, u)} and
depth (LCA (u, v))-< depth (LCA (u, v’)), V(u, v’)E-E’LJ{(u, u)}.

Figure 8.1 gives an illustration of HLCA (u). The solid lines and circles represent
the edges and vertices of an inverted.spanning tree of an undirected graph. The dotted
lines represent the edges in the graph G- T emanating from a particular vertex u.
To compute HLCA (u), Vu V, we may first use the lowest common ancestor algorithm
to find LCA(u,v), V(u,v)E-E’LJ{(u,u)} and then apply Lemma 3.2 to find
HLCA (u), Vu V. However, in doing so, we will require O([IE-E’I/nK] .lg n+
n/K) time if nK(K >0) processors are available. In this section, we show a way of
finding HLCA (u), Vu V in O(n/K +lgn lglg n) time with nK (K _->1) processors.
This method allows us to design optimal parallel algorithms for the graph theoretic
problems discussed in the following sections.

The method is based on the preorder numbering [9] of the vertices in an ordered
spanning tree T( V, E’) of G. We denote the pre0rder number of a vertex v by pre (v).

FIG. 8.1.
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DEFINITION. Let u, v V, u <- v iff u is an ancestor of v, u < v iff u is a proper
ancestor of v.

LEMMA 8.1. Let u, v V, v <_ u iff pre (v) -< pre (u) < pre (v) + nd (v), where nd (v)
is the number of descendants of v.

Proof. Immediate from the definition of preorder traversal.
LEMMA 8.2. Let (u, v), (u, w)E-E’;
(i) tf pre (v) < pre (w) < pre (u),

then depth (LCA (u, v))-<_ depth (LCA (u, w));
(ii) /]" pre (v) > pre (w) > pre (u),

then depth (LCA (u, v))-<depth (LCA (u, w)).
Proof. (i) By Lemma 8.1, pre(LCA(u, v)) <- pre v) and pre (u)<

pre(LCA(u,v))+nd(LCA(u,v)). Therefore pre(LCA(u,v))<pre(w)<
pre(LCA(u, v))+nd (LCA(u, v)). By Lemma 8.1, LCA(u, v)_<w. Hence,
depth (LCA (u, v)) =<depth (LCA (u, w)). Part (ii) can be proved similarly. 13

Lemma 8.2 points out that we can reduce the problem of finding HLCA (u) to
that of finding the lowest common ancestor of two particular vertices in {v I(u, v) E-
E’}{u},

DEFINITIOr. Let u V, W vl(u, v) E E’} t.J u}.

pmax(u)=v, wherevWandpre(v)>=pre(w), /wW;

pmin (u) v, where v W and pre (v) -< pre (w), /w W.

COROLLARY 8.3. HLCA (u)= (min_<){LCA(u, pmin (u)), LCA(u, pmax (u))}.
Proof. Immediate from Lemma 8.2. !
COROLLARY 8.4. HLCA (u) LCA (pmin (u), pmax (u)).
Proof. From Corollary 8.3, HLCA (u) _< pmin (u) and HLCA (u) _< pmax (u).

Thus, HLCA (u)_< LCA (pmin (u), pmax (u)). By definition, pre (pmin (u)) -<
pre (u)-<pre (pmax (u)). This implies pre (LCA (pmin (u), pmax (u)))-<pre (u)<
pre (LCA (pmin (u), pmax (u))) + nd (LCA (pmin (u), pmax (u))). By Lemma 8.1,
LCA (pmin (u), pmax (u))-<u. Therefore LCA (pmin (u), pmax (u))_<
LCA (u, pmin (u)) and LCA (pmin (u), pmax (u)) _<LCA (u, pmax (u)). By Corollary
8.3, LCA (pmin (u), pmax (u))-< HLCA (u). 11

LEMMA 8.5. Let T( V, E’) be a directed tree whose vertices have been labelled in
preorder. Then finding HLCA (u), /u V, can be done in O(n/K +lg n) time with
nK(K >= 1) processors.

Proof. To compute pmax (u) and pmin (u), /u 6 V, we need O(n/K + lg K) time
with nK (K >- 1) processors (Lemma 3.2), and to find HLCA (u), /u V, we need to
find the lowest common ancestors ot the n (pmin (u), pmax (u)) pairs. This takes
O(n/K +lg n) time with nK(K >0) processors (Theorem 6.1). I’]

Figure 8.1. gives an illustration of the above lemmas and corollaries. The numbers
in the circles are the preorder numbers of the vertices. For instance, the preorder
number of u is 21. For convenience sake, we name each vertex by its preorder number.
it can be easily checked that depth (LCA (u, 12))<min (depth (LCA (u, 18)),
depth (LCA (u, 16))), and that depth (LCA (u, 28))< depth (LCA (u, 24)). Further-
more, pmin (u) 12, pmax (u) 28, and LCA (12, 28) 3, which is clearly HLCA (u).

The crucial step in computing HLCA (u), /u V, is to determine the preorder
numbers efficiently. The usual way of numbering the vertices of a tree in preorder is
to traverse the tree. However, this will result in an O(n) time algorithm, which is
undesirable. In the following lemma, we show that we can carry out preorder number-
ing in parallel without traversing the tree.
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LEMMA 8.6. Let T( V, E’) be an ordered tree [9]. For each v V,

pre (v)= Y. nd (w)+na (v)
ANC(v) EBRO(u)

Y nds (F(u), rank (u) 1) + 1 + depth (v),
uANC(v)-{r}

where
ANC v) is the set of all ancestors of v;
EBRO(u) is the set of all elder brothers of u;
nd w) is the number of descendants of w;
na v) is the number of ancestors of v.
nds v, ]) is the total number of descendants of the first ] sons of v; and
rank (v )is the rank o] v, i.e., the position o]’ v among all its brothers.
Proof. Trivial. 71
Let us consider the inverted spanning tree given in Fig. 8.1. again. Consider the

vertex u, pre (u)= 21, the ancestors of u are the vertices 21, 17, 15, 7, 3 and 1. The
number of descendants of the elder brothers of each of these vertices except the root
are 3, 1, 7, 3 and 1, respectively. These numbers sum up to 15. The number of
ancestors of u is 6, this gives rise to a total sum of 21, which is the preorder number
of u.

Using Lemma 8.6, we want to show that the preorder numbers pre (v), Vv V
can be determined in O(n/K +lg n lg lg n) time with nK(K >-_ 1) processors. Assuming
that an inverted tree T represented by an array T[1...2, 1... n] such that
{(T[1, i], T[2, i])11 =< i-<_ n} E’ is given (we assume T[2, r] 0 for the root r).

ALGORITHM Preorder.
1. Compute the array F+ and the vector depth for T.
2. Order the sons of every vertex in T, i.e., compute rank (v), Vv 6 V.
3. Find nds v, ]), V v V, 1 <- j <-_ n( v), where n(v) is the number of sons of v.
4. Compute pre (v), Vv V.

LEMMA 8.7. Algorithm Preorder takes O(n/K +lgn lglg n) time with nK (K >- 1)
processors.

Proof. Step 1 can be done in O(n/K +lg n) time (Theorem 4.2). In step 2, the
ordered pairs {(T[2, i], T[1, i])11 <- _-< n} are sorted. This can be done in O(lg n lg lg n)
time with n processor [1]. (. In fact, for K >_-lg n, we can sort n elements in O (lg n)
time [1]. However, the O(lg n lg lg n) time suffices for our purposes here .). Assuming
that the sorted T is stored in T’[1... 2, 1... n], then T’ is divided into segments
such that in each segment, the first row contains the same vertex v in every entry,
and the second row contains the set of all sons of v in T. The relative position of
vertex in the second row of the segment in which resides, is the rank of i, i.e., rank (i).

In step 3, nd (v), Vv V, are first computed by scanning the ((n- 1)- depth (v))th
column of F and counting the number of occurrences of v. By Lemma 3.2, this takes
O(n/K +lgK) time. After this, nds (v, j), Vv V, 1 <=j<=n(v), are computed using
the following formula

nds (v,])= nd (Si) 1 <-_]<- n(v).
l<=i<--_j

It has been shown in 10], that the partial sums l<_i<_j ai, 1 f Fl, can be computed
in O(lg n) time if n processors are given. Since for each vertex v, v has n(v) sons,
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the time needed to compute nds (v,.i), l<=.i<= n(v), is O(lg (n(v)))if n(v) processors
are assigned to v. (This is possible if we make use of the sorted array T’). As a result,
all these partial sums, nds v, .i), 1 <= <= n( v), / v V, can be computed in parallel in
maxo v {O(lg (n (v)))} O(lg n time with Yo v n (v) n 1 processors.

Finally, in step 4, pre (v), /v V is computed using the formula given in Lemma
8.6. We assume nds (v, O)= O, fv V. Note that ANC (v) is available in the vth row
of F/ starting from column (n 1) depth (v) to column (n 1), and na (v) equals
depth (v)+ 1. By Lemma 3.2, this takes O(n/K + lg K) time.

Summing up, pre (v), v V can be determined in O(n/K +lg n lglg n) time
with nK(K >= 1) processors

THEOREM 8.8. Computing HLCA(u), tu V can be done in O(n/K+
lg n lg lg n time with nK (K >- 1) processors.

Proof. Lemmas 8.5, 8.7.

9. Finding all bridges in a connected, undirected graph. In this section, we present
an optimal parallel algorithm for finding all bridges in a connected, undirected graph.
The correctness of the algorithm is based on the following theorems.

LEMMA 9.1. Let G(V,E) be a connected, undirected graph, fie E is a bridge of
G, then e is contained in every inverted spanning tree of G.

Proof. Trivial.
Due to this lemma, the number of edges to be examined is greatly reduced from

O(n 2) to O(n).
LEMMA 9.2. e is not a bridge if and only if e is on a fundamental cycle.
Proof. Trivial.
THEOREM 9.3. Let T( V, E’) be an inverted spanning tree ofa connected, undirected

graph G, and e a, b) E ’. Then a, b) is a bridge ofG ifand only iffor each descendant
of a, there does not exist (i, j) in G T such that depth (LCA [i, ]]) < depth (a).

Proof. Let e (a, b) E’ be a bridge in G. If there exists (i,/’) in G- T such that
i a descendant of a in T and depth (LCA [i, /’]) < depth (a), then the path [i

/" , LCA [i,/’] . b a . i] is a cycle containing e. This leads to a contradiction by
Lemma 9.2.

Conversely, if e is not a bridge, then by Lemma 9.2, e is on a fundamental cycle
C, i.e., there exists (i, ]) in G-T such that

C: [i -/" . LCA [i,/’] .- i].

e (i, ) because e is not in G T. As a result, e is either on the path [j LCA [i, ]]] or
on the path [LCA i, ]] i], implying depth (]) -> depth a > depth (b) _->

depth (LCA [i, j]) or depth (i) _->depth (a) > depth (b) ->_depth (LCA [i, ]]). Hence in
either case there exists (i,j) in G-T such that is a descendent of a and
depth (LCA [i, ]) < depth (a). l-1

ALGORITHM Bridges
1. Construct an inverted spanning tree T(V, E’) for G(V, E).
2. Compute HLCA (u), u V.
3. Compute a (u), /u V, where

a(u) =min {depth (HLCA (w))lu _< w}.

4. For each (u, F(u)) E’, check if depth (u) <- a(u). (.(u, F(u)) is a bridge iff
depth (u) _-< a(u)*)

The correctness of the algorithm is supported by Theorem 9.3.
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THEOREM 9.4. Algorithm Bridges runs in O(n/K /lg2 n) time with nK(K >= 1)
processors.

Proof. With nK (K >-1) processors, step 1 takes O(n/K + lg2 n) time (Theorem
5.2). Step 2 takes O(n/K +lgn lglgn) time (Theorem 8.8). Steps 3 and 4 take
O(n/K + lg K) time (Lemma 3.1 and 3.2). Hence, Algorithm Bridges runs in O(n/K +
lg2 n) time with nK(K ->_ 1) processors.

I0. The bridge-connected components of a connected, undirected graph. Once
the bridges of a connected, undirected graph are determined, its bridge-connected
components can be determined. Specifically, we eliminate all the bridges in G and
then use Algorithm MOD.CONNECT [3], [4] to find the connected components of
the resulting graph. Each of the connected components thus found is a bridge-
connected component of G.

The algorithm obviously runs in O(n/K + lg2 n) time with nK(K >= 1) processors.

11. Finding all biconnected components in a connected, undirected graph. In
this section, we present an optimal parallel algorithm for finding all biconnected
components of a connected, undirected graph G(V, E). Since a biconnected com-
ponent can be completely determined by its vertex set, it suffices to. find the vertex
sets of all the biconnected components of G.

DEFINITION. Let T(V,E’) be an inverted spanning tree of G(V,E). Let
el=(a,F(a)), e2=(b,F(b))E ’. elAe2 iff

(i) e2 is on [a * HLCA (a)] or el is on [b , HCLA (b)]; or
(ii) (a,b)E-E’ and neither a-<b nor b-<a in T.

ALGORITHM Biconnect.
1. Find an inverted spanning tree T(V, E’) of G(V, E).
2. Compute HLCA (v) /v V.
3. Construct an undirected graph G"(E’, E") such that (el, e2)E" iff elAe2.
4. Find the connected components {Bi} of G". (, Note: Every connected com-

ponent of G" uniquely determines the vertex set of a biconnected component
in G and vice versa. ,)

LEMMA 11.1. (i) For each edge (a, b E there exists a unique biconnected com-
ponent in G containing the edge.

(ii) All edges in the same cycle in G belong to the same biconnected component in
G.

From the definition, if elAe2 then el and e2 belong to the same fundamental cycle.
It is easily shown that if elAe2 and e2Ae3, then el and e3 belong to the same cycle in G.
This is easily generalized to"

LEMMA 11.2. IfeAe2, e2Ae3, et_lAet, then there exists a cycle in G containing
both el and et.

TIEOREM 11.3. e and e’ belong to the same connected component in G" if and
only if e and e’ belong to the same biconnected component in G.

Proof. Let e and e’ belong to the same connected component in G". Then there
exists a path: e, el,’",el, e’ in G". This implies that eAel, elAe2, ,etAe’. By
Lemma 11.2, e, e’ belong to the same cycle in G. By Lemma 11.1 (ii), e and e’ belong
to the same biconnected component in G.

Let e and e’ belong to the same biconnected component in G. Then there exists a
simple cycle C containing e and e’ in G. Let be the set of fundamental cycles such
that C LI+ (tA+ stands for the mod-two sum). It is easily shown that there exists a
subset {Ci}l<=i<=l of cg such that e C, e’ Ct and ei is a common edge of Ci and Ci+l,
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1 =< < I. Let (ai, bi) be the edge in G- T determining C, 1 _<- _-</. Let e(a), e(b) be
the edges in T such that e(ai)=(ai, F(ai)) and e(bi)=(b,F(b)); then in each C, we
have: (i) e(ai)ze(b) and (ei_ze(a) or e_ze(b)) and (eae(a) or eZe(b)); or (ii)
ei_aA e(a) and eze(a); or (iii) e_lAe(bi) and eze(b). In any of the above eases, there
is a path from e_a to e in G". In particular, there is a path from e to ea and a path from
el-a to e’ in G". Joining all these paths together, we have a path from e to e’ in G".
Hence, e and e’ belong to the same connected component in G".

LEMMA 11.4. Algorithm Biconnect runs in O(n/K +lgZ n) time with nK(K _->1)
processors.

Proofi With nK(K >-1) processors available, step 1 takes O(n/K +lg2 n) time
(Theorem 5.2). Step 2 takes O(n/K +lg n lg lg n) time (Theorem 8.8). Step 3 can be
carried out as follows: Construct an adjacency matrix M" for G". For every e E’,
M"[e, e’] and M"[e’, e are set to 1 if and only if (i) e’ is on the path [a . HLCA (a)]
or (ii) (a, b) is in G- T and neither a _<-b nor b _-<a in T, where e (a,F(a)) and
e’ (b, F(b)). Due to ]E’I O(n and the availability of F+, testing the above conditions
takes O(n/K) time with nK(K >-1) processors (Lemma 3.1). Step 4 takes O(n/K +
lgZn) time [3], [4]. Hence, Algorithm Biconnect takes O(n/K +lgZn) time with
nK(K >_- 1) processors.

12. Finding all separation vertices and determining the biconnectivity of a con-
nected, undirected graph. It is easily verified that if a is not the root r of T, then a
is a separation vertex of G if and only if a is the root of T B. for some/" where Bj
is a biconnected component of G and that r is a separation vertex if and only if r is
the root of at least two distinct T 71B’, T fq B". As a result, the algorithm for finding
the biconnected components can be used to determine the set of all separation vertices
of G as follows.

THEOREM 12.1. The set of separation vertices can be found in O(n/K +lgz n)
time with nK(K >- 1) processors.

Proof. First, the set of all biconnected components is determined. This takes
O(n/K +lg2 n) time with nK(K _->1) processors (Theorem 11.4). Next, the head of
each e E’, head (e), is determined. This obviously takes O(1).time with nK pro-
cessors. Then the set of all head (e)’s are divided into groups such that those e’s
belonging to the same biconnected component have their head (e)’s grouped together.
This involves sorting and takes O(lg n lg lg n) time with n processors [1]. Finally, the
head (e) with the smallest depth in each group is selected, these head (e)’s form the
set of separation vertices, r is included in the set if and only if r is selected from two
or more groups. This takes O(n/K + lg K) time with nK processors (Lemma 3.2).

To determine the biconnectivity of a connected, undirected graph G, we can
check the numbers of separation vertices it has. Clearly, G is biconnected if and only
if there are no separation vertices. This takes O(n/K +lg2 n) time with nK(K >-_ 1)
processors.

For completeness, we would like to point out that the algorithm for finding all
biconnected components can be used to determine the set of all bridges as well. This
is based on the fact that an edge e of G is a bridge if and only if e is a biconnected
component of G.

13. Conclusions. The parallel algorithms presented in this paper are optimal for
dense graphs except for the problem of finding the lowest common ancestor of vertex
pairs in a directed tree and the problem of finding all fundamental cycles in an
undirected graph. If an optimal algorithm for finding the lowest common ancestors
running in O(n + q)/nK time with nK(K _-> 1) processors is found, then the algorithm
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for finding the fundamental cycles presented in this paper is also improved without any
modification. Moreover, this achievement will provide us with an alternate efficient way
to compute HLCA (v), v V which is crucial in the design of optimal parallel
algorithms for the last five problems.

The optimality of our parallel algorithms may suggest that optimal sequential
algorithms can be derived from them. As a matter of fact, it has been shown that
O(I VI + IEI) time and space sequential algorithms for finding the bridges and biconnec-
ted components can be derived [18].

Of all the algorithms presented in this paper, only the algorithm for the lowest
common ancestor problem achieves the O(lg n) time bound. It is therefore intriguing
to consider whether there exist O(lg n) time algorithms for the remaining problems
on our SIMD model. No one has yet proven that the O(lg2 n) time is a lower bound
and this time bound seems unlikely to be surmounted. The difficulty seems to arise from
the model we use. In fact, Shiloach and Vishkin [17] have conjectured that the O(lg2 tl)
time bound cannot be breached with a polynomial number of processors on our SIMD
model. Recently, Reif managed to design O(lg n) time probabilistic algorithms for this
class of problems [13]. His probabilistic algorithms can be converted into O(lg n) time
parallel algorithms. The resulting algorithms are, however, nonuniform in the sense that
a different program is needed for each n. Another problem of immediate interest is
whether there exist parallel algorithms which are optimal for both dense and sparse
graphs. Specifically, they achieve the O(lg2 n) time bound using [m/lg2 n processors
where m is the number of edges of the given graph.

Finally, we shall point out that although we assume nK, the number of processors
available, satisfies the condition K -> 1 throughout this paper, it is not difficult to extend
our results to cases where 0 < K < 1 if Brent’s theorem [19] is used.

Appendix.
ALGORITHM DSF (*To find an inverted spanning forest in an undirected graph ,)
Stage 1

{Variable declarations}
M; array[1.. n, 1.. n] of 0.. 1;
FR +" array[1 2n-1,0.. n-1]of I n lg n;
depth" array[1 2n- 1] of 0 n- 1;
TR" array[1 n lg n] of 1 2n- 1;
DV: array[0., lg n, 1 n] of 1 n;
rootv" array[1 2n-1] of 1 n;
B:array[1..2, 1..n, 1..n]of 1..n;
flag" array[1.. n] of 0.. 1;
D, C’array[1..n]o| 1..n;
phase" 1.. lg n;startpt" 1.. 2n- 1;
Step 1" {initialization}

for all i" 1 _-< <_-n pardo
DV[O, i] := D[i] := i; flag [i] :=0
dopar;

for all i" 1 -<_ -<_ n lg n pardo PTR[i] :-- 0 dopar;
for all i’ 1 _-< _-< 2n 1 pardo

FR +[i, O] := FR +[i, 1]:= O;
rootv[i] := 0
flopar;
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for all i,/’; 1 <= i, 1’ <-n pardo
BE1, i, ]] := i; BE2, i,/’] := ]
dopar;

phase := 0; startpt := 0;
repeat
Step 2(a):

{Pack all defined rows in each segment together}
S := {i[flag[i] := 0};

{Set pointers in array PTR. second is a function extracting the second
portion of a variable formed by the function concatenation in the
preceding step.}

temp := second(sort({concat(flag[i], i)[1 =< _-< n}));
PTR[phase n + 1.. (phase + 1) n] := second(sort({concat(temp[i],
startpt + i)[1 -<i _-< IS[} U {concat(temp[i], 0)[[SI <i <_- n}));
startpt := startpt + n/2 ** phase;

Step 2(b):
for all 6 S pardo

1"o := min {/[M[i, ]] 1, ] S}
if none then ]o := i;

C[i]:=]o;
FR +[PTR[phase n + i], 0] := phase n + i;
FR +[PTR[phase n + i], 1 := phase n +]o

dopar;
Step 3(a):
{Check to see if the set S can be reduced any further;
if not, then terminate execution}
if (for all S, C[i] i) then exit;

Step 3(b):
for all S pardo if C[i] then flag[i] := 1 dopar;

Step 4:
for all 6 S pardo D[i] := C[i] dopar;

Step 5:
for/’ := 1 step 1 until lg n do
for all S pardo C[i] := C[C[i]] dopar;

Step 6(a):
for all 6 S pardo D[i] := min {C[i], D[C[i]]} dopar;

Step 6(b):
for all i: 1 <=i <_-n pardo D[i] := D[D[i]] dopar;

Step 6(c): {Record the array D[i], 1 <=i <=n}
for all 1 <_- <_- n pardo

ifiS
then DV[phase + 1, i] := D[i]
else DV[phase + 1, i] := DIDV[phase, i]]

dopar;
Step 6(d): {Convert the edge from the smallest-numbered vertex of each
1-tree-loop to a self-loop}

for all D [i]
pardo
FR/[PTR[phase n +i], 1] := FR/[PTR[phase * n +i], 0]

dopar;
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Step 7(a):
for all S pardo

for all / $: / D[/] pardo
Choose any/o S such that D[/o] / and M[i, ]o] 1

if none then ]o := ];
M[i,/] := M[i, jo];
B[-1, i,/] := B[1, i,/o];
BE2, i, i] := B[2, i,/o]

dopar
dopar;

Step 7(b):
for all / S:/’ D[/] pardo

for all S: D[i] pardo
Choose any io 6 S such that D[io] and M[io,/] 1 if none then io := i;
M[i, ]] := M[io, /];
B[1, i,/] := B[1, io,/’];
B[2, i,/’] := B[2, io,/’]

dopar
dopar;

Step 7(c):
for all S pardo M[i, i] := 0 dopar;

Step 8:
for all S pardo if D [i then jqag [i := 1 dopar;

phase := phase + 1;
until (phase >= lg n );

Stage 2
Step 1: {Evaluate the array FR +}
Compute FR + and depth [i] for 1 -i <-2n 1.

Step 2:
phase := phase 1;
{Note that at this point, each vertex k left in S is the root of a in-tree recorded
in the "last" segment}
for all k: k 6 S pardo
rootv[PTR[phase,n + k]] := k

dopar;
repeat

for all i: (phase n + 1 <= <=(phase + 1) n
and PTR 0
and FR +[PTR[i], (n 1)-depth [i]]
FR+[PTR[i], (n 1)-depth [i]+ 1]);

{not self-loop}
pardo {Output all the edges except the one emanating

from the new root first}
{Denoting FR +[PTR[i], (n 1)-depth [i]] mod n
and FR+[PTR[i], (n 1)-depth [i]+ 1]rood n by
vo[i] and v[i] respectively}
if rootv[PTR[i]] 0 then

begin
T[1, B[1, vo[i], v,!i]] := B[1, vo[i], 21[i]];
T[2, B[1, vo[i], t)l[i]]] := B[2, vo[i], v,[i]];
end;
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{Define the roots for the next segment};
il phase > 0
then rootv[PTR[D V[phase 1, B[1, vo[i], vl[i]]] +

(phase 1) n]] := B[1, vo[i], vx[i]];
{Reverse the edges if necessary}
il rootv[PTR[i]] 0
then for all/’: ((n 1)-depth [i]<-j<(n 1))
pardo{Denoting FR /[PTR[i], f mod n and FR /[
PTR[i], f + 1] rood n by Vo[/’] and Vl[/’] respectively}
T[1, B[2, Vo[/], vii/I]] := B[2, vo[j],
T[2, B[2, Vo[/], v[/]]] := B[1, Vo[/], v[/]];
{Redefine the roots as well}
if phase > 0 then
begin
rootv[PTR[DV[phase- 1, B[1, Vo[/], viii]I]
+(phase 1) n ]] := 0;
rootv[PTR[DV[phase 1, B[2, Vo[]], Va[]]]]
+(phase 1) nil := B[2, vo[]], Va[]]]

end
flopar

dopar;
{Pass the roots defined in the current and previous segments to the next
segment}
for all i: (phase n + 1 <= <-(phase + 1) n

and PTR[i] and rootv[PTR[i]] O)
pardo
rootv[PTR[D V[phase 1, rootv[PTR[i]]] + (phase
-1) hi] := rootv[eTR[i]]

dopar;
phase := phase 1;
until (phase < 0);
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INSERTION AND COMPACTION ALGORITHMS IN SEQUENTIALLY
ALLOCATED STORAGE*

B. S. BAKER? AND E. G. COFFMAN, JR.?

Abstract. Among the more difficult combinatorial problems in computer science are those occurring
in dynamic storage allocation. We investigate the handling of memory conflicts occurring when a request
for a block of storage is received, but no one region of available space is large enough due to fragmentation
of storage. For arbitrary block sizes, we show that it is NP-hard to find a minimal cost reallocation of
memory that will allow insertion of a new block. Therefore, we focus on the "bay restaurant" model studied
by Robson, in which requests are for only one or two units of memory. We give a polynomial time algorithm
for minimal cost insertions of batches of blocks and for minimal cost memory compaction. We show that
the cost of inserting p blocks one at a time, i.e. on-line, is no worse than

t2()r’gpl- 1J
times the minimal cost of inserting the blocks in one batch, i.e. off-line. For p a power of two, this bound
is tight.

Key words, dynamic storage allocation, storage compaction, packing algorithms

1. Introduction. Among the more difficult combinatorial problems in computer
science are those concerning algorithms used in dynamic storage allocation. The limited
literature on the analysis of combinatorial models of sequentially allocated storage has
focused primarily on the bay restaurant (or lunch counter) model [4], [5] and the
buddy system [2]. (See [3] for a full discussion.) The characteristic question in this
research has asked for the minimum size of memory sufficient to guarantee that requests
for storage can always be honored without moving blocks already allocated, assuming
that the total instantaneous demand never exceeds a certain level.

In this paper, we also examine the bay restaurant model in which requests are
for only 1 or 2 units of storage, but we orient our analysis to the familiar problem of
insertions of blocks into a fragmented, sequentially allocated memory, and to the
related memory compaction problem. Thus, our emphasis will be on the effective
handling of memory conflicts occurring when a request for a block of storage is received,
the cumulative available space is sufficiently large for the block, but no one region of
available space is large enough. In this case, the goal is to minimize the cost of moving
blocks to make a contiguous region available for the new block.

In 2, we describe the model. In 3, we show that for arbitrary block sizes, the
problem of minimizing the cost of moving blocks in order to insert a new block is
NP-complete. For the bay restaurant model, however, we give a polynomial time
algorithm that inserts blocks at the smallest possible cost. In 4, we adapt the results
for insertions to handle compaction in the bay restaurant model. In 5, we investigate
the relationship between on-line and off-line insertions. In particular, we show that
using the algorithm of 3 for the bay restaurant model, the cost of inserting p blocks
one at a time, i.e. on-line, is no worse than

t2(-) lgpl- 1j

times the miniml cost of inserting the blocks in one batch, i.e. off-line. For p a power
of two, this bound is tight.

* Received by the editors May 28, 1982, and in final revised form May 31, 1983.
? Bell Laboratories, Murray Hill, New Jersey 07974.
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2. The model. Let the memory be represented by the set M {1, 2,..., m} of
positions or locations. At any given point in time a collection of blocks S=
{B1, B2," , Bn} with corresponding integer sizes bl, b2," , bn}, 1 <_- bi -< m, 1 _-< -< n,
will be stored or allocated positions in M in the sense that

(i) Yi=l bi -< m (memory is sufficiently large),
(ii) for each i, Bi will be assigned consecutive positions represented by some

interval [L ]+ bi- 1]_ [1, m] (blocks are sequentially allocated), and
(iii) the intervals assigned to different blocks are disjoint.
The set of assigned intervals will determine a particular allocation of S. A hole

in some allocation of S is simply any interval disjoint from those assigned to the Bi’s,
and not a subset of any larger such interval.

The insertion problem for a set of blocks S’= {Bn+l,’’., Bn+p} not in S refers to
the operation of producing a valid allocation A’ of S U S’ from a given allocation A
of S, assuming that

n+p, bi<=m.
i=1

The compaction problem refers to the production of a new allocation A’ of S from a
given allocation A of S, such that A’ has exactly one hole located in the rightmost
position of M.

The basic operation in an insertion or compaction algorithm will be a move. A
move is either

(1) an operation taking an allocation A of S into an allocation of A’ of S, where
the interval assigned to exactly one block in S differs in A and A’, or

(2) the operation of inserting a new block into a hole of an allocation A, without
changing the position of other blocks.
In (1), the cost of the move is the size of the block moved; in (2), it is the size of the
block inserted. Implicitly, if a move takes a block from [j, k] to [j’, k’], then those
positions in [j’, k’,] not in [j, k] must be contained in some hole.

We shall be concerned only with algorithms that describe sequences of moves
yielding desired allocations; the cost of such a sequence is simply the sum of the costs
of its moves. Other models could be conceived, assuming, for example, that there were
buffer storage not necessarily disjoint from M. However, our model is consistent with
the assumptions that M is the entirety of primary storage, its use is homogeneous over
all positions, and no addition temporary storage is used.

3. The insertion problem. The problem of finding a minimum cost sequence of
moves for the insertion problem is easily seen to be NP-hard. For example, let
{al, a2,’’’, a3n} be an instance of the NP-complete 3-partition problem [3]: Can 3n
integers al, a2," a3n summing to ns, with s/4 < a < s/2 for 1 <- <= 3n, be partitioned
into n sets of three elements, such that the sum of the elements in each set is s? As
illustrated in Fig. 1, each such instance can be embedded in an insertion problem.
Specifically, the 3-partition question for {al,’", a3n} can be answered affirmatively
if and only if the insertion of a piece of size w ns into the allocation of Fig. 1 incurs

3nthe least possible cost w+___ ai 2w, or equivalently, if the compaction of this
allocation incurs cost w. Thus, we have the following result:

w/n w+l w/n w+l w/n w+l w

FIG. 1. Illustrating complexity.
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PROPOSITION 1. Given an allocation A and integers w and k, it is NP-complete
to determine whether a block of size w can be inserted into A using cost <-k, or whether
compaction of A can be performed using cost <-k.

As with similar combinatorial problems, it is important to determine those special
cases for which efficient optimization rules can be found for insertion and compaction.
This paper concentrates on the fundamental case of the bay restaurant problem, where
the block sizes are restricted to two values, s and 2s. For the analysis of the case of
interest, when m is an even multiple of s, there is no loss of generality in the convenient
assumption s 1. Blocks of size 2 will be called pairs, and those of size 1, unit blocks,
or simply units.

The move sequences generated by our insertion and compaction algorithms are
based on the notion of window. In a given allocation, the interval [j, k], k- j + 2r 4-1,
r >_-0, is a window if position j is unoccupied or contains a unit block, position k is
unoccupied or contains a unit block, and there are r contiguous pairs in positions j 4-1
to k-1. The cost of a window is defined as the sum of the sizes of the blocks in the
window. An example is shown in Fig. 2.

[nl g2g3 4 B5 g6 B7 -2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIG. 2. Illustration of windows for m= 15. The windows are [3,4], [4,5], [5, 6], [6, 11], [11, 12], [12, 15].

Note that the positions in an initial or final sequence occupied contiguously by
pairs are not in any window. The intervals corresponding to maximal such sequences
(e.g. positions 1 and 2 in Fig. 2) will be called boundary intervals. Also, adjacent
windows overlap in exactly one position, but every pair of adjacent positions falls
wholly within at most one window (althouth one or both positions may be in each of
two windows).

An algorithm for inserting a single pair B+I will be called a window algorithm if
it inserts B,,/I into some window w, after executing a move sequence satisfying:

(1) Unit blocks in w are moved into holes not in w
(2) In a sequence of r_-> 0 moves the remaining r blocks (all are pairs) are moved

one position left or right, creating a hole of size 2.
Note that a sequence satisfying (2) is generally not unique. For example, insertion of
a pair in a window such as [6, 11] of Fig. 2 can be made by moving B3 to position 5
and shifting both B4 and B5 one position right or one position left, or by moving B3
and shifting B4 left and B5 right one position. All possibilities lead to the same cost.

The notion of window algorithm can be extended in a natural way to insertions
of sets of blocks. An algorithm that inserts a set S’ of p blocks into an allocation A0
is called a window algorithm if it inserts the p’<_-p pairs of S’ into a minimum cost set
W of p’ disjoint windows in A0 by move sequences satisfying (1) and (2), and the
remaining unit blocks into holes contained in windows not in W.

As we shall see shortly, for p 1, a window algorithm that selects a minimum
cost window for inserting a single pair implements a minimum cost insertion. Although
it may be enticing, it is erroneous to assume that iteratively selecting minimum cost
windows is optimal for p > 1. An example is shown in Fig. 3. This example also shows
that such an algorithm does not necessarily satisfy our definition of a window algorithm,
which requires that each of the p windows selected be a window in the original allocation
Ao. The basic result concerning window algorithms is as follows:
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FIG. 3. Illustrating window insertions. A minimum cost window in Ao is [12, 23]. Inserting a pair into

[12, 23] gives an allocation A’ with one window [1, 34] (which is not a window in Ao). Inserting next a pair
into [1, 34] gives a total cost that exceeds by 22 the cost of inserting into window [1, 12] followed by inserting
into window [23, 34].

THEOREM 1. Let block sizes be limited to 1 and 2. For inserting any set of
blocks into a given but arbitrary allocation, there exists a window algorithm achieving
minimum cost.

Proof. Since units can always be inserted at cost 1, there can be no advantage in
inserting any unit of a given set before any pairs. Thus, from every optimal algorithm
we can construct another that inserts units only after the pairs have been inserted.
Consequently, we need only prove the theorem under the assumption that p >- 1 pairs
are to be inserted.

Consider an arbitrary move sequence _x, inserting the pairs S’= {Bn+l," Bn+p},
p=> 1, into an allocation Ao of S {B1,’’ ’, B,} to produce the final allocation Ap.
Call [j, k] an a-interval if it is a window or boundary interval of Ao. We say that a
block B is moved out of a-interval [j, k] by _x if B is in [j, k] in A0 but not Ap;
conversely, B is moved into [j, k] if it is in [j, k] in Ap but not A0. We now represent
the blocks moved as a result of the insertions of blocks in S’ by the following p block
sequences.

Each of the sequences begins with a different one of the p pairs in S’. Suppose
we have constructed the first i- 1 -> 0 sequences and the first j-> 1 elements of the ith
sequence, B1 (i),. , Bj(i), where Bl(i) is the ith pair selected from S’. If the a-interval
in Ao containing Bj(i) contains at least one pair moved out by _x but not already
selected as an element of the first sequences, one such pair is selected as B+(i) and
the process is repeated for this new pair. Otherwise, B(i) terminates the ith sequence,
and if < p, the (i + 1)st sequence is begun with the next pair from S’.

According to the above process, if a pair in the a-interval [j, k] terminates the
ith sequence, it is because all -> 0 pairs moved out of [j, k] by _x have already appeared
in the first sequences; and these pairs were selected because other pairs in the
first sequences were moved into [L k] by _x. Thus, [L k] must have at least one more
pair in Ap than in Ao, and hence cannot be a boundary interval in A0. It follows that
all a-intervals containing pairs terminating a sequence must be disjoint windows in
Ao. If an a-interval [j, k] contained the pairs terminating two different sequences,
then [j, k] would contain at least two more pairs in Ap than in Ao. Consequently,
there are exactly p disjoint a-intervals containing the pairs that terminate the sequences.

It remains to observe that if [j, k] terminates a sequence, it is in a window in Ao
with r-> 0 pairs starting in positions j+ 1, j+ 3,.,., k-2, whereas the r+ 1 pairs in
[L k] in Ap start in positions L J + 2,..., k-1. Hence, any units in positions j or k,
and all pairs in [j + 1, k- 1 in A0 must be moved at least one position by _x. It follows
that an optimal algorithm can do no better than to insert p pairs into a minimum cost
set of p disjoint windows of Ao, with each insertion satisfying the properties of a
window algorithm. [3

Finding a minimum cost set ofp windows. Armed with Theorem 1, we now consider
briefly the problem of efficiently finding a minimum cost set of p disjoint windows in
a given allocation. This problem can be solved in time O(p2) and space O (p log p)
using the following dynamic programming approach. Let s_ WlWz"’wk be any
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sequence of not necessarily adjacent windows in the same order as in Ao. We want to
compute the cost of inserting a set of pairs into _s from the cost of inserting some of
the pairs into WlW2""wtk/2 and the remainder into wt,/2j+l...w. Taking into
account the fact that pairs cannot be inserted into adjacent windows, let c(_s, r, xl, x2)
denote the minimum cost of inserting r pairs into _s, where 0_-< r_< k, and xl and
x2 in {0, 1} are control variables such that xl, respectively x2, is equal to one if and
only if a pair is inserted into wl, respectively w. These control variables are used to
ensure that two adjacent windows are never selected in any of the partial solutions.
For k > 1, c(_s, r, xl, X2) is the minimum of c((wl,. wtk/zj),j, xl, zl) +
c((wt,/2j+l,..., w,),r-j, z2, x2) over 0<-j<= [k/2] and Zl, z2 such that at least one
of Zl and z2 is 0 if wt,/2 and wt/2+l are adjacent. A table containing c(_s, r, Xl, x2)
and the values of j, Zl, and z2 producing this value, for 0 =< k and Xl, x2 in {0, 1}, can
be computed recursively from the tables for wl, w2, wt,/2 and wt/2j+l,.. , wk
in time O(k2) and space O(k log k).

Now, the p disjoint windows of minimal cost must be selected from the 3p-2
windows of minimal cost, since each of the first p-1 windows selected eliminates at
most two adjacent windows from consideration. Therefore, we may apply the above
algorithm to the sequence of 3p- 2 windows of minimal cost, and the entire computation
will require O(p2) time and O(p log p) space. The set of p disjoint windows of minimal
cost can be recovered in time O(p) from the values of j, Zl, and z2 in the table.

4. The compaction problem. Insertion algorithms can be applied directly to the
problem of memory compaction for an arbitrary allocation A, i.e., a minimum cost
placement of blocks into the interval [1, b], where

b= bi
i=1

and {bi}i"_-i is the collection of block sizes in A. If there is no block occupying an
interval containing [b, b + 1], a minimum cost compaction of A is simply a minimum
cost insertion of the blocks in [b+ 1, m] into the suballocation of A restricted to [1, b].
In our bay restaurant model, the case of a pair in [b, b + 1] is easy to handle. If there
is at least one window contained in [1, b-1], an optimum insertion sequence can be
started with the pair in [b, b+ 1]. Otherwise, we must have exactly one unoccupied
position in [1, b], and all blocks to the right of this hole can be moved left one position
for an optimum compaction.

5. Off-line vs. on-line insertions. Compaction is a natural application of off-line
insertions, where batches of insertions are known in advance. However, a typical
assumption in dynamic storage allocation is that insertions are made on-line and one
at a time, with no knowledge of future insertions. Under these circumstances, one may
consider adopting the obvious least-cost-window (LCW) algorithm: simply insert the
next block into a window of the current allocation having least cost. By Theorem 1,
this is obviously locally optimal. However, as the next result shows and as illustrated
in Fig. 3, this algorithm can perform quite badly in the worst case, as compared to an

algorithm that is able to batch insertions.
Concentrating as before only on the insertion of pairs, let OPT (A, p) denote the

cost of inserting p pairs into a minimum cost collection of p disjoint windows in A,
and let LCW (A, p) denote the cost of iteratively inserting p pairs into A by the LCW
algorithm.
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THEOREM 2. For all A and p >= 1, we have

cw(,p
<1

OPT(A, p)

Moreover, for p a power of 2 no smaller bound is possible.
Proof The result is trivially true for p 1, so let us assurne p > 1. We proceed by

contradiction: Let (A, p) be a counterexample to (1) and suppose that it is smallest
in the sense that there exists no other (A’, p’), p’< p, violating (1).

Let _w- WlW2"" Wp denote the sequence of disjoint windows used by OPT, and
let _v vlvz’"vp denote the sequence of windows used by LCW, in the order that
the insertions are made. We have

p p

LCW (A, p) Y c(vi) + 2p, OPT (A, p) c(wi) + 2p.
i=1 i=1

We say that a window v touches window w if v w or if v and w are adjacent.
Let _x xlx2 xt be that subsequence of _v such that for each i, 1 -<_ i-<_ t, xi touches
one or two windows in _w not already touched by xlxz’"X-l. Observe that every
window in _w must be touched by at least one window in _x; otherwise there would be
a window in _w disjoint from and having a cost at least that of any window in _v. It is
easily seen that in this case (A’, p-1) would be a smaller counterexample to the
theorem, where A’ is obtained from A by inserting a pair in w.

CLAIM 1. There is a subsequence y of v_ inserting [p/2] pairs such that
(a) the total cost of y is at most OPT(A, p)/2, and
(b) for any yj in y and v in _v, if v is a subinterval of yj then vi is also in y.
Proof First, we construct a subsequence _z of _v that satisfies (a) but not necessarily

(b). Let xi,,. , xr, be those xi’s touching two windows in _w, each for their first time,
and let xir.,,’.’x, be those touching just one for the first time. Without loss of
generality, we assume for convenience that c(x,,) <= c(xir+2) <-" <= c(xi,), where c,(xij
denotes the cost of xij. For _z we select zj= xj, 1 <-j<-r+ [(t-r)/2J [(r+ t)/2J. Each
of the zj, j_-< r, has at most the cost of each of the two windows in _w that it touches.
For/’ > r, zi has at most the cost of the window in _w that x touches for the first time,
and, because of the assumed ordering, it has at most the cost of the window touched
by xi, j’=j+ [(t-r)/2J, for the first time. It follows routinely that

t(r+t)/2J OPT (A, p)
Z z--<
=1 2

But, since 2r+(t-r)=r+t=p, we have [(r+t)/2J [p/2J.
Next, we obtain y satisfying both (a) and (b) by replacing some of the z as follows.

Examine the windows vl, v2,’", Vp in that order. If v is not in the sequence, say _z’,
produced after processing v,..., v-l, but it is a subinterval of some z in _z’, then
replace one such z in _z’ by v. Note that the total cost of the new sequence has at
most the cost of z’.

Let y be the final sequence obtained after examining Vp. Clearly, (a) remains
satisfied by y. To verify that (b) is also satisfied, let vg be a subinterval of v and suppose
vj is in y. Clearly, j > and v is examined after v. If v replaces a window when it is
examined, there must have been a window containing v in the sequences existing at
the times the windows Vk, k <= L were examined. Thus, whether or not v is in the
current sequence when v is examined, if v is not already in the sequence, it will

All logarithms are base 2.
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replace a window that is. Since vi can contain no interval Vk, k > i, vi cannot be replaced
subsequently. Thus, vi must be in y. Therefore (b) is satisfied by y.

Now, order y so that the intervals in y are in the same order as in _v. Reorder _v
so that y is the initial sequence into which insertions are made, and the remaining
intervals are in the same order as before. By property (b) of Claim I, each interval is
a window at the time an insertion is to be made into it in the new sequence _v’. Let
A’ be the allocation after the insertions of y are made according to _v’. It is easily seen
that the sequence remaining in _v’ after y is an LCW sequence inserting [p/2]
p- [p/2J pairs into A’. Thus, we can write

[p/2J

LCW(A,p) c(y)+2[p/2J +LCW(A’, [p/2]),
i=1

and, since (A, p) is a smallest counterexample,
[p/2J [ () l-log [p/2]]

LCW(a,p)_-< E c(y)+Z[p/ZJ + 2 -10PT(A’, [p/ZJ).
i=1

Using Claim 1 and the construction of y, we have

(2) LCW(A,p)<=1/2OPT(A,p)+[2()’gP-lJOPT(A’, [p/Z]),

where we have also used [log [p/2]] [log p l-1 for p > 1.
The next major step is given by:
CLai 2. For each p >= 2

OPT (A’, [p/Z]) _-< (-) OPT (a, p).

Proof. Consider those intervals in A’ of maximum length such that each position
in such an interval is an interval of y or _w. In characterizing the structure of these
disjoint intervals, which we shall call maximal y, _w-intervals, we recall the following
facts" The intervals of _w are disjoint and two intervals of y are either disjoint or one
is a subinterval of the other. Moreover, if an interval w in _w and an interval y in y
overlap in more than one position, then w must be a subinterval of y. Thus, each
maximal y, _w-interval corresponds to a unique, minimum-length sequence of intervals
of one of the following three types"

1. Yi, Wi1Yiz" Yik- Wik_ Yi, k >= 1,

Yi Wi Yiz YWik or wi Yi Wi wiYi, k >= 1,

Wi Yi Wi Wik_1Yik- Wik, k l,

is in _y, and wij is in _w but not _y, 1 =< j =< k. Let S denote the set of thesewhere yj
sequences describing all of the maximal y, _w-intervals in A’. Since each such sequence
has minimum length, no Yi or wi in such a sequence can be a proper subinterval of
any interval in y. Note that every interval in y and _w is in exactly one maximal y,
_w-interval, and an interval in y or _w is in a sequence of S if and only if it is not
properly contained in any interval of y.

Now suppose there are at least [p/2 sequences of type 3 in S. Since such sequences
begin and end with intervals in _w, they must correspond to maximal y, _w-intervals in
A’ that are in fact windows in A’. Clearly, they are available for the insertion of the
[p/2 pairs remaining after the insertions of y have been made. Bounding the cumula-
tive cost of [p/2] insertions into these windows we have

tp/2] P

OPT(A’,[p/2])_-< c(y)+ c(w,)+2[p/2].
i=1 i=1
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Use of Claim 1 and the construction of y then establishes Claim 2.
It remains to prove that in fact there must be at least [p/2] sequences in S of

type 3. Our approach will be to show that the maximal y, _w-intervals described by
sequences in S of types 1 and 2 all contain at least as many intervals of y as intervals
of _w, and those described by sequences of type 3 contain at most one more interval
in _w than y. The result then follows directly from the fact that there are [p/2 more
intervals in _w than in y,

First, consider any interval y in y containing r-> 1 intervals in _w. Before LCW
can insert a pair into y it must have inserted enough pairs into subintervals of y to
turn y into a window. Consequently, either

(a) y has initial and final subintervals coinciding with windows in _w, and at least
r-1 proper subintervals of y are in y, or

(b) there is no initial interval of y coinciding with a window in _w, or there is no
final interval of y coinciding with a window in _w, and at least r proper subintervals of
y are in y.

Now let _s be a type 1 sequence in S. By definition there are more intervals of y
in _s than intervals of _w. Thus, if no y in y appearing in _s contains an interval of _w
then the interval corresponding to _s contains at least as many intervals of y as of _w.

So suppose there is a y in y and _s that contains at least one interval in _w. If there
is at least one interval of _w in _s, y must be adjacent to at least one such interval. Since
no two intervals of _w can be adjacent, y must satisfy (b) and hence it properly contains
at least as many intervals in y as in _w. Once again, it follows that the number of
intervals in y contained in the interval represented by _s must be at least the number
of intervals in _w that are contained in the interval. If there is no interval of _w in _s,
then by definition _s must consist solely of the interval y in y. Since y is an LCW
window, it cannot begin or end with a subinterval that is an interval in y. Hence,
since we are assuming that y has at least one interval in _w, y must satisfy (a), and the
number of intervals of y properly contained in y cannot be more than one less than
the number of intervals in _w properly contained in y. Thus, counting y itself along
with the intervals of y that it contains, we have once again that the interval represented
by _s =y contains at least as many intervals of y as of _w.

Next, suppose _s is a type 2 sequence in S. By definition it has as many intervals
in y as in _w. Since each such type 2 sequence must have at least one interval in _w,
each y in y and _s must satisfy (b), if it contains at least one interval of _w. Thus, using
exactly the same arguments as before, we see that the interval represented by _s contains
at least as many intervals of y as of _w.

Our final observation is that if _s is a type-3 sequence, it must have at least one
interval in _w. Therefore, any interval in y and _s containing at least one interval of _w
must satisfy (b). Since a type-3 sequence has one more interval in _w than y, it follows
that type-3 sequences correspond to intervals containing at most one more interval of
_w than y. This completes the proof of Claim 2. l-1

Using Claim 2 in (2), we get

LCW (A, p)-<1/2 OPT (A, p)+ OPT (A, p)L2() rgp-- 1J
and, hence, the result we have been seeking:

LCW (a, p)_-< L2(-) r’gp2-1]OPT (a, p).

Our last step shows that (1) is asymptotically achievable for any p that is a positive
power of 2. Let V(A, p) be the cost incurred by LCW in moving just those blocks
originally in A, disregarding the cost of moving blocks inserted subsequently. Define
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the allocation Al(n) having no units and exactly 3 consecutive windows, each with n
pairs. (A1(5) is shown in Fig. 3.) By having LCW choose the middle window first, we
see that V(Al(n),2)=8n, whereas OPT(AI(n),2)=4n+4 by choosing the outer
windows. Inductively, as illustrated in Fig. 4, define the allocation Ak/l(n)=
Ak(n)ZkAk(n), using the obvious notation, where Zk is a sequence of 3kn pairs. If
LCW always selects the middle of three adjacent windows of equal cost, it inserts 2k/l

pairs into Ak/l(n) by first filling up both copies of Ak(n) (except for the extreme
positions) by inserting the first 2k/l- 2 pairs, then filling up the window containing Zk
by inserting another pair, and finally inserting the last pair into the sole remaining
window, which is forced by the above insertions to include all. of memory. If we define

V(A,(n),2’)
V k>-,

2n

it is routine to verify that

Vk/l=2Vk+2 3 k, k=l,2,’".

Solving this recurrence, we get

Vk =2.3-2, k=> 1.

An optimization rule can insert 2 pairs into 2 disjoint windows, each containing n
pairs. Hence,

LCW (A(n),2)> V(A(n),2k) _2n[2(3)-2]
OPT(A(n),2k) =OPT(A(n),2) 2(n+1)2k

By choosing n sufficiently large, this ratio can be made as close as desired to 2()- 1.
This completes the proof of Theorem 2.

A, (n z, A, (n

FIG. 4. Illustrating Ak+ n) in the worst case example of Theorem 2.

6. Discussion. In this paper we have addressed the complexity problem of inser-
tions and compactions within linear, arbitrarily fragmented storage. From an engineer-
ing point of view of the entire question of dynamic storage allocation, one must also
consider schemes such as the buddy system for governing the evolution of allocations
that facilitate insertions and/or compactions. For example, in a pragmatic approach
to the bay restaurant model of two block sizes, it is natural to consider an allocation
policy that assigns pairs so that they begin in only the odd locations; insertions may
now require the moving of one or two units, even when two consecutive unoccupied
locations exist, but pairs will never have to be moved to make room for a new block.
Such a scheme extends in the obvious way to the assumption of block sizes in the set
{1, 2, 4, 8, 16,. , m}, assuming m is a power of 2. It can be shown that inserting a
block of size n in such a system can be done in an amount of time proportional to
n log n. The authors intend to present this along with other characterizations of the
model in a subsequent paper.

There are many other interesting open problems connected with the model of
this paper. There are the obvious ones of generalizing possible block sizes to {1, k},
{1, 2, 3}, or {1, 2, 4), etc., which apparently entail a significantly greater difficulty.
Possibly there might be polynomial time approximation algorithms which would handle
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arbitrary block sizes. It would be interesting to know how bad on-line insertions can
be compared to batched insertions for arbitrary block sizes. The definition of compac-
tion might be changed to require only that a single hole be created somewhere in
memory, rather than at the right end; it appears that finding a minimum cost compaction
with this revised definition becomes significantly harder. One might also consider
modifications to the model. For example, the cost function could be changed to reflect
sequentially accessed storage (e.g. disks) rather than randomly accessed storage.
Another possibility would be to allow additional temporary storage outside the region
of memory being allocated. In our model, we assumed that there was no temporary
storage available except to store the batch of blocks to be inserted. However, the
proof of Theorem 1 analyzed only the positions of blocks in the initial and final
allocations. Therefore, even if algorithms were allowed to store blocks temporarily in
external storage at no cost, there would still be an optimal window algorithm which
made no use of external storage. We conclude that external storage is not helpful for
blocks of size 1 and 2. It might of course be helpful for handling blocks of arbitrary size.
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MOVEMENT PROBLEMS FOR 2-DIMENSIONAL LINKAGES*

JOHN HOPCROFT?, DEBORAH JOSEPH:I: AND SUE WHITESIDES

Abstract. This paper is motivated by questions concerning the planning of motion in robotics. In
particular, it is concerned with the motion of planar linkages from the complexity point of view. There are
two main results. First, a planar linkage can be constrained to stay inside a bounded region whose boundary
consists of straight lines by the addition of a polynomial number of new links. Second, the question of
whether a planar linkage in some initial configuration can be moved so that a designated joint reaches a
given point in the plane is PSPACE-hard.

Key words, robotics, manipulators, mechanical arms, algorithms, polynomial time, PSPACE-hard

1. Introduction. This paper is concerned with the motion of linkages from the
computational complexity point of view. The research was motivated by earlier work
in robotics, particularly that of LozanooPerez and Wesley [LW-79], Lozano-Perez
[L-80], Reif [R-79] and Schwartz and Sharir [S-81], [S-82]. There are two natural
ways in which linkage movement problems arise in robotics. First, a linkage can model
a robot arm. A frequently encountered model consists of a sequence of links connected
together consecutively at movable joints. Second, linkages can also model hinged
objects being moved by an arm or other type of manipulator. In both cases, it is
essential to plan collision-avoiding paths of motion, as the manipulator and the object
it is moving are generally required to lie within regions whose boundaries are deter-
mined by walls .and the presence of other objects in the work space.

A linkage is a collection of rigid rods called links (see Fig. 1.1). The endpoints
of various links are connected by joints, each joint connecting two or more links. The

(a) (b)

FIG. 1.1. (a) A planar linkage. (b) An arm in the plane.

links are free to rotate about the joints. In a planar linkage, links are allowed to cross
over one another, and the linkage may be fastened to the plane so that the locations
of certain joints are fixed (the fixed joints are indicated by in the figures).

In a physical realization of a planar linkage, each link could move in a separate
plane parallel to the ground. If links were joined together or to the ground by pins,
then a link in one plane might collide with a pin joining links in two other planes.
However, it is not difficult to design simple devices that function like pins but that do
not interfere with the motions of the linkage. Thus the mathematical model in which
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links cross over one another and in which the locations of some joints are fixed can
be physically realized.

An arm is a simple type of linkage consisting of a sequence of links joined together
consecutively with the location of one end fixed.

Suppose that an arm is required to stay inside some given region R of the plane.
It is a natural question to ask whether new links can be adjoined to the arm in such
a way that the original links in the arm automatically stay inside R. The new links
may move outside R, and some of the links may have an endpoint fixed in the plane.
The key requirement is that no motion of the arm inside R be prevented by the
addition of the new links. Figure 1.2 shows how this can be done if R is a circular region.

FIG. 1.2. An arm confined to a circular region. Connecting joints A and A to the center of the circle
by two-link "elbows" keeps the arm in R.

The reason that we are interested in reductions of this sort is that the motions of
the new linkage can be studied without reference to the region R. The first main result
of our paper is that for any compact connected, but not necessarily simply connected,
region R whose boundary consists of a finite set of straight line segments and any
linkage L positioned within R, there is a reduction of the type we have just described.
What is more the number of new links that must be added is bounded by a polynomial
in the number of original links and the number of sides of R. Also the lengths and
placements of the new links are easy to compute.

Our second result is that the reachability question for planar linkages is PSPACE-
hard. In other words, given an initial configuration of an arbitrary planar linkage L,
a joint J in that linkage and a point p in the plane, the question of whether L can be
moved so that J reaches p is PSPACE-hard.

The main technique used throughout the paper is to build complex linkages by
connecting together simpler special purpose linkages. Some of these simpler linkages
date from the 19th century and are described in 2. These include Peaucellier’s straight
line motion device, which is a linkage containing a joint whose locus is exactly a straight
line segment, and linkages that translate and rotate vectors and multiply distances.

Section 3 contains an easy demonstration that a linkage required to move inside
a closed bounded convex polygonal region R can be embedded in a more complex
linkage that enforces the boundary constraint for the original linkage. The extension
of this result to a linkage L constrained to move inside a nonconvex bounded region
R with straight line boundaries appears in 4. We obtain this result by triangulating
the complement of R in its convex hull H, designing a linkage that contains a joint
whose locus is a triangle, and then using this device to build a linkage that can keep
a link entirely outside a triangle. By keeping each link of L outside each triangle in
H-R while requiring each joint of L to remain inside H, we keep L inside R. We do
this in such a way that the motion of L is not restricted in any other way.
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Section 5 contains our other main result, that the reachability question for planar
linkages is PSPACE-hard. We obtain this result by designing a linkage that can simulate
a linear bounded automaton (LBA). The result should be compared to Reif’s result
[R-79] that in 3-dimensional space, the reachability problem is PSPACE-hard even
for a simple, hinged, tree-like linkage required to move in a nonconvex region.

2. Simple linkages.
2.1. Overview. This section describes planar linkages that perform certain tasks.

After a discussion in 2.2 of Peaucellier’s straight line motion linkage, we show in
2.3 how to use this device to build linkages that can translate and rotate vectors.

Then in 2.4 we use these devices to give a modified version of Kempe’s construction
of a linkage that "solves" a multivariable polynomial equation [K-1876]. This linkage
has certain joints whose positions represent values of variables Xl,’", xn, and the
only constraint that the linkage puts on the motion of these joints is that the implied
values of the xi stay within given bounded domains and satisfy a given polynomial
equation.

The linkage for solving a polynomial equation plays an important role in both the
main results. We use it to keep links outside of triangular regions when we show how
to build boundary constraints into a linkage in 4. We also use it to synchronize the
motions of the LBA simulator given in 5.

Two important subtleties arise in designing special purpose linkages. First, we
often want to construct a linkage L having a joint J whose locus is some specified set
of points. It is important to understand that, in such a case, L must be able to move
to all points in the set but to no other points. Historically, some linkages that have
been proposed for performing certain tasks have been faulty because, while they are
able to move in some desirable way, they can also move to "configurational sin-
gularities" at which they can begin undesired motions. Hence for the sake of complete-
ness we include redesigned versions of these linkages that avoid this problem.

The second important subtlety is this" Suppose that the locus of some joint J in
linkage L is a set of points S and that the locus of some joint J’ in linkage L’ is a set
S’. Now suppose that J and J’ are identified. It is not necessarily true that the joint
J J’ can then reach all points in S Iq S’. Indeed S S’ need not be connected! We
have been careful to avoid this pathology in designing our linkages. The crucial
observation is the fllowing. Suppose that x(t) and y(t) are given continuous functions
of time. When a new linkage is formed from L and L’ by identifying joints J and J’,
this new linkage can move so that the position of (J =J’) is given by (x(t), y(t)) if
and only if L can move so that the position of J is given by (x(t), y(t)) and L’ can
move so that the position of J’ is also given by the same (x(t), y(t)).This observation
should be kept in mind when checking that the linkages we build up from smaller
pieces function as claimed.

2.2. Peaucellier’s straight line motion linkage. In 1864 Peaucellier [P-1864]
designed a linkage, shown in Fig. 2.2.1, that converts circular motion to linear motion.
Links AD, AB, DC and BC have equal length, as do links EA and EC. The length
of FD equals the distance from E to F. The locations of joints E and F are fixed
points in the. plane, but the linkage is allowed to rotate about these points. As it does,
the joint B traces out the line segment XY. This can be seen by observing two facts.
First, joints D and B always lie on a ray through E. Second, the distances h, r and
shown in Fig. 2.2.2 satisfy he= ae-t2= b2-(r+ t) e, where r is the distance between
D and E. Consequently the distance s between E and B is such that rs is equal to
the constant be- a e. (Here, h, r, s and are functions of the position of D.) Hence,
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FIG. 2.2.1. The Peaucellier straight line motion linkage.

A

b

E

FIG. 2.2.2. Consideration of triangles EAZ and DAZ shows that h a2- b2-(r+ t) 2, where h is

half the distance between A and C, is half the distance between D and B and is the distance between E
and D.

this device can be thought of as performing the well-known mapping called "inversion
with respect to a circle" [E-63]. In this mapping, the image of a point p-(r, 0) is the
point p’ (r’, 0) where rr’ is some given constant. It is known that this mapping takes
circles to circles, where a straight line is regarded as a circle of infinite radius. Suppose
that the joint E of the Peaucellier device is at the origin of the polar coordinate system
and that the given constant is b2- a2. Then the device computes the images of the
points that D can reach. Since the circle of radius IFDI about F goes through the
origin, this circle is mapped to a straight line, in particular the line through X and Y.
The points X and Y represent the extremes that B can reach.

The relative lengths of the links are not important provided that the linkage can
be assembled as shown in Fig. 2.2.1 with E, F, D and B on a straight line. In order
to argue that the Peaucellier device works correctly we must demonstrate that joint
B cannot reach joint D, for if this could occur, the joint B could leave the line segment
XY and trace out part of the circle that D traces. Similarly we must demonstrate that
joint A cannot reach joint C. Joint B cannot reach joint D since the line XY does
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not intersect the circle of radius IFDI centered at F. To see that joint A cannot reach
joint C, suppose that B moves along XY toward X, say. The parallelogram ABCD
begins to collapse; diagonal DB lengthens, and diagonal AC shortens. Also, link EA
moves counterclockwise about E, thereby increasing the distance from A to F. Con-
sequently, the collapsing of the parallelogram is stopped when angle FDA straightens,
preventing further counterclockwise rotation of EA. This occurs when B reaches X,
as shown in Fig. 2.2.1. The reader is referred to [E-63] for a more detailed discussion.

Now we point out some consequences of a simple modification of the Peaucellier
device that we will need in 3, where we will describe how to confine a linkage to the
inside of a convex polygon.

Suppose that the Peaucellier linkage is modified by adding a new link BG. As
joint B travels up and down line segment XY, link BG can rotate freely about B.
Clearly the set S of points that joint G can reach is the union of a rectangle and two
discs (see Fig. 2.2.3). Note that G can follow any curve that stays inside S but avoids

X

A

E D B

c s

Y

FIG. 2.2.3. The region of points reachable by the modified Peaucellier linkage.

the discs centered at X and Y. (G cannot move inside the discs when B is at X or
Y.) Consequently, when we are faced in 3 with the problem of designing a modified
Peaucellier linkage whose joint G must be able to move freely inside some given
polygonal region R, we simply scale the linkage shown in Fig. 2.2.3 by an approximate
constant so that region R fits inside set S with the discs removed.

We will take advantage of the fact that S has a straight line segment in its boundary
by placing the modified Peaucellier linkage so an edge of the polygon R lies along a
boundary line of S. This will keep joint G from crossing that edge of R.

We will frequently use the Peaucellier linkage to constrain a joint J of some other
linkage to a line. This can be done by identifying the joint J with the joint of the
Peaucellier linkage that moves on a line. When we do this identification, we say that
J is moving in a slot. The geometry and positioning of the Peaucellier linkage determine
the length and position of the slot.

Also observe that the two points of the Peaucellier device that are normally
attached to the plane could instead be attached to a rigid structure made up of links
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X
X

Y

Y
(a) (b)

FIG. 2.2.4. (a) An arm ABJ whose endpoint J is moving in a slot. (b) A slot on a platform.

that is free to move in the plane. In this situation the slot itself has allowable motions,
and we say that the slot is on a "platform". (See Fig. 2.2.4.)

2.3. Translators and rotators. We will need linkages to perform certain basic
tasks. Since many of the previously published constructions have deficiencies of the
sort described earlier, we include correct versions of these linkages. We do not attempt
to construct the simplest linkage for a task, but rather one that is conceptually easy
to understand and to prove correct. Throughout this section, we assume that R is a
given closed bounded planar region.

The first device we construct is a translator. A translator is a linkage such that
the only restriction on the movement of four of its joints S, T, U and V in the region
R is that the position of T relative to S remains the same as the position of V relative
to U. Alternatively, any three of these joints can be moved freely, and the position
of the fourth joint is uniquely determined by the above relation and the position of
the other three.

The linkage consisting of four parallelograms shown in Fig. 2.3.1 is a natural
candidate for a translator. Joints S, T and U can be moved to any three points in the

T V

S

b b

FIG. 2.3.1. A faulty translator.

plane, provided the distance between S and T does not exceed 2a and the distance
between S and U does not exceed 2b. At first it appears that the position of V relative
to U is always the same as the position of T relative to S, i.e., that the vector ST is
equal to the vector UV. The difficulty is that one or more of the parallelograms may
convert to a contraparallelogram (see Fig. 2.3.2), and thus other motions are possible.

One might attempt to overcome this difficulty by attaching to each diagonal of
the parallelograms a sufficiently short two-link segment. This would keep a
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b V

b U

FIG. 2.3.2. Conversion of a parallelogram to a contraparallelogram.

parallelogram from straightening. Unfortunately, this also prevents the movement of
T to S when S is held fixed, and this motion is essential in a construction of Kempe’s
that we use. We solve the problem by using a more complex device involving nine
parallelograms. The linkage shown in Fig. 2.3.3 will be part of this device. The lengths
of the links A1B1, BIC1 and C1D1 can be chosen long enough so that no matter where

A1 is positioned inside the bounded region R, D1 can move freely in R while A1 is
kept fixed and C1 is constrained to move on a line through A1 by means of a slot
(see 2.2). In fact, if the links are sufficiently long, then the slot can be constructed
so that the angles between and links AIB1 and BC1 do not exceed 30 no matter
how D1 moves in R. (Of course the joints B1 and C1 are outside R, but this does not
concern us, as only the joints of the original linkage are required to stay inside R.)
Also note that the angle between CID1 and can be kept to at most 30 by the addition
of a two-link segment connecting A to D1 and having length equal to the diameter
of R. A similar linkage with joints A1, A2, A3 and An can be constructed so that A4
can move freely in R while the angles between AIA2, A2A3 and A3A4 and another
line l’ through A1 are kept within 30. It is convenient to choose l’ perpendicular to

slot

B1

FIG. 2.3.3. Keeping links nearly "vertical". (The two-link connection between A1 and DI is not shown.)
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since the links in the segments between A and Da and between A and A4 will
appear as sides of parallelograms in our nine-parallelogram translator. The fact that
these links can be kept nearly parallel to and l’ will prevent any of the nine
parallelograms from straightening. In this way, we avoid the flaw in the faulty four-
parallelogram translator.

To construct the main body of the translator, begin with the nine-parallelogram
linkage shown in Fig. 2.3.4. The three-link segments connecting A1, Ba, Ca and Da

A1 A2 A3 A4

FIG. 2.3.4. The predecessor of a translator.

and Aa, A2, A3 and A4 are not yet constrained as described above. Notice (by applying
the parallelogram law of vector addition) that it is possible to move these segments
independently of each other without breaking links or creating contraparallelograms,
although parallelograms may straighten. As long as no contraparallelograms are
created, the position of Da relative to A is the same as the position of D4 relative to
a4. NOW move D1 and A4 (and hence D4) to Al, as shown in Fig. 2.3.5, and then
attach the constraining devices described in the discussion of Fig. 2.3.3 to A1, Ba, Ca
and Da and to Aa, A2, A3 and a4. Joints D1 and A4 can still move freely in R, but
the links in the segments between A1 and D1 and between A and a4 must remain
nearly parallel to and l’, preventing the formation of contraparallelograms.

The next device we construct is called a rotator. A rotator is a linkage such that
the only restriction on the movement inside of R of three of its .joints A, I and H is
that the distance from A to I be equal to the distance from A to H. In this construction,

DI

Ci

A4
FIG. 2.3.5. A translator. (The constraining devices attached to A1,

shown. The picture is planar, not 3-dimensional.)
D and A1,. ",A4 are not
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slot

slot

BD

slot
slot

/3 J B

I H

(a) (b) (c)

FIG. 2.3.6. A distance rotator. Without the addition of the quadrilateral AGFE, D could move to B and
the two superimposed joints could then move to the same side of the slot through A and C. Hence the slot
through A and C would no longer bisect angle DAB.

G

we begin with the quadrilateral linkage ABCD shown in Fig. 2.3.6a. The lengths of
the sides of ABCD satisfy IADI--IABI < CDI- CBI. Then we constrain C to a slot
through A. We want to insure that the slot through A always bisects the angle DAB.
We also want to insure that links AD and AB can rotate freely about A, so it is
necessary that ABCD be able to straighten to allow links AB and AD to cross over
each other. However, when B coincides with D, B and D must not be allowed to
simultaneously move off the line AC in the same direction (see Fig. 2.3.6b). If this
happens the slot through A would no longer bisect the angle DAB. To solve this
problem, we construct another quadrilateral AGFE with link lengths satisfying IAGI
IAEI < IFGI IFEI and also IAEI + IEFI > IADI + IDCI. Then we constrain F to move
in the slot through A in which C moves. Finally, we join the quadrilaterals by adding
links ED and BG (see Fig. 2.3.6c). Now D and B can rotate freely about A (for an
appropriately designed slot), but ABCD must be straight whenever B and D coincide.
Hence, B and D cannot move to the same side of the slot through A, and the slot
remains the bisector of angle DAB.

Now we attach "platforms" to AD and AB (as shown in Fig. 2.2.4), and slots
that coincide with AD and AB. We then add links IJ and HJ, where I is constrained
to move in the slot along AD, H is constrained to move in the slot along AB, and J
is constrained to the slot in which C and F move. Since triangles AIJ and AHJ are
always congruent, the distance between A and I must equal the distance between A
and H. Note that this is the only constraint on the motion of I and H. This completes
the construction of a rotator.
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Now we combine a translator that keeps the relative position of T to S equal to
the relative position of V to U (but does not otherwise restrict their motions inside
R) with a rotator that keeps the distance between A and H equal to the distance
between A and I (but does not otherwise constrain their motions inside R). We do
this simply by identifying A with U and H with V. The result is a linkage containing
four joints S, T, A U and I whose motions inside R must satisfy only one requirement,
that the distance between S and T be equal to the distance between A U and/. We
call this device a distance copier

A distance copier can be used to construct an angle adder. An angle adder is a
linkage containing four equal-length links OA, OB, OC and OD whose motions are
constrained only by the requirement that angle AOD be equal to angle AOB plus
angle AOC. We will only need a device that correctly adds angles AOB and AOC
when angle AOC is less than 7r. To construct such a device, we take four equal-length
links OA, OB, OC and OD and attach a distance copier to A, B, C and D that keeps
the distance between A and C equal to the distance between B and D. Then to insure
that angle AOC is added to angle AOB rather than subtracted from it, we add two
links OE and EB to form a triangle with a right angle at O. Now we connect E to
D with a two-link segment of length ]EBI (see Fig. 2.3.7). These additional links
constrain D to be on the correct side of the line OC.

(a) (b)

FIO. 2.3.7. An angle adder. In b), the right triangle EOB has been added, together with a two-link
segment connecting E to D of length IEBI.

2.4. Linkages for multiplication. In the late 1800’s Kempe [K- 1876] showed how
to construct linkages to "solve" multivariable polynomial equations. We will make
important use of a modified version of his construction. Given a set of variables
xl, x2," , x, with bounded domains and a polynomial equation p(xl, x2,. , x,) O,
we can design a linkage that will force the xi to satisfy the equation.

Consider the links AB and BC of equal length shown in Fig. 2.4.1. Joint A is
fastened to the plane, and joint C moves in a slot on the x-axis. The position of C
represents the value of a variable x whose domain is determined by the slot. The
length of the slot is such that B cannot straighten. Additional links, whose description
we omit, can be added to insure that AB remains vertical when x 0. Then x a cos a.
Thus for a fixed value of a greater than max ]xl the variable x can be represented by
the angle a, where 0 <

We can now rewrite the polynomial equation, expressing each xi as a cos ai.
Replace products of cosines by cosines of sums of angles using the formula

cos cos 1/2 (cos , +/ + cos , , ),
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B

A at 0 C at x

FIG. 2.4.1. Representing x by angle a: x a cos a. Max Ix[ < a so 0< a < r. The linkage that keeps AB
vertical when x 0 is not shown.

thereby reducing the equation to the form

ao + ai cos 0i 0,

where each 0i is a sum of
Using the technique for adding angles described in the previous section, we can

design a linkage that constructs each 0 from the ai’s. Recall that the construction for
adding angles works correctly as long as the second summand is in the range [0, r],
and since joint B cannot straighten, this condition is satisfied by the ai’s. The terms
a cos 0 can be summed by constructing a sequence of links L1, L2," of lengths
al, a2," connected together at their end points and making each link L form the
angle 0 with the horizontal by using a translator. The translator is attached to the
end points of Li and to the endpoints of another link of length a that is rigidly attached
to the moving side of the angle 0. Finally, the free joint of the last link is constrained
to a slot on the vertical line x =-ao.

Note that for all motions of the linkages, p(xl," , xn) 0. Furthermore, for each
choice of xi’s solving the equation, the linkage can move to a configuration that
represents this choice. The number of links in the straightforward implementation of
Kempe’s idea can be exponential in n because the summation may have exponentially
many terms. However, we need the Kempe construction to enforce only two particular
equations, so this problem does not concern us.

One of the equations that we are interested in is XlX2X3 0. This equation states
that at least one of Xl, x2 or x3 must be zero. Substituting cos O for x reduces the
equation to

COS (0 "k- O2
q- 03) -[-COS (0 "k- O2 03) +COS (0 O2 "- 03) +COS (0 O2 03) O.

Note that in terms of the previous notation, a0 0 and aa a2 a3 a4 1. Figure
2.4.2 is a simplified picture of how this equation can be mechanically solved. If xa 0,
meaning that aa 7r/2, then the links L and L4 must be oriented so that 04 r-0a.
Similarly links L2 and L3 must be oriented so that 03 7r-02. If x2 0 then La and
L3 must be parallel, as must L2 and L4. All these conditions are met when xl 0 and
x2=0. At this point the shape of the figure changes from that in (a) and (b) to a
parallelogram, shown in (c).

3. Replacing the boundaries for a convex region. Suppose that L is a linkage and
R is a closed bounded region whose boundary is a convex polygon. We will show that
by adding additional links to L we can constrain L to the region R without destroying
any motions of L that were totally within R. However, the new links may move outside
R.
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.L slot

]- Oi4 Tr 2 t a

L2 ] 03

(a) x --0." o --7r/2, a 10, a 30. b x O, x2 decreases:

al 7r/2, O =45, a 30.

". 0, slot
L2 "L

(c) xl =0, x2 reaches O:
o 7r/2, t r/2, O 30.

03

L

slot

(d) X increases, X

Ol decreases, O =45, O r/2, O3--" 30.
FIG. 2.4.2. Links for the polynomial x1x2x3--O. 01--(ol1+ol2+ol3), 02--(011+012--013) 03-"

(Oil- a2+ a3), 04 (at-- a2-- a3).

The region R is the intersection of a finite number of half-planes. By adding
constraining linkages to force the original linkage L to lie in each half-plane, we can
force the linkage L to lie within the intersection of the half-planes and hence within
the convex polygon. For each edge of the polygon and each joint J of L we construct
a modified Peaucellier device that constrains J to the appropriate side of the edge (see
Figs. 2.2.3 and 3.1). The device does not interfere with the motion of J inside the
polygon provided that the polygon avoids the discs centered at X and Y. Clearly, this
will constrain the linkage L to remain within R. However, we must show that we have
not restricted the allowable motions of L. As pointed out earlier at the end of 2.1,
identifying joint J1 of one linkage with joint J2 of another may restrict the movement
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FIG. 3.1. Polygon inside the reachable region of a modified Peaucellier device.

of J1 J2 to a region smaller than the intersection of the original reachable regions of
J1 and J2. In fact, the intersection may not even be a connected region. Recall that
the subtle point that one must consider is that even when the intersection is connected,
the joints still may not be able to reach all points in the intersection since the possible
paths the joints can follow may not be compatible.

However, in this particular case, each Peaucellier device constraining J to a region
bounded in part by a side of R allows J to move along any curve in R. Hence the
allowable motions of a joint J of L are not restricted by the addition of the devices.

The number of Peaucellier devices needed is equal to the product of the number
of joints of L and the number of sides of the polygon. The lengths of the links in each
Peaucellier device can be determined simply by choosing an appropriate scaling factoJ
for Fig. 2.2.3. Consequently, the description of the new linkage is polynomial in the
size of the description of the original linkage L and region R.

4. Replacing the boundaries for a nonconvex region.
4.1. Overview. In this section we show how to incorporate into a linkage L the

boundaries of an arbitrary bounded region R whose boundary consists of a finite
number of straight line segments. Here two problems arise. First, the region is not
simply the intersection of half-planes. Second, constraining the end points of a link to
be in a region does not necessarily constrain the entire link to be in the region. In Fig.
4.1.1, even .if A and B are constrained to lie within the region R, the link AB may
be partially outside the region.

To handle these problems, let H be the convex hull of the region R. The region
H-R can be quickly partitioned into a small set of triangles, the number of triangles
being polynomial in the number of line segments in the boundary. (See Eves [E-63].)
If we can exclude a link from a triangle without otherwise restricting its motion, then
we can restrict a link to R without restricting its motion. (To keep a link from sliding
along an edge of the triangulation, we can cover the edge with two additional triangles
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H

(a) (b)

FIG. 4.1.1. A link with endpoints in a nonconvex region. The link must be kept out of each triangle in
the triangulation of H-R. In (b), CD is an edge of the triangulation.

that lie in H-R and then require that the link remain outside those triangles also.)
Applying the construction to each link of L will solve the problem.

In 4.2 we describe a linkage for tracing a triangle and then use this construction
in 4.3 for constraining a link to remain outside a triangle.

4.2. A linkage for tracing a triangle. In order to construct a linkage that can
reach all points in the closed exterior of a triangle, we begin by constructing a linkage
that traces the boundary of a triangle. Suppose that we are given a triangle XYZ.
Then we can construct three straight-line motion linkages with designated joints A,
B and C such that the joints A, B and C move along the segments XY, YZ and XZ
respectively (see Fig. 4.2.1). We would like to construct a fourth linkage with a

Y

X
/ __x3

Z
C

FIG. 4.2.1. Forcing D to trace the boundary of a triangle XYZ.

designated joint D such that D must be at the same position as either A, B, or C.
Then provided D can move freely subject to the above constraint, we will have
constructed a linkage that traces the triangle XYZ.

We force D to be at the same position as either A, B, or C by using Kempe’s
construction as presented in 2.4. Let Xl, x2 and x3 denote the distances from D to
the joints A, B and C respectively. Joint D is at the same location as one of A, B,
or C provided XlX2X3 0. For convenience the distances Xl, x2 and x3 can be translated
to the x-axis by means of distance copiers. Adding the linkage to force XlX2X3 0 then
completes the construction.
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4.3. Constraining a link to remain outside a triangle. We now construct a linkage
to constrain the motions of a link so that it can move freely outside a triangular region.
Consider the triangle XYZ shown in Fig. 4.3.1. The triangle is inside a triangular

slot

B

X Z

FIG. 4.3.1. Constraining a link to remain outside a triangle.

figure with rounded corners. The distance between parallel edges of the inner triangle
and the outer is d. The corners of the outer triangle have. been replaced by circular
arcs of radius d centered at the vertices of the inner triangle.

Using the construction given in 4.2, we can constrain a joint A to the boundary
of XYZ and using a similar construction we can constrain a joint B to the boundary
of the outer triangular figure. We can connect A to B with a link AB of length d.
The possible motions of the link AB consist of rotating about the inner triangle but
always remaining perpendicular to an edge, except at the vertices. At a vertex, the
link AB can rotate from a position perpendicular to one edge to a position perpendicular
to the other.

We now add two additional links AC and AD at joint A and two-link segments
connecting B to AC and AD. The lengths of the segments when fully extended are
designed to force the angles BAD and BAC to be in the range [-r/2, 7r/2]. Thus
AD and AC are forced to lie outside triangle XYZ.

Attached to the links AD and AC are platforms that contain slots coinciding with
AD and AC. The end points of the link ST that we wish to exclude from the triangle
XYZ move in these slots. Clearly, ST can never enter the triangle since its end points
are always in a half-plane whose boundary is a line through A perpendicular to AB.
The triangle XYZ is outside this half-plane and thus, by convexity, ST does not
intersect the triangle XYZ.

We must show that the motions of link ST are not further restricted as long as
ST does not move far from the triangle. Since ST is completely contained within a
half-plane associated with the perpendicular to AB passing through A, we can fix A
at any point on the triangle and move T by rotating D about A and sliding T along
AD. The movement of S is obtained by analogous use of AC. Since S and T are
confined to slots along AD and AC, the lengths of AD and AC must be long enough
to allow S and T to move as desired.
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5. PSPACE-hardness of the reachability problem for linkages.
5.1. Overview. We now show that the reachability problem for planar linkages

is PSPACE-hard. That is, given an initial configuration of an arbitrary planar linkage
L, a joint J in that linkage and a point p in the plane, the question of whether L can
be moved so that J reaches p is PSPACE-hard.

Our proof consists of showing that there are linkages that are capable of simulating
linear bounded automaton (LBA) computations and that the size of the description
of a linkage that simulates a given LBA on inputs of length n is linear in n and the
size of the description of the LBA. The PSPACE-hardness of the linkage reachability
problem then follows from the fact that the acceptance problem for LBA’s is PSPACE-
complete. For definitions of an LBA and PSPACE see [HU-79].

5.2. Some useful linkages. We begin by building up a collection of simple devices
that perform various functions. First, we define a cell to be a horizontal slot of some
fixed size containing a joint. The joint represents the value of a Boolean variable. The
left end of the slot indicates value 0, the right end value 1. Certain cells will be grouped
together to form registers.

It is convenient to have a device called a lock that can be used to force the value
of each cell in a register to be 0 or 1 and to prevent the value of any cell from changing
during certain time periods. Figure 5.2.1 shows a lock attached to a register. The

cells

(a)

bar

cells

Op 0b -[1 0 tl 0 -!

bar

(b)

FIG. 5.2.1. A lock on cells of a register. (a) Locked. (b) Unlocked.

horizontal rectangular bar is part of the lock. The bar is attached to slots so that it
can only move vertically; no rotation is possible. Attached to the bar are a number
of platforms carrying vertical slots. Each joint representing a Boolean variable is
attached to a link, the other end of which moves in one of the vertical slots. The links
are designed so that when the bar is in the lower, unlocked position the Boolean
variable joint can move freely in its cell because the other end of the link can move
up and down the vertical slot. When the bar is in the upper, locked position each
Boolean variable joint is in a 0-1 position. Note that these variable joints cannot move
when the bar is up.
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In order to coordinate the linkage motions that take place during the simulation
of two moves of the LBA, we design a sequence controller with five variables Sl, s2,

s3, 11 and 12. Each variable is represented as a joint in a slot. We restrict the values
that the variables can assume by adding a Kempe linkage to force

[s2 + s22 + s + (1 11)2][$22 + s+ (1 11) 2 + (1 -/2)21 [s2 + s+ (1 -/1)2 + l] 0.

TABLE 5.2.1
Possible values for variables. Dashes denote arbitrary

values between 0 and 1.

S1 S $3 11 12

0 0 0
0 0
0 0
0 0 0

0 0 0
0 0
0
0
0 0
0 0 0

The consequence of this equation is that the only possible values the variables can
assume are those shown in Table 5.2.1. The restriction on the value of the variables
allows only one variable to change value at a time, and the variable that can change
value is determined by the values of the remaining variables. As a result, the only
allowable sequence of changes from one set of 0-1 values to another is that shown in
Fig. 5.2.2. Of course, the changes can reverse at any time. We will use the values of

FIG. 5.2.2. The allowable sequence of values.

these variables to control certain events, thereby sequencing the order in which the
events can take place. In particular, the variables l and 12 will control locks, and the
s’s will sequence the order in which these locks are opened and closed.

Since we represent values of variables by positions of joints, we will often use the
words "joint" and "variable" interchangeably. Also, we will denote a variable and the
joint that represents it with the same symbol.
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The next device we need is a gate for NOT and a gate for AND. To obtain
negation, we use the distance copier of 2.3 to force the distance of a joint from one
end of a slot to be the same as the distance of another joint from the opposite end of
its slot. Thus when one cell has value 0, the other has value 1 and vice versa.

To construct an AND gate, we force the product of the distances of two joints
from the 0-end of their slots to equal the distance of a third joint from the 0-end of
its slot. Let xl, x2 and x3 be these distances. Then when xl and x2 both have 0-1
values, x3 xANDx2.

Using these linkages it should be clear that we can construct a linkage to compute
any Boolean function. However, to make it easy to check the correct behavior of the
linkage we must be careful not to form a loop by using the output of a gate as an
input to one of its predecessors. This might cause the linkage to be rigid since the loop
might imply a relationship between the rates of motion of certain joints that would
not be satisfied for any nonzero rate. Our design will contain only two loops, and we
will use a decoupling mechanism with them to insure that the entire linkage does not
jam.

5.3. Simulation of an LBA. One idea for a mechanical simulation of a given
LBA, M, is the following. Suppose that we have two registers that can be used for
storing instantaneous descriptions (ID’s) of M. Since Boolean variables are modeled
by joints moving in slots, the contents of a register at a given time will not necessarily
be a sequence of O’s and l’s. However, we will design a linkage connecting these two
registers so that whenever the contents of both registers are sequences of O’s and l’s
(i.e., whenever both registers contain ID’s), the ID in one represents the result of a
legal move of M from the ID in the other. We would also like the linkage to have
the property that as M makes its moves, its ID’s appear alternately in one register
and then in the other. In this way, we can simulate the operation of an LBA. Since
we are only interested in the reachability problem, however, we do not need to build
a linkage that actually simulates M; rather, we only need a linkage which is able to
simulate M. The linkage could make other moves as well, provided that it never moved
a certain joint J to a point p representing an accepting state of M by accident. The
linkage we are about to construct can simulate M, but in addition, it can undo and
then redo sequences of moves. Because of this we will assume that M is deterministic
and has no move from any accepting state.

We begin the construction with the two registers R and R2 used to store the
ID’s of M. Attached to the cells of the registers are two Boolean circuits constructed
from NOT and AND gates. The output fl is true whenever the ID in register R2
follows from the ID in register R1 by one move of the LBA. The output f2 is true
whenever the ID in register R1 follows from the ID in the register R2 by one move
of the LBA.

The variables 11 and 12 in the sequence controller described in 5.2 are connected
to locks on registers R1 and R2, respectively, with li 1 when its lock is in the closed
position. The variables Sl and s2 are connected to the outputs fl and f2 by the linkage
in Fig. 5.3.1. Joints f and f2 are free to move when S and s2 are 0. However, s or

s2 can move to value 1 only if fl or f2, respectively, has value 1.
Initially R1 holds the configuration of the LBA at time zero, and sl 0, s2 0,

s3 0, l 1 and Iz 0. This corresponds to the first entry in Table 5.2.1.
We now describe a sequence of events that simulates the behavior of M on a

given input. Since 12 is initially 0, the variables in Rz can move freely. In particular,
they can move to the ID of M after its first move. Then 12 can move to a locked
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moving
slot

fl link I-.

0 fixed 0 fixed
slot slot

FIG. 5.3.1. Decoupling mechanism. The moving slot has one end point attached to sl, which moves in
a fixed slot. sl cannot move to unless f is at 1.

position, i.e., 12 can take on the value 1. Note that as variables in R2 were changing
values, fl and f2 were also changing, but this is allowed since Sl 0 and s2 0. At this
point, the sequence controller has advanced to the second state shown in Table 5.2.1
and can now advance to the third state, with Sl 1. This is because fl must be 1 since
the ID in R2 follows from the ID in R1 by one move of M. Hence sl can move to 1.

Next R1 unlocks, allowing Sl to return to zero. (Note that si can change to zero
independently of fi’s value.) Now the variables in R1 can change to the next ID of M.
Again, fl and f2 must be changing while R1 is changing, but this is permitted since Sl
and s2 have value 0. At this point, the variable s3 can change to 1 and then ll can
lock. The next step is for s2 to change value to 1. This is allowed because f2 has value
1: the configuration in R1 follows from the configuration in R2 by one move of M.
As soon as s2 changes value to 1, then 12 can unlock, and s2 can change back to 0.
Finally, s3 can change back to 0, completing a cycle of the sequence controller. During
the cycle the linkage has simulated two moves of the LBA.

Observe that the simulation may proceed forward or backward. If the simulation
proceeds from ID1 to ID2 and then reverses, it may back up into an ID other than
ID1 since two ID’s may both have the same successor ID. The only concern here is
that the simulation might accidentally back into an accepting ID. This can be prevented
by modifying the LBA so that no move is possible from any ID with an accepting
state and then basing the design of the linkage on the modified LBA. Note that the
linkage may back into a configuration corresponding to an ID of M that could not be
reached from its initial state. However, since we are only considering deterministic
LBA’s, the linkage must move forward along the same computational path on which
it has just backed up. Of course its forward progress may be interrupted from time
to time by additional backing up and retracing of sequences.

Finally, another Boolean circuit is attached to the two registers R1 and R2. The
Boolean circuit computes a 1 output whenever one of the registers is locked and
contains an accepting ID. The output of this circuit is a joint J. There is a motion of
the linkage that moves J to 1 if and only if the LBA reaches an accepting ID.

This completes the proof that the reachability problem for planar linkages is
PSPACE-hard.

[E-63]
[HCV-52]

[HJW-82A]

[HJW-82b]
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ON THE OPTIMUM CHECKPOINT SELECTION PROBLEM*

SAM TOUEG AND ZALP BABAOLU

Abstract. We consider a model of computation consisting of a sequence of n tasks. In the absence of
failures, each task has a known completion time i. Checkpoints can be placed between any two con-
secutive tasks. At a checkpoint, the state of the computation is saved on a reliable storage medium.
Establishing a checkpoint immediately before task is known to cost si. This is the time spent in saving
the state of the computation. When a failure is detected, the computation is restarted at the most recent
checkpoint. Restarting the computation at checkpoint requires restoring the state to the previously saved
value. The time necessary for this action is given by ri. We derive an O(n 3) algorithm to select out of the
n--I potential checkpoint locations those that result in the smallest expected time to complete all the tasks.
An O(n 2) algorithm is described for the reasonable case where s > sj implies r rj. These algorithms
are applied to two models of failure. In the first one, each task has a given probability Pi of completing
without a failure, i.e., in time i. Furthermore, failures occur independently and are detected at the end of
the task during which they occur. The second model admits a continuous time failure mode where the
failure intervals are independent and identically distributed random variables drawn from any given distri-
bution. In this model, failures are detected immediately. In both models, the algorithm also gives the
expected value of the overall completion time and we show how to derive all the other moments.

Key words, fault-tolerance, checkpoint, rollback-recovery, discrete optimization, renewal process

1. Introduction. A variety of hardware and software techniques have been pro-
posed to increase the reliability of computing systems that are inherently unreliable.
One such software technique is rollback-recovery. In this scheme, the program is
checkpointed from time to time by saving its state on secondary storage and th com-
putation is restarted at the most recent checkpoint after the detection of a failure [6].
Between the times when the failure is detected and the computation is restarted, the
computation must be rolled back to the most recent checkpoint by restoring its state
to the saved value. Obviously, rollback-recovery is an effective method only against
transient failures. Examples of such failures are temporary hardware malfunctions,
deadlocks due to resource contention, incorrect human interactions with the computa-
tion, and other external factors that can corrupt the computation’s state. Persisting
failures will block the computation no matter how many times it is rolled back. The
ability to detect failures is an essential part of any fault-tolerance method including
rollback-recovery. Examples of such failure detection methods are integrity assertion
checking [8] and fail-stop processors [10].

In the absence of checkpoints, the computation has to be restated from the
beginning whenever a failure is detected. It is clear that with respect to many objec-
tives such as minimum completion time, minimum recovery overhead, maximum
throughput, etc., the positioning of the checkpoints involves certain tradeoffs. A sur-
vey of an analytical framework for resolving some of these tradeoffs is presented by
Chandy [1]. Young [11] and Chandy et al.[3] addressed the problem of finding the
checkpoint interval so as to minimize the time lost due to recovery for a never-ending
program subject to failures constituting a Poisson process. Gelenbe and Derochette
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[5] and Gelenbe [4] have generalized this result to allow the possibility of external
requests arriving during the establishment of a checkpoint or rollback-recovery.
These requests are queued and serviced later. Consequently, these results for the
optimum checkpoint intervals with respect to maximizing system availability and
minimizing response time reflect the dependence on the rate of requests. More
recently, Koren et aL[7] have derived expressions for optimum parameters in a system
employing a combination of instruction retry and rollback-recovery.

In the previous work described above, expressions for the optimum checkpoint
interval were derived with the assumption that checkpoints could be placed at arbi-
trary points in the program at a cost (as measured in units of time) that is indepen-
dent of their position. Recall that establishing a checkpoint implies the saving of the
current program state on secondary storage. As the minimum amount of data
required to specify the state of a program can vary greatly over time, it is unrealistic
to assume that the time necessary .to write it to secondary storage is a constant.
Furthermore, some programs cannot be blocked to create a checkpoint during the
execution of certain intervals. The transaction processing periods of a database sys-
tem are examples of such intervals. Whether due to prohibitive costs or other practi-
cal considerations, most computations display only a discrete set of points where
checkpoints can be placed. Informally, we will view these computations as a
sequence of tasks such that the program state between two consecutive tasks is "com-
pact" (i.e., incurs a reasonable cost to save). In other words, task boundaries define
potential checkpoint locations. Statically, such a computation can be represented as
a directed graph where the vertices denote the tasks and an edge (i,j) exists if and
only if task may be followed by task j in some execution. This computation model
was used by Chandy and Ramamoorthy in the optimum checkpoint selection problem
where the objective was to minimize the maximum and expected time spent in saving
states [2].

In this paper, we model the execution of a program as a linear sequence of tasks
and consider the optimum checkpoint selection problem with respect to minimizing
the expected total execution time of the program subject to failures. In the next sec-
tion, we introduce the formal program model along with the input parameters to the
problem. 3 describes an algorithm based on dynamic programming that generates
the set of checkpoint locations so as to minimize the expected completion time. 4
gives an improved version of this algorithm that is applicable when there is a certain
relation between the costs for establishing checkpoints and the costs of rolling back
the computation. In 5, we present two possible failure models to which the algo-
rithm could be applied. Solutions to some extensions of the original problem are
presented in 6. A discussion of the results concludes the paper.

2. The model of computation. Assume that a computation consists of the
sequential execution of n tasks where a task may be a program, procedure, function,
block, transaction, etc. depending on the environment. For our purposes, any point
in the execution where the computation is allowed to block and where its state can be
represented by a reasonable amount of information can delimit a task. Clearly, the
decomposition of the computation into tasks is not unique any convenient one will
suffice.

Let t; denote the time required to complete task in the absence of failures. We
assume that these times are deterministic quantities and are known for all of the
tasks. The boundary between two consecutive tasks i-I and determines the th
candidate checkpoint location. The setup cost, si, is defined to be the time required
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to establish a checkpoint at location i. This is the time necessary to save the state of
the computation on secondary storage as it exists just before task is executed. After
a failure is detected, the state of the computation is restored to that of the most
recent checkpoint. The rollback cost, rg, is defined to be the time required to roll
back the computation to the checkpoint at location i. After the rollback, the compu-
tation resumes with the execution of task i. We assume that a checkpoint is always
established just before task 1. Initially, we also assume that the checkpoint setups
and rollbacks are failure-free. We relax these last assumptions in 6.

The optimization problem can now be stated as follows: Given ti, s and r for
i--l,2,...,n and a suitable failure model, select the subset of the n-1 potential check-
point locations such that the resulting expected total completion time (including the
checkpoint setup and the rollback-recovery times) for the computation is minimized.
The objective function we have selected is a reasonable one for computations that
govern time-critical applications such as chemical process control, air traffic control,
etc., in the presence of failures.

The following definitions will be used in the subsequent sections. Let [i,j]
denote the sequence of tasks i, i+l,..., j where j>i. Note that [1,n] is the entire
computation. Let T..m.,,j denote the minimum expected execution time for [i,j] over all
the possible checkpoint selections in [i,j] with m or fewer checkpoints. Clearly, T...,J
is the expected execution time of [i,j] without any checkpoints. Among all the
checkpoint selections in [i,j] that achieve T..m.,,j, we consider those with the minimum
number of checkpoints. These selections are called m-optimal solutions for [i,j], and

L .mwe denote them by ,,j. Note that a m-optimal solution L.m.,,J for [i,j] contains at
L .mmost m checkpoints. If ,,j contains no checkpoints (i.e., it is the empty selection of

L.m. L.m.checkpoints), it is written as ,, <>. If ,j contains k checkpoints (l<k<m),
we represent it as the ordered sequence of the selected checkpoint locations
L .m.‘, --<u , u2, uk>, where i(u(u2<’’’(uk<j. The rightmost checkpoint
location of L.m.,,J <u , u2, u,> is u,, and the rightmost checkpoint location of
L .m. - > is There may be more than one m-optimal solution for [i,j]. From,./

now on, we will consider only those m-optimal solutions L .m.
,,j that satisfy the follow-

ing additional requirement: Either L .m. > or the rightmost checkpoint location of,J

L .m. is greater than or equal to the rightmost checkpoint location of any other m-,J
L.mooptimal solution for [i,j] Henceforth, we reserve the notation ,,j to denote only

those m-optimal solutions for [i,j] that satisfy this additional requirement.
The next section describes an algorithm to determine an optimum checkpoint

selection Lln,- and the corresponding minimum expected execution time T]’, for a
given problem.

3. The basic algorithm. Consider Tj and T)- for some k and j such that
k>l and j>2. Note that either Tkl,j-- T, or Tkl,j’< Tl,jk-l. Suppose TI,jk ( T,)k-I
In this case, any k-optimal solution for [l,j] must contain exactly k checkpoints.
Let h be the location of the rightmost checkpoint of a k-optimal solution for [1,j].
We must have

k + 0TI,j Tkl,-- T,j + sh

That is, up to k-I checkpoints are optimally established in [1,h-l] and a checkpoint
is established at location h. No checkpoints are established in [h,j]. Let k-L,,_I be
any (k 1)-optimal solution for [ 1,h ]. Then

Llk,j k-ILl,h-I II <h >
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for until n do
for j until n do compute T,."

l,J

for k until n-I do
begin

rf,,
L < >

end;

for k until n-I do

forj --n step-1 until2do

begin

Tk- + T. +si)T MIN ,i- ,j

Let h be the largest minimizing index above

if T<T- then do

begin

Tkl,j T

L kld -!L,h- <h >
end

else do

begin

rL
end;

end;

FIG. 1. Dynamic programming algorithm for computing the optimum checkpoint selection (and
the corresponding expected execution time)for a n-task computation.

must be a k-optimal solution [l,j] (the [[ operator denotes concatenation of
sequences, i.e.,

<u 1, ,un > II <v> <u l,’",un,v

From these observations, it is clear that we can compute Tk,j and Lj as follows.
Let

T= MIN( k-I T," + si)
l<i<j Tl’i-I + "Y

k-Iand let h be the largest index such that T--- Tl,h_ + ThOj--Sh. We must have
"k Ik-IIf then we have .l,y--.l,y otherwise

Lj Ll,h- II
We just showed that if T,".,,J, Ti,ik-I and L-I are computed first (for all i’s and j’s

such that l<i<j), then we can also derive Tj and LIj. Ths suggests a dynamic
programming algorithm to compute T, and’L,-. The algorithm is described in
detail (in "Pidgin Algol") in Fig. 1.

Note that the underlying probabilistic failure model does not explicitly appear in
the algorithm. It is implicitly used only during the initialization of the algorithm,
when the T,.’s

,,j are computed (for all i’s and j’s such that l<i<j<n). Therefore, the
same algorithm can be applied to any underlying failure model such that the T,..’s

t,j
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can be computed.
T,..’sIf we exclude the computation of the ,,g the time complexity of this algorithm

is O(n3). In fact, the inner loop is executed O(n 2) times, and the most time-
consuming operation in this inner loop is the MIN<;<j operation. Since j O(n),
this operation requires O(n)-time.

If we assume that the setup costs and the rollback costs are related as described
in the next section, then we can reduce the complexity of the algorithm to O(n2).

We finally note that computing all the T...’s,j takes O(n2)-time in the two failure
models that we consider in 5. Therefore, with these models, the overall complexity
of the algorithms described in Fig. and in the next section is O(n 3) and O(n2),
respectively.

4. An improved algorithm for a restricted model. We assume the following rela-

tion between the setup costs and the rollback costs:

For any two checkpoint locations and j, if s > Sj then r rj.

Note that if there is a non-decreasing function f relating all the rollback costs to the

setup costs, i.e., r --f(si), then the above relation is satisfied. In particular, it is

satisfied if for all we have ri ocsi q- [J, for some constant a > 0 and/ > 0. It is

also satisfied if all the setup costs or all the rollback costs are equal.
We further assume that the failure model is such that augmenting any segment

cannot decrease the probability of a failure occurring in that segment. Formally, for

all i,j andk such that <i < j < k < n, we have Pi,j Pi,k where Pi,j denotes

the probability that no failures occur during the execution of [i,j]. With these

assumptions, we can prove the following two theorems.
THEOREU 1. Suppose the m-optimal solutions for [i,j] are such that their right-

most checkpoint location is k, < k <j. Then, for any p >j the m-optimal solu-

tions for [i ,p ] are such that their rightmost checkpoint location is some h, h >k.
THEOR 2. Suppose the m-optimal solutions for [i,j] are such that their right-

most checkpoint location is k, < k <j. Then the (m + l)-optimal solutions for [i,j ]
are such that their rightmost checkpoint location is some h, h >k.

The proofs of these two theorems can be found in the Appendix. From these

two theorems we can immediately derive the following corollary.

COROLLARY. Let a, b, and c be the rightmost checkpoint locations of the
(k-l)-optimal solutions for [l,j], the k-optimal solutions for [l,j], and the k-
optimal solutionsfor [ ,j + ], respectively (1 <j, k<n ). We have a < b < c.

Using this corollary, we can speed up the basic algorithm described in Fig. by
a factor of O(n). The main idea is to restrict the range of indexes scanned by the

kMIN operation in the algorithm s inner loop. Suppose we want to compute Tl i and
k k k kwe already know some L }- and Ll j+l. Let 1- and 1 j+ be the rightmost check-

point locations of L f aad L j+,’respectivel3. From ihe corollary, we know that
the rightmost checkpoint location of any k-optimal solution of [l,j] is such that
k-l,.<:s.k k

tl,j t--t,j+. Therefore, we can compute T,j as follows:

T MIN (Tf,-/-- + Ti,),
f .-,_<i_<f .+,g ,g

T MIN(T, Tf,-’).
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Note that, in the algorithm described in Fig. 1, when T,j is computed, L)- and
L#j+ have already been derived in some earlier steps of the algorithm. Therefore,
1, and l,j+ are known at that point and they can be used to compute T,j as
shown above; Lj is then derived as in the basic algorithm.

In the basic algorithm of Fig. 1, the range of indexes scanned by the MIN opera-
tion to compute T/ was l<i<j. With the algorithm modification that we just

k <:: kdescribed, the range_is t,y t.t,y+. We now show that this modification results in
an O(n) algorithm. Note first that a MINa<i<b operation in this algorithm takes
b-a+l steps, i.e., O(b-a) time. Let q, O<q<n--l, be a fixed positive constant.
Let T(q) be the following set

T(q) Tkl,j 2<j <n, <k<n 1, and j-k=q }.

Consider the time taken by all the MIN operations performed while computing all the
elements of T(q).

When Tl,q+ is computed, the range of indexes is l<i<ll,q+2.
<i<12When Tl2,q+2 is computed, the range of indexes is /l,q+2 l,q/3.

When Tal,q+3 is computed the range of indexes is l ill,q +3 l,q4"

When .vn-q- In-q-2 <ilT,q-I
"l,n- is computed, the range of indexes is ,,n_

When T’{,q is computed, the range of indexes is 17,--<i <n.
By summing up the number of computation steps needed by all these MIN opera-
tions, we get a total of n +(n--q) steps. Therefore, for any fixed q (O<q<n--l), the
MIN operations performed while computing all the elements of T(q) take a total of
O(n) time. By considering all the n possible values of q, we conclude that the MIN
operations performed while computing all the T,j’s such that j-k>0 take a total of
O(n 2) time. Similarly, we can show that the MIN operations performed while com-
puting all the T,j’s such that j-k<O take O(n 2) time. Therefore, during the execu-
tion of the algorithm the total time taken by MIN is O(n2), and the algorithm’s com-
plexity is also O(n 2).

5. Models of failure.
5.1. Discrete case. Our first failure model is discrete where failures occur

independently. In the absence of failures each task has a known completion time ti
and a given probability Pi of completing without failures (i.e., in time ti). Failures
occurring during the execution of task are detected only at the end of task i. For
example, failure detection could be done by checking if an integrity assertion about
the state holds at the conclusion of the task. In this model we also assume that the ti
and the rollback times ri are integers.

To use the algorithms of 3 and 4 with this failure model, we need to compute
all the 0,Ti,j s. Consider a segment [i,}]. Let the random variable Yi,j denote the time
required to execute [i,j] in the presence of failures and no checkpoints. Note that
T,..,,j E[ Y/,/]. Let qt Prob[ Yi,y ]. The moment generating function
(g) "-.t=O qtz of this distribution can be derived as follows. The execution of
[i,j] takes at least ti,j Z=i tc units of time. Therefore,

We exclude the time taken to compute all the Ti,j’s during the initialization of the algorithm. This
time depends on the underlying failure model. We consider two failure models in 5, and with both
models it takes O(n 2) time to compute all the T...

,j
’S.
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qo- q qti,j-I O.

The execution of [i,j] takes exactly ti,j units of time only if no failures occur.
we have

Then

qti, Pi Pi+l Pj

The execution of [i,j] takes more than ti,j units of time only if there is at least one
failure during the execution. Consider the first failure that occurs after the computa-
tion is started. By conditioning on all the possible tasks where this failure could
occur, we derive the following recurrence relation for qt"

qt (1--Pi )qt-(ti+ri) -+- pi( l--Pi+l)qt-(ti+ti+l+ri) -47

+ PiPi+l Pj-l(1--Pj)qt-(ti+ti+l+...+tj+ri)

for all such that t>ti,j Multiplying both sides of this equation by z
ming over all t, >ti,j, we get

ti+ti+l+" +tj(Z PiPi+l Pj Z

and sum-

+ri ti +ti+ +ri(l--p/) Z
t’ P(Z) +Pi(1--pi+l)Z t(Z)+

+PiPi+l Pj-I(1--Pj zti+ +tj+ri )(Z

Therefore,

(z)

PiPi+l "Pj Z
ti+ti+l+" +tj

--Pi)Zti+ri --Pi( l--Pi +l)Z ti+ti+l +ri --.. --PiPi+I..Pj-I( 1--pj)z
ti+’’+tj +ri

By taking the derivatives of O(z) and setting z to one, we can find all the moments
of the random variable Yi,j and, in particular, wc can obtain T,’z,j --E[Y.,j]. It is
then easy to verify that the following recurrence relation holds

ri,

I,J
PJ

I,J--I ri for all j, j>i

Using these recurrence relations, we can compute all the 0,T/,j s (for
l<i<j<n ) in O(n2)-time.

and j,

5.2. Continuous case. Rather than assuming the task executions to constitute
independent Bernoulli trials ,as we have done in the previous section, let us consider
the case where failures occur according to a stationary renewal process throughout
the computation. In other words, the inter-failure times are independent and identi-
cally distributed random variables. We assume the existence of a mechanism to
detect failures as soon as they occur. As before, when a failure is detected, the com-
putation is rolled back to the most recent checkpoint before it can be resumed. We
assume that the checkpoint setups and rollbacks constitute renewal points.
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Let the random variable X denote the time until the next failure after a renewal.
F(x) Prob[X<x] denotes the distribution function of X which is assumed known.
As before, let the random variable Yi,j denote the time required to execute [i,j] in
the presence of failures and no checkpoints. Let V(t)= Prob[Y,.,j<t]. We proceed
as follows in order to derive an expression for this distribution.

As before, ti,j -----i tk be the time required to execute [i,j] without any
failures. Clearly, the execution time in the presence of failures cannot be less than
this time; that is, V(t) -0 for t<ti,j. Conditioning on the time until the first failure
after a renewal, we have

V(t) fProb[Yia<tlX=x]dF(x), ti].
0

If the length of the first failure-free interval is greater than ti,j, the computation com-
pletes in exactly lid time units. Consequently, the above equation can be written as

,j

V(t) fProb[Y,.,</I X=x]dF(x) + (1--F(li,j)), ti,j.
0

If, however, X-’x<ti,j, the computation must be rolled back at least once. Since
resuming the computation after a rollback constitutes a renewal point, the probability
that the total execution time for [i,j] will be at most time units after having
expended x time units due to the failure and r time units for the rollback is simply
given by V(t--x--ri). This observation allows us to write V(t) as a renewal equation
[9]

V(t) f v(t-x-r)dF(x) + (l--F(t;a)).
0

Making the change of variable y=x +ri and the substitutions

z(x)
0 x<ti,j

l--F(ti,j), x>ti,j

and

we obtain

G(x)
0, x<ri
F(x --ri) r xti,j +r
F(ti,j) x>ti,j+r

V(t) fV(t--y)dG(y) + z(t),
0

for all t.

Note that the integral represents the convolution of the functions V and g where
g(x)=dG (x)/dx. Taking Laplace transforms yields

f’(s) f’(s)g (s) + (s)

where f(s) f0 e-S xf (x)dx denotes the Laplace transform of the function f (x).
Finally, the transform of the distribution we are interested is given by
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f’(s) (s)
l--(s)

t..
--S ti,j( --S rif0

,,J --s xwhere ’(s) e 1--F(ti,j))/s and (s) e e dF(x).

Whether the inverse transform of IT"(s) has a closed form solution depends on the
nature of F(x). Note that the probability density function of Yi,j, v(t)--dV(t)/dt,
has the transform

e
-s ’i,J(l_F(ti,j))

(s) sP(s)
1--g(s)

Since the algorithms given in the previous sections need only the values for T..
,,j (by

definition, this is the first moment of Yi,j) for all l<i<n and i<j<n, we do not
have to obtain the inverse transform of 9(s). All of the moments of Yi,j can be
obtained by differentiating the transform of its density. In particular, the first
moment is given by

d~
-5-;g (s =od_(5.2.1) T",, E[Yi,j] -sV(S) lid

:o -g(o)

ti,j+

,j

r F(ti,j)+ tdF(t
0

1--F(ti,j)

As an example, we will derive an expression for E[ Yi,j] in the presence of Pois-
son failures (i.e., F(x)=l--e -x and dF(x)=le-Xdx where ,a is the failure rate). It
is important to note that the above derivation of E[Yi,j] does not rely on the inter-
failure times being exponentially distributed. We have selected the example simply to
define one possible form of F(x). Substituting the expressions for F(x) and dF(x)
into equation (5.2.1) and simplifying, we obtain

T..-- E[Yi ]--,J ,j

(e "tti’j- )(/r +

6. Extensions. Up to this point, we have assumed that the checkpoint setups and
rollbacks are failure-free. We now discuss how each one of these assumptions can be
easily relaxed.

Let the checkpoint setups be subject to the same failure model as the normal
tasks. Consider [i,j] and our computation of T.. for this segment. Recall that in,J
the algorithm T..

,,y denotes the expected execution time of [i,j] given that a check-
point is established at the end of task j. We consider this checkpoint setup to be a
new task of length sj+ which augments segment [i,j]. (Obviously, if j:n, the com-
pletion of the computation, rather than a checkpoint, marks the end of the segment.
For notational convenience, we define sn+l 0.) The execution time of the aug-
mented segment without any failures becomes ti,j ’=i tk +sj+. Following this
change, the expected execution time T..

,,j of the augmented segment can be computed
as shown in {} 5. Clearly, since the checkpoint setup costs are now included in the
T..’s,,2 the minimi’zation step in the algorithm of Fig. becomes
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T’--MIN( k- + Ti,j)Tl,i-i
l<i<j

Suppose now that checkpoint setups are failure-free but the rollbacks are subject
to failures. We can apply the algorithm of Fig. provided that the T..’st,j are com-
puted appropriately. For example, in our discrete model of failure, let/9 be the prob-
ability that a rollback to location is failure-free. Proceeding in a similar fashion to

5.1 we can derive the following recurrence relation for the new T,..’s:
,J

T,.o._ ti + --1’ Pi

T’’--l-J--(T"" (-fi’f ) ri
,,j ,,j-I + tj) +

Pj Oi
for all j, j>i.

This extension can be similarly incorporated into the continuous failure model
analysis.

Finally, since the necessary modifications for the above extensions to the prob-
lem are orthogonal, both of them could be present in the basic algorithm.

7. Discussion and conclusions. We have presented an algorithm to select a set of
checkpoint locations out of the n--1 candidate locations such that the resulting
expected execution time for the computation is minimized. The algorithm can be
applied to any failure model such that the expected execution time can be computed
for any segment with no checkpoints. The time complexity of this algorithm was
shown to be O(n 3) where n is the number of tasks making up the computation. We
also described an O(n 2) algorithm for the case that, for all and j, si > sj implies
ri > rj. In most applications, this is a reasonable assumption since rolling back the
state involves loading the same state information which was saved at the checkpoint.

The objective function we have selected for the optimization problem is the
expected execution time. For certain time-critical applications, we may be interested
in knowing the probability with which the computation will complete in less than
some given time. Note that, given the optimum checkpoint locations, the computa-
tion can be viewed as a sequence of segments rather than tasks where each segment is
delimited by a checkpoint. The execution times for these segments are independent
and we have derived their moment generating functions (in the two failure models
that we considered). The moment generating function for the total execution time of
the computation is simply the product of the individual segment moment generating
functions. In principle, this function can be inverted to obtain the distribution of the
total execution time. Given this distribution, confidence bounds for the total execu-
tion time can be derived. If inverting the moment generating function is not possible,
we can use it to derive the mean, the variance, and any higher moments of the total
execution time (note that the mean is already part of the algorithm’s output). Given
these values, we can derive the probability with which the computation completes
within a given interval about the known mean by an application of Chebyshev’s Ine-
quality.

If the static structure of a computation is not simple, its dynamic characteriza-
tion as a sequence of tasks may be difficult to obtain. Given this observation, a gen-
eralization of our work would represent the static computation as a Directed Acyclic
Graph (DAG) where the vertices are tasks and an edge (i,j) denotes a possible execu-
tion where task j follows task i. Here we may want to position the checkpoints on
this DAG in a way that minimizes the maximum expected execution time over all the
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possible execution paths. If we augment the DAG by associating probabilities with
each edge such that the two tasks connected by the edge appear in succession with
that probability, we can pose the problem of selecting checkpoint locations such that
the total expected execution time for the computation is minimized.

Appendix. We introduce some definitions to be used in the following proofs
leading to those of Theorems and 2 of 4. Consider segment [i,j] for some < j
Let Pi,i be the probability that no failures occur during the execution of [i,j], ai j be
l/pi,j and ti,j be the execution time of [i,j] when no failures occur. Given tiat a
failure occurs during the execution of [i,j], li,j denotes the expected time interval
from the beginning of task to the time the failure is detected.

LEttA 1. For all and j such that < j we have

T,.0. -- (t2’ 1)(1i d- ri).l,J ti,j ,j ,j

For all i,j and k such that < k < j we have

T,.o. o -[- tk q-(k 1)(1k -b ri).l,j ak,j Ti,k-I ,j ,j ,j

Proof. We present the proofs for the case where the failure times are discrete
random variables. The continuous case proofs follow simply by replacing the sums
with integrals and discrete probabilities with density functions.

The first equality can be proven as follows. Let the random variable X denote
the time until the first failure is detected after the beginning of [i,j]. Conditioning
on this time, we have

,,- ti,j’Prob[X>ti,j] + Z (x + ri + Ti,j) Prob[X=x].
xti,j

By definition, Pi,j Prob[X>ti,j]. Consequently,

T,.. Prob[X=x].,, ti,j Pi,j + (ri + T,..,,;)(1 Pi,j) q- Y x
xti,j

Noting that, by definition li,j =-x<t,j x Prob[X=x]/(1--Pi,j),and solving for T...,/ we

have Pi,j T,l,7 Pi,j ti,j + (1 Pi,j) (li,j + ri). Dividing both sides by Pi,j results in
the desired expression.

To prove the second equality, we condition on the time until the first failure is
detected after the beginning of [k,j]. Letting X denote this time, we have

T,"’,,; Ti,k- + tk,j Prob[X>t,j] -[- . (x -]- r -[- Ti,)" Prob[X=x].
xtk ,j

As before, rewriting this equation in terms of lk,j and solving for T,..
,,j we obtain

T... T. -t- t -t- (1 p (1 -b ri)P ,j ,j , P ,j ,j ,j ,j

Dividing the equation by Pk,j completes the proof. D
LEIMA 2. For all i,j and k such that < k < j and tr,j we have

T,O + o T,.O.i,k-I T,j -- sk

if and only if Sk < (ak,j --1)(ri-1- T/O,k-i

Furthermore, the equafity holds in the left expression if and only if it holds in the
right one.
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and

/’roof. From Lemma we have

T,.0._ 0 + tk + (Crk,j O’k ,j Ti ,k ,j ,j 1)(lk,j + ri)

T,j tk,j + (ak,j 1) (lk,j + rk)

Therefore Ti, + T, + s < T... if and only ifd

T +t +( -l)(l +r)+sa o +t +(,k ,j ,j ,j ,j ,k ,j ,j l)(lk,j + ri).

This inequality holds if and only if

(ak,j- 1)(/k,j + rk)+ sk < (crkj l)(/k,j + ri + Ti,-).
Since ak,j > 1, this is satisfied if and only if

lk,j - rk + sk (ak,j 1)- < lk,j -k r + T,0i,k-I

This last inequality holds if and only if sk < (trk,j 1)(ri + T,ij,- r,). It is also
easy to check that Ti,k AV T,O,j + sk Tt,j if and only if
Sk --(ak,j- l)(ri + TO

,k_ rk). ra

LEMMA 3. Suppose the m-optimal solutions for [i,j] are such that their right-
most checkpoint location is k, < k <j. Then we have trk,j > and
Sk (Ok,j 1)(r q- Ti,0k_l rk).

Proof The proof is by induction on m (note that by hypothesis m > 1).
Suppose m By hypothesis we have

(L3 l) Ti ’j Ti , + T;j + sk ( T,..
d

If we show that trk,j # then Lemma 3 follows directly from Lemma 2. Suppose
trk,j- From Lemma we have T..,- Tt.,k_ +tkj and T,j tk,j There-
fore, T.. 0 + 0, Ti,k- T,,j and this contradicts (L3.1). So akj > and Lemma 3 fol-
lows.

Now assume Lemma 3 holds for all m, <m <r, for somer > 1. We show
that it must also hold for m r Suppose the r-optimal solutions for [i,j] are such

L r-Ithat their rightmost checkpoint location is k k <j Let i,k- be a (r--1)-
optimal solution for [/,k-l]. We consider L.r.- r-,, Li,k-! II <k. Note that this
must be a r-optimal solution for [i,j]. Let h be the rightmost checkpoint location
of r--lL/,_. We havei <h <k <j.

Assume first that < h By induction hypothesis we have
Sh < (trh,k- 1)(r/ q- Ti,h-| --rh), and ah,k- > 1. Note that Sh > O, and there-
fore

(L3.2) rh ri q- Ti,h-i

Since L,j <k> is a 1-optimal solution for [h,j] then, by induction hypothesis, we
have ak,j > and sk < (crk6j 1)(rh + Th,k- --rk). Suppose, for contradiction,
that sk > (ak,j 1)(ri + T,.,k- rk Combining the last two inequalities we have
ri _[_ TiO,k o

-1 < rh + T,,_ FromLemma we have

T,O + th "+- (ffh,k-I 1) (lh,k_ + ri)]ri q- [ Crh,k-I i,h--I ,k-I

( rh + [ th,k_ + (tlh,k_ 1) (lh,k- q- rh)]
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So (ri + T0 ( rh o:h and r at- T, 0i,h-I ah,k-I ,k-l, i,h-I < rh contradicting (L3.2).
T,.,k- rk)Therefore we must have s, < (ak,j 1)(r q- 0

Lr-ISuppose now that h In this case it is clear that ;,_l--< > and

,,j <k> therefore L,,j <k> i.e., <k> is the 1-optimal checkpoint selection
for [i,j]. Then, by induction hypothesis, we have (k,j > and

Ti,-I rk). I"!s < (a,j- 1)(ri + 0

LEMMA 4. Suppose the m-optimal solutions for [i,j] are such that the rightmost
checkpoint location is k, < k < j Then for all h, < h < k we have

sk- Sh (ak,j- 1)(rh + T,k-I rk).

Proof We prove the lemma by induction on m (note that by hypothesis
m>l).

Assume first that m--l. Suppose, for contradiction, that for some h,
<h <k,wehave

(L4.1) sk Sh (trk,j 1)(rh + T,k- rk).

From Lemma 3 we have s < (a,j- 1)(ri + T.i,- --r), and ak,j > 1. There-
fore, rh -[- T/,k_l r -1- T/,0k_l, and from Lemma we have

rh + [ th,k-I + (ah,k-I 1)(lh,k--I + rh)]

< ri + Oth,k-I Ti,0h-I + th,k-I q- (trh,k-i

SO, Oh,k- rh Oh,k- (r dv T.0i,h-i ), and

(L4.2) rh ri -4- T/,h.l.

1)(lh,k- + ri)]

Since <k> is the 1-optimal solution for [i,j] we have

T,"1" T, 0 + Tk,j + sk < T, _t_ o
,j i,k i,h T ,j + Sh

and therefore T/,k_l Ti,h_l -- sk T,j Tk,j q- sh We define
A- Ti,_ Ti,Oh_ and A2 T,j T,j, and we write the last inequality as

(L4.3) A + s < A + Sh

Applying Lemma we have

A [ ah,k-I Ti,Oh-I - th,k_ -- (th,k_
SO

l)(lh,k_ -+" ri) ] T, 0i,h-I

Al th,k-I -- (O’h,k-I 1)(lh,k-I + ri + T. i,h-I

We also have

,x-[ a, T,- + t,j + (lk,j + rh tk,j + (tk,j 1) (lk,j + rk

and therefore

1)(rh rk).
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From (L4.1) we have rh rk < T,k-I + (sk Sh) (ak,j 1)-1 Therefore,
A2 Ok,j ThO,k-I (ak,j 1) Th0,k-i + Sk Sh that is

(L4.4) A_ TO,k_l -4c- sk sh

From (L4.3) and (L4.4) we obtain

(L4.5) AI < Th,-I

that is, lh,k- -- (h,k 1)(lh,k + ri + T, oi,h-l) < T,k-i By Lemma we have

lh,k_ AV (Oh,k_ l)(lh,k- -b r -4- T.Oi,h-I lh,k-I At-(ah,k-l-- l)(lh,k-I + rh)

SO (Orb,k_ 1)(ri + Ti,h_l)< (a’h,k-I- l)rh Suppose Oh,k-I I. Then
A lh,k- and 0T,k- --lh,k-l, a contradiction to (L4.5). So we must have
trh,k_ l and ri + Ti,h-i < rh. But this contradicts (L4.2) and therefore
sk sh < (ak,j 1)(rh q- T,k- rk) for all h, < h < k

Now assume thelemma holds for all m, <m <r, forsomer > 1. We show
that it must also hold for m r Suppose the r-optimal solutions for [i,j] are such

L r-lthat their rightmost checkpoint location is k k < j Let i,k-I be a (r--1)-
optimal solution for [/,k-l]. We consider Lr. -1, L,i_l [I <k>. Note that this
must be a r-optimal solution for [i,j]. Let p be the location of the rightmost check-
point of r-L,k-. Note that i<p <k <j.

Assume first that < p Consider some h such that < h < k There are two
possible cases, either p < h or h <p We show that in both cases

s Sh < (a, 1) (rh + T,_ rk
(0 Suppose < p < h < k < j. Since k must be the (rightmost)checkpoint loca-

tion of the l-optimal solution for [p,j] then, by induction hypothesis, we have

sk Sh < (a, 1) (rh + T,k_ r
(i0 We now consider h such that < h < p < k < j. Suppose, for contradiction,

that s--Sh >(try,j-- 1)(rh + T,i-I --r). Since Lp,j=<k> is a l-optimal
solution for [p,j] then, by Lemma 3, we have sk < (trk,j 1)(rp + Tp,_l --rk),
and a,j > 1. Combining the last two inequalities we have
rh + T,k_ rp d- TpO,k_l Therefore h p (i.e., h < p), and from Lemma we
have

rh -f- tXp,k_ T,p_ - tp,k_ - (tXp,k_ 1)(lp,k- -Jr- rh )]

< rp + [ tp,_ + (a,,k-- )(lp,_ + rp)].

By simplifying we obtain

(L4.6) rh -4- oTi,,p_ ( rp

Since the rightmost checkpoint location of the (r-1)-optimal solutions for
[i,k-l] is p, and ( h ( p < k-l, then, by induction hypothesis, we have

(L4.7) Sp Sh < (ap,k- 1) (rh q- 0T;,,p_ rp).

From Lemma 3 we also have ap,k-i > 1. From (L4.6) and (L4.7) we obtain
sp Sh < 0. From our assumption about checkpointing costs either Sp Sh, a con-
tradiction, or rp < rh which contradicts (L4.6). So we must have
sl Sh (trl,j l)(rh h- Th0,k_l rk)
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Suppose now that i--p In this case it is clear that Lr-! -( > and,k -1
L.r.,,: <k >, and therefore L..,,: =, <k > i.e., <k> is the 1-optimal checkpoint selec-
tion for [i ,j]. Then, by induction hypothesis, we have

Sk Sh < (ak,j l)(rh + Th0,k-I r), for all h, < h < k. 13
LEMMA 5. Suppose the m-optimal solutions for [i ,j] are such that their right-

most checkpoint location is k, <k <j. Consider h and p such that
<h <k <j <p If =h orsh <s then we have T,p T,j < T,p T,j.

Proof The result is obvious for k, or h k, or j -p. Otherwise, suppose
that for contradiction

(L5.1) T,p T,j > T,p T,j

for some < h < k < j < p such that h or sh < sk From Lemma we have

T,p aj+ p T,j + tj+ ,p + (aj+l,p lj + ,p -" rk

and therefore

(L5.2) T,p T,j tj+,: + (aj+l,p 1)(Tk,j + lj+l: + rk).

Similarly we have

(L5.3) T,p T,j tj+,,p + (aj+,p 1)(T,j + lj+,p + rh).

From (L5.1), (L5.2) and (L5.3) we have

(aj+,p 1)(Tk,j + lj+l,p + r) > (aj+,p 1)(Tt],j + lj+,p + rh).

Suppose aj+.p In this case, from (L5.2) and (L5.3) we have
.o _TO _o
"k,p k,j h,p T,j --lj+l,p which contradicts (L5.1). Therefore Zj+l,p > 1,
and we have

(L5.4)

Note that h < k < j and by applying Lemma we derive

rk +[ tkj -t-(tIk,j --1)(lkd d-rk)]>rh d-[ tk,j T,k-i + tk,j +(ak,j --1)(lk,j +rh)].

Then we have ak,j rk > ak,j (rh + T,k- and

(L5.5) rk > rh + T,_.

From Lemma 3, we have Sk <(,
therefore

)(r + T,i,k -1 r,), and trod >1,

(L5.6) r < r; + T,i,k-I

If h then (L5.6) contradicts (L5.5). Suppose < h From Lemma 4, we have
Sk Sh < (ak,j 1) (rh + T,-I rk) Therefore, if Sh < Sk then
rk < rh + T,k_I which also contradicts (L5.5). Then neither -h nor Sh < Sk
and the proof is complete. El

LEMMA 6. If < h < k < j and r < rh then T,j < T,j
Proof The lemma is obvious for h -k We now assume <h <k <j.

From Lemma we have
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T,j ak,j T,k-I -+- tk,j -+- (ak,j l) (lk,j -+- rh

and T/,,j t,,j + (ak,j l)(lk,j + rk) Therefore we have

T,j T,j ak,j T;,k- + (ak,j l)(rh rk)

and since rk < rh then Td T,j O n
LEMMA 7. If h k j p and r rh then

TL .
Proof The lemma is obvious if h k or j =p. We now assume that

<h <k <j <p In the proof of Lemma 6 we showed that

T,j T,j ak,j T,,- + (a,,j 1)(rh --rk)

and similarly we have

T,p T,,p --ak,p T,k_ + (ak,p --1)(rh --rk).

Sincep >j it is clear that a0k,p >,j By hypothesis we also have rh --rk >0
and therefore T,j T,j

TrIEOREM 1. Suppose the m-optimal solutions for [i,j] are such that their right-
most checkpoint location is k, k j Then for any p > j the m-optimal solu-
tions for [i ,p ] are such that their rightmost checkpoint location is some h, h k

Proof If k, the theorem is obvious. Assume < k and therefore m
Suppose, for contradiction, that the rightmost checkpoint location of the m-optimal
solutions for [i,p] is h, h < k

Assume first that < h By hypothesis we must have

(T1 l) ,k- + T,j + Sk
m-I 0,h-I + T,j +Sh

From our definition of h we also have

(T1.2) Zm- 0 m- 0
,k + T ,p + sk T ,p Sh

Suppose equality holds in (Tl.l). Then the (m--1)-optimal solutions for [i,h-1] can-
not include fewer checkpoints than the (m--1)-optimal solutions for [i,k-1] There-
fore equality cannot also hold in (T1.2), otherwise k would be the rightmost check-
point location of the m-optimal solutions for [i,p] contradicting our definition of h.
So equality cannot hold simultaneously in (Tl.1) and in (TI.2). Then, subtracting
(T 1. l) from (T1.2) we obtain

(T1.3) T,p Tj T,p T,j

If sh < sk then (T1.3) contradicts Lemma 5; therefore s < sh From our assump-
tion about checkpointing costs we have rk < rh Then, from Lemma 6, we also have

so

(T1.4)

However, in the proof of Lemma 5 we showed that (T1.3) implies
rk + Td > rh + Th,j which contradicts (T1.4).

Suppose now that h, i.e., the m-optimal solutions for [i,p] contain no
checkpoints (L/m,p < >). In this case we must have
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(T1.5) m --1 0 T..0.T ,k 2ff T ,j + sk < ,j

SinceL.m =<> then,P

(T1.6) m--IT,_ + T., + s > Z.i,p

Subtracting (T1.5) from (T1.6) we obtain (T1.3). From (TI.3) we can also derive a
contradiction exactly as before, and the proof is complete.

THEOREM 2. Suppose the m-optimal solutions for [i,j] are such that their right-
most checkpoint location is k, < k < j Then the (m +l)-optimal solutions for
[i,j] are such that their rightmost checkpoint location is some h, h > k

Proof. If -k, the theorem is obvious. Assume < k and therefore m >
If T,m+i,j T.’m’,a then m-optimal solutions for [i,j] are also (m+l)-optimal solutions

T,m +1 T,.m. Note that infor [i,j] and the theorem clearly holds. We now assume i,j < ,a
this case (m +l)-optimal solutions for [i,j] have exactly m +1 checkpoints. Let g be
the number of checkpoints in the m-optimal solutions for [i,j]. Note that
< g < m We form a particular m-optimal solution L.m.t,J

for [i,j] as follows. Let u be the rightmost checkpoint location of the m-optimal
solutions for [i,j], let u2 be the rightmost checkpoint location of the (m--1)-optimal
solutions for [i,ul 1],’’ ", and let ug be the rightmost checkpoint location of the
[(m + )--g ]-optimal solutions for [i,Ug-i- 1]. Note that with this construction
<ug, Ug_,..., uf > is a [(m +l)--f]-optimal solution for [i,uf_ 1], for all f,
2<f <g By hypothesis we haveu =k We also form in a similar way a par-
ticular (m +l)-solution Lm+li,j <Vm+, Vm ,’’’, Vl> for [i,j] We define
v h Suppose, for contradiction, that h < k (i.e., v < u2). There are two pos-
sible cases. We show that each one leads to a contradiction.

I. Suppose first that Vm Ug. Note that Vm+l < Vm and therefore Vm+ < Ug.
Since L’m’,d (Ug, Ug--I U 1> is a m-optimal solution for [i,j] we have

and

T"m"- T.,Ug - =g’- TO
+ "+" T01 -" =g,j u ,u u ,j Su

T;m. T,.0 + . TO + Tv ,j :Xm Svt,J ,V
l=m --1 Vl+l,V

where the indexes of the summations scan the segments from left to right, and the
summation Yt’ is defined to be zero if a < b

l=a

Therefore,

(T2.1)

where

T.o --T, +F<O

X TO X TO +Tu! --Tv01,+ Xg X
l=g_l Ul+l,U l=m--l Vl+l,, ,j

l=
Su

l=m
Sv

Lm+lSince ,j <Vm +1, Ym VI> is a (m +l)-optimal solution for [i,j] we have

(T2.2)

T..m.+l- T,O T,ol,J /,Vm+ + Vm+l,V. TO + Tv,j + + .
l=m--I ,l+l,V! SYm+l l=m Svl
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Note that if the <Vm+l, Ug, Ug_l, ", Ul> selection of checkpoints achieved the
T,m+t (or less) this would contradict our assumption that the rightmost check-time

point location of the (m+l)-optimal solutions for [i,j] is vl < Ul. Therefore we
must have

T.m+l T..0 + T,0 +i,j < t,Vm+ Vm+l,Ug

(T2.3)
Subtracting (T2.2) from (T2.3) we get

(T2.4)

" T + Tgl,j + SVm+l -’{- =glUl+l,U Su
l=g-I

0 < TO TO + FVm +1 ,Ug Vm +l,Vm

From (T2.1) and (T2.4) we have

(T2.5) TO T,
Vm +1 ,ug Vm +1 ,Vm

T,0
,V

Note that < Vm+ Vm --1 < Ug --1 and <Vm+l> is the 1-optimal solution for
[i,Vm 1]. ByLemma5wehave

T,O Z0 Zo zo
+l,Ug Vm +1 ’Vm l,Ug l,v

which contradicts (T2.5).
II. Suppose now that vm Ug. Let k be the minimum r such that v < u,

v2<u2 ,’" Vr-l<Ur-, and Vr >Ur Note that such k exists because
v,, > Ug (and’’therefore Vg > Ug ). There are two possible cases.

(i) Suppose vk+l < u,. In this case we have vk+ < u < v, < Vk- < Uk-l. Since
L.m.,# <Ug u> is a m-optimal solution for [i,j] we have

k
r..m.:r..0 + x ru, ,u, ,+r o + x +ru,t,j t,Ug l=g--I +! Uk ,Uk-I l=k-2 ut+t,u ,j

"q-

(T2.6)
The checkpoint selection <Ug ,’’’, Uk, Vk_
time than TP. for [i,j] Therefore we have

’’, v> cannot achieve a smaller

(T2.7) T..m.
l,j < T(u ,v

where T(u,v) is defined as

T(u ,v ) T
1,rig

k

" Tul + U -1 + T.O
Uk ,Vk -1l=g--I

--1

=k -2

k
TO + TvOl,j .. 2f_
Vl+l,V l:g Su Y Svl=k -l

From (T2.6) and (T2.7) we have

(T2.8) TO
Uk ’Uk -I To

Uk "Vk - +G <O

where

G 5" (TO

=k -2 Ul+ ,U TO
Vl + l’Vl ,)+ r ,j Tv# + X % S )

l=k-I
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Lm/lSince i,j --<Vm+l,’’’, Vk, Vk_l,’’’, VI> is a (m+l)-optimal solution for
[i ,j ] we have

k

Tim,j+l--T,.0 + m TO + T,0 "4- . TO +Tv,,j+ ",Vm+ Vl+l,v vk ,Vk_ l=k--2 Vl+l ’vl l=m +1 Svl"

(T2.9)
Since with U > v then the <vm+, "’", v, u-t, ", u l> checkpoint selection

T..m+ (or less) for [i,j] without contradicting the optimalitycannot achieve the time i,j
Lm+tof i,y Therefore we have

(T2 10) T,z+li,j < T(v,u)

where T(v ,u) is defined as
k

T(v ,u T, + =rn TO + T’,v +1 Vl+l ’vl Vk ,Uk -1

k

"" l=k’-2 TOul+’ul + Tu ,j -4- l=m+l" svl "- l=k-l" SUl

Subtracting (T2.9) from (T2.10) we have

(T2.11) 0 < T. T + GVk ,Uk -! Vk ,Vk -1

From (T2.8) and (T2.11) we have

(T2.12) T T, TO T,
Vk,Uk_ Vk,Vk_ Uk,Uk_ Uk,Vk_1-

Note that we have vk+ <uk <vk <Vk_--1 <Uk-t--1 and <v,> is the l-
optimal solution for [vk+l,vk- 1]. By Lemma 5 we know that if Svk > suk then

(T2.13) T, 0 T,0
Vk,Uk_ Tvk,Vk_ Uk,Uk_ Uk ,Vk

which contradicts (T2.12); therefore Svk < Su. From our assumption about check-
pointing costs we have rv < ruk

T.m+i T..m. T(v,u) that isFrom (T2.7) and (T2.10) we have T(u,v) i,j > ,,j

(T2.14) T,0 T,O o T,O
uk,Vk-I vk,vk-I Tuk,Uk_ Vk ,Uk -1

But since v+ < Uk < Vk < V-t- < U_- 1, and < ruk then we can apply
Lemma 7 and obtain T, --T, Trvk T, ThisUk,Vk-i-- vk,vk-l Uk,Uk-l Vk,Uk-l
contradicts (T2.14) and therefore we cannot have v,+ < u,

(it’) Suppose v,+t > Uk. In this case we have uk < v+i < v < vk_ < U-l. We
show that this is not possible. Observe that <Ug,..., u> is a [(m+l)-k]-
optimal solution for [i,uk_ --1]; its rightmost checkpoint location is Uk,
u, < v,+ We also note that <Vm+l,’’’, v,+> is a [(m+l)-k]-optimal solu-
tion for [i,vk 1]. Since u,_- > v, then, by Theorem 1, the rightmost
checkpoint location of the [(m +l)-k]-optimal solutions for [i,u,_- 1] is some u
such that u> Vk+l Since u, < Vk+, this contradicts the optimality of
<Ug , u,> for [i,u,_ 1], and the proof is complete, r3
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ON SOME VARIANTS OF THE BANDWIDTH MINIMIZATION PROBLEM*

JOSEPH Y-T. LEUNG,** OLIVER VORNBERGER" AND JAMES D. WITTHOFF*

Abstract. We consider the following variants of the bandwidth minimization problem: (1)the
cycle-bandwidth problem which for a given graph G and positive integer k, asks if there is a circular layout
such that every pair of adjacent vertexes have a.distance at most k, (2) the separation problem which asks if
there is a linear layout such that every pair of adjacent vertexes have a distance greater than k, and (3) the
cycle-separation problem which asks if there is a circular layout such that every pair of adjacent vertexes
have a distance greater than k.

We show that the cycle-bandwidth problem is NP-complete for each fixed k > 2, the separation and
cycle-separation problems are both NP-complete for each fixed k >/1, and the directed separation problem is
NP-complete for arbitrary k. We give polynomial time algorithms for several special cases of the directed
separation problem. Finally, we show the relationships of the directed separation problem with several
scheduling problems by giving reductions among them.

Key words. NP-completeness, bandwidth minimization, cycle-bandwidth, cycle-separation, layout
problems, multiprocessor scheduling, directed separation problem, directed graphs, forests, interval orders

1. Introduction. In recent years, there has been a great deal of interest in
studying various graph layout problems. One of those problems that fias been under
intensive investigation is the bandwidth minimization problem. The problem can be
formally stated as follows: We are given a graph G---(V,E) and a positive integer k.
A layout f of G is a bijection f: V--.{1,2,...,n}, where n is the cardinality of V. The
bandwidth minimization problem asks if there is a layout f such that If(u)-f(v)l<k
for all edges {u,v}EE. In other words, we are asked to determine if there is an
arrangement of the vertexes on a straight line such that any pair of adjacent vertexes
have a distance at most k. If the graph is directed, we further stipulate that any
layout f must satisfy f (u)<f (v) whenever (u,v) is a directed edge from vertex u to
vertex v. This requirement also restricts the directed graph to be acyclic.

Papadimitriou[12] had shown that the bandwidth minimization problem is
NP-complete for arbitrary k. Garey et al.[4] gave a linear time algorithm for k=2
and showed that for arbitrary k the problem remains NP-complete even for trees.
Recently, Saxe[14] gave an O(nk+) time algorithm to solve this problem, thus
showing that the bandwidth minimization problem can be solved in polynomial time
for each fixed k. Monien and Sudborough[ 11] later improved the running time of the
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60201. The work of this author, was supported in part by the National Science Foundation under Grant
MCS- 79-04898.

f Fachbereich M’athematik-Informatik, Universitat Paderborn, 4790 Paderborn, West Germany.
AT&T Bell Laboratories, Naperville, IL 60566. The work of this author was done while he was a

graduate student at Northwestern University.
1The bandwidth minimization problem can easily be solved for k-1.
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algorithm to O(rlk). All of the above results hold for both undirected and directed
graphs. Thus, it appears that for the bandwidth minimization problem there are no
distinctions in complexity between the directed case and the undirected case.

In this paper, we consider several variants of the bandwidth minimization
problem. The first problem is concerned with arranging the vertexes of a graph on a
circle so that any pair of adjacent vertexes have a distance at most k. We call this the
cycle-bandwidth problem.2 The cycle-bandwidth problem arises, for example, when a
set of computers is to be connected in a ring structure. Under this interconnection
scheme, each computer can only communicate with its two neighbors. Thus, in order
to send a message to some other computers, it needs to send it along the shortest path
on the cycle. Suppose the communication pattern among the computers is known and
is given by the graph G=(V,E) where V is the set of computers and {u,v}EE
whenever computer u wants to communicate with computer v. We want to find an
arrangement of these computers on a circle so that every message sent can arrive at its
destination in k steps. The cycle-bandwidth problem also has potential applications in
VLSI when we try to lay out a set of circuit elements on a cylindrical type of surface
so that two connected circuit elements are close to each other.

The second problem we shall be concerned with is the dual problem of the
bandwidth minimization problem. Instead of arranging the vertexes on a straight line
so that adjacent vertexes are close to each other, we seek to find an arrangement so
that every pair of adjacent vertexes have a distance greater than k. We call this the
separation problem. The separation problem arises, for example, when we try to line
up a group of violent prisoners. Some of the prisoners are not very friendly to the
others. Not only they don’t talk to each other, but in any line-up if they are not
separated by at least k persons, they will start killing each other. As a prison guard,
you would like to find out if there is any line-up so that no fights can ever be started.
We shall also study the analogous cycle-separation problem in which we want to find
an arrangement of vertexes on a circle so that every pair of adjacent vertexes are
separated by at least k vertexes.3

The directed separation problem appears to have some connections with the
multiprocessor scheduling problem that has been studied extensively in the
literature[3],[10],[13].In the multiprocessor scheduling problem, we are given two
positive integers k and D, and a directed acyclic graph G=(V,E), where each vertex
of G represents a task with an execution time of one unit and the edges of G represent
operational precedence constraints among tasks (i.e., if there is a directed edge from u
to v, then task u must finish execution before task v can start). We are asked to
determine if there is a schedule on k identical processors such that the precedence
constraints are obeyed and the schedule length is at most D. Now, suppose we are
given an instance <k,D,G > of the multiprocessor scheduling problem, and without
loss of generality we may assume that the number of tasks is exactly kD (for otherwise
we can introduce dummy tasks to satisfy this requirement). If the instance
<k-l,G> of the directed separation problem has a solution, then the instance
<k,D,G> of the multiprocessor scheduling problem also has a solution. This is
because we can take a solution of the directed separation problem, and schedule the
first k tasks in the first time unit, the next k tasks in the second time unit, and so on.
The schedule thus constructed clearly obeys all precedence constraints and has a

2The cycle-bandwidth problem is only meaningful for undirected graphs.
3Again, the cycle-separation problem is only meaningful for undirected graphs.
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schedule length D. However, the converse of the above statement is not true; i.e., that
the instance <k,D,G > of the multiprocessor scheduling has a solution does not imply
that the instance <k-l,G > of the directed separation problem must have a solution.
This can be seen from the example task system G given in Figure 1. Clearly, G can

FIG. 1. Example task system showing the multiprocessor scheduling problem has a solution while the
directed separation problem does not.

be scheduled on two processors in two time units. However, the instance < 1,G > of
the directed separation problem does not have a solution. Despite the apparent
differences, we shall see in the sequel that there seems to be a strong relationship
between the complexities of these two problems.

In this paper, we shall give complexity results concerning these problems. First,
we show that the cycle-bandwidth problem is NP-complete for k--2.4 Next, we show
that the separation problem and the cycle-separation problem are both NP-complete
for k--1. We then show that the directed separation problem is NP-complete for
arbitrary k, but can be solved in polynomial time for k--1. For fixed k > 1, we have
not been able to come up with a polynomial time algorithm nor to show that it is
NP-complete. However, we give some evidence of the difficulties of this problem by
relating it to several open problems in scheduling theory. Finally, we show that the
directed separation problem can be solved in polynomial time for two special classes of
directed acyclic graphs forests and interval orders (we shall define this kind of partial
order in the sequel), even when k is arbitrary.

The NP-completeness of the cycle-bandwidth problem is somewhat surprising
since it is tempting to try to extend the algorithms of Saxe[14] or Monien and
Sudborough[ll] to solve the cycle-bandwidth problem. Indeed, if the graph is
connected, their algorithms can be modified to solve the cycle-bandwidth problem.
Trouble occurs when the graph is not connected. The bandwidth of a graph is simply
the maximum of the bandwidths of its connected components. (The bandwidth of a
graph G is the smallest integer k for which the instance <k,G > of the bandwidth
minimization problem has a solution. The cycle-bandwidth of a graph is defined
analogously.) Thus, to solve the bandwidth minimization problem, all we need to do is
to solve each of its connected components. The same approach, however, does not
work for the cycle-bandwidth problem since the cycle-bandwidth of a graph is not
necessarily the maximum of the cycle-bandwidths of its connected components. To see
this, consider the graph consisting of two vertex-disjoint cycles. The cycle-bandwidth
of this graph is two, whereas the cycle-bandwidth of each of its connected component

4The cycle-bandwidth problem can easily be solved for k-1.
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is one. This phenomenon is similar to the relationship between the subtree
isomorphism problem and the subforest isomorphism problem discussed in [6] which
shows that the subforest isomorphism problem is NP-complete whereas the subtree
isomorphism problem is solvable in polynomial time.

The cycle-bandwidth problem has another interesting relationship with the
bandwidth minimization problem which can be used as a basis for designing
approximation algorithms with a constant worst-case performance bound. That is: (1)
the cycle-bandwidth of a graph G is no larger than the bandwidth of G .and (2) the
bandwidth of a graph G is no larger than twice the cycle-bandwidth of G. Now
suppose we have an algorithm X which, when given a graph G, produces a linear
layout with the minimum bandwidth. (The bandwidth of a linear layout f is defined
to be max,vle{If (u)-f (v)l}. The cycle-bandwidth of a circular layout is defined
analogously.) We can devise an approximation algorithm X’ for the cycle-bandwidth
problem having a worst-case performance bound of two as follows: X’ merely calls X
to obtain a linear layout f and wraps it around to produce a circular layout f’. Since
the cycle-bandwidth of f’ is the same as the bandwidth of f and since the
cycle-bandwidth of a graph G is at least one-half of the bandwidth of G, X’ will
produce a solution no larger than twice the optimum solution. (Similarly, if X is only
an approximation algorithm for the bandwidth minimization problem having a
worst-case performance bound of/3, then X’ will be an approximation algorithm for the
cycle-bandwidth problem with a worst-case performance bound of 2.) Conversely,
suppose we have an algorithm Y which, when given a graph G, produces a circular
layout with the minimum cycle-bandwidth. We can obtain an approximation
algorithm Y’ for the bandwidth minimization problem as follows: Y’ calls Y to obtain
a circular layout f and linearize it to obtain a linear layout f’. This is done by
assigning the two vertexes on a diameter of the circle to positions and n (where n is
the cardinality of the vertex set of the graph), and assigning vertexes on the top half of
the circle to odd positions and vertexes on the bottom half of the circle to even
positions. The linear layout f’ thus obtained clearly has a bandwidth no larger than
twice the cycle-bandwidth of f. Since the bandwidth of a graph G must be at least as
large as the cycle-bandwidth of G, the solution produced by Y’ is no larger than twice
the optimum solution; hence, the worst-case performance bound of Y’ is again two.
Similar remark applies to Y’ if Y is only an approximation algorithm with a worst-case
performance bound of .

The separation problem appears to be harder for undirected graphs than for
directed graphs, at least for k-1. This is to be contrasted with the bandwidth
minimization problem in which there are no distinctions in complexity between the
undirected case and the directed case. The separation problem also has an interesting
comparison with the bandwidth minimization problem in that while it appears to be
harder than the bandwidth minimization problem for the undirected case, it seems to
be easier for the directed case. This follows from the observations that for undirected
graphs the separation problem is NP-complete for each fixed k whereas the bandwidth
minimization problem can be solved in polynomial time. On the other hand, the
directed bandwidth minimization problem is NP-complete (for arbitrary k) for trees
whereas the directed separation problem can be solved in polynomial time.

We mentioned earlier that there seems to be a strong relationship between the
complexities of the multiprocessor scheduling problem and the directed separation
problem. Our remark is based on the following observations. First, we have been able
to reduce the multiprocessor scheduling problem to the directed separation problem,
thus showing that the directed separation problem is at least as hard as the
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multiprocessor scheduling problem. (In fact, the NP-completeness of the directed
separation problem follows from this reduction and the fact that the multiprocessor
scheduling problem is NP-complete for arbitrary k[15].) Although we have been
unable to provide a reduction in the opposite direction, we have not found any special
cases for which the multiprocessor scheduling problem can be solved in polynomial
time[ 3], 10], [3 yet the directed separation problem cannot. Indeed, as we shall see
in the sequel, our polynomial time algorithms for the directed separation problem are
all natural extensions of the corresponding algorithms for the multiprocessor scheduling
problem[3], [10],[13]. This state of affairs does suggest that the directed separation
problem is not much harder than the multiprocessor scheduling problem.

In addition to the multiprocessor scheduling problem, the directed separation
problem is also related to several other scheduling problems- these are:
(1) multiprocessor scheduling with integer release times and deadlines (abbreviated
by MSIRD), (2) multiprocessor scheduling with rational release times and deadlines
(abbreviated by MSRRD), and (3) multiprocessor scheduling on uniform processor
systems (abbreviated by MSUPS). The MSIRD problem is exactly the same as the
multiprocessor scheduling problem except that each task xi has associated with it an
integer release time r and deadline di, and we are simply asked to determine if there
is a schedule such that each task xi executes in the time interval [ri,di] and all
precedence constraints are observed. The MSRRD problem is the same as the
MSIRD problem except that the release times and deadlines can be rational numbers.
Finally, the MSUPS problem is the same as the multiprocessor scheduling problem
except that each processor P has associated with it a speed s; so that a task takes 1/s
time units to execute on processor Pi.

It is known that both the multiprocessor scheduling problem[3] and the MSIRD
problem[5] are solvable in polynomial time for k <2 processors. However, their
complexities are still open for each fixed k >2. The MSRRD problem[7] and the
MSUPS problem can be solved in polynomial time for k==l processor, but their
complexities are open for each fixed k> 1. Of course, all these problems are
NP-complete for arbitrary k since the multiprocessor scheduling problem is a special
case of them and the multiprocessor scheduling problem is known to be NP-complete
for arbitrary k. In this paper, we shall show that both the multiprocessor scheduling
problem and the MSIRD problem are reducible to the directed separation problem,
and that the directed separation problem is reducible to both the MSRRD problem
and the MSUPS problem. Although our results do not provide answers to the above
open questions, we hope that they can be used in the future as a vehicle in settling
these issues.

In the next section, we shall give the NP-completeness proofs as well as various
reductions among the directed separation problem and the scheduling problems. In
Section 3 we shall give polynomial time algorithms for several special cases of the
directed separation problem. Finally, in the last section we shall remark on the
implications of our results and directions for future research.

2. Reductions. In this section, we shall first show the NP-completeness of the
cycle-bandwidth problem, the separation problem, and the cycle-separation problem.
Next, we show that both the multiprocessor scheduling problem and the MSIRD
problem are reducible to the directed separation problem. Finally, we show that the
directed separation problem is reducible to both the MSRRD problem and the
MSUPS problem.



VARIANTS OF THE BANDWIDTH MINIMIZATION PROBLEM 655

THEOREM 1. The cycle-bandwidth problem is NP-complete for k-2.
Proof. It is easy to see that the cycle-bandwidth problem is in NP. To complete

the proof, we shall reduce the 3-partition problem to it. The 3-partition problem had
been shown to be NP-complete in the strong sense[6] and it can be stated as follows:
Given a positive integer b and a set of 3m positive integers A’-{al,a2 a3m} 5 such
that 3ma.j.1j-rob and b/4<aj <b/2 for each l<j <3m, is there a partition of A into
m disjoint sets A 1,A2,’’’Am such that aj,,aj--b for each <i <m ? (Note that
the constraints on the aj imply that each such Ai must contain exactly three elements
from A.) Since the 3-partition problem is NP-complete in the strong sense, we may
assume that the sizes of the integers in A are bounded by a polynomial function of the
cardinality of A.

Given an instance A-’-{al,a2 ,a3m} and b of the 3-partition problem, we
construct a graph G=(V,E) as follows. Informally, G consists of: (1)a cycle of
m (b+l)+l vertexes, (2)"ridges" placed in the appropriate places of the cycle, and
(3) 3m chains such that the jth chain has exactly aj vertexes. Formally, let
Vl’-{Xo,X ,Xm(b+l)} and EI-’{{Xi_I,Xi}[1 <i<m(b+l)} {Xm(b+l),Xo}. (V1 and E
make up a cycle of m(b+l)+l vertexes.) Let Vz--{Y0,Yl ,Ym} and
E2----{{xi(b+)-l,Yi},{Xi(b+l),Yi}ll <i <m} {{Xmtb+I),Yo},{Xo,Yo},{Ym,YO}}. (V2 and E2
make up the "ridges" placed on the cycle.) Let V)--{z.,,zj,2,...,zj,a} and
E’.---{{zj,i_,zj,i}[2<i<a} for each l<j<3m. (V’j and E’ make up the 3m
chains.) Finally, let V---V [,.J V2 I..J V’l [,.J [,.J V’3m and let E-E l, E2
E’ (.J [OE’m. We note that the graph G has n-2m(b+l)+2 vertexes and
hence can be constructed in polynomial time. Figure 2 shows a picture of G.

We now show that A has a partition A1,A 2 Am if and only if G has a circular
layout f with cycle-bandwidth no larger than 2. First, suppose A has a partition
A1,Az,...,Am such that Aj---{a),,aj,,aj,} for each <j <m. We can obtain a layout f as
follows: f(xi)--’2i+l for each O<i<m(b+l), f(yi)----2i(b+l) for each l<i<m and
f(yo)--2m(b+l)+2---n, and for each l<j<m, f(z,,i)=2[(j-1)(b+l)+il for each

l<i<aj,, f(zj,,)--2[(j-1)(b+l)+aj,+il for each lx<i<a, and f(zg,,i)-
2[(j-1)(b+l)+aj,+aA+i] for each l<i<aj,. It is easy to verify that f has a

cycle-bandwidth two.
Conversely, suppose G has a circular layout f with cycle-bandwidth no larger

than two. We shall show that A also has a partition. Consider the vertex Xm(b+l).
Without loss of generality, we may assume that f(Xm(b+l))’-n--1; for otherwise we can
renumber the vertexes to satisfy this requirement. The vertex Xm(b+l) is adjacent to
four other vertexes namely, Xo, Yo,Ym, and Xm(b+)-. Since f has a cycle-bandwidth
no larger than two, these vertexes must be assigned the numbers 1,n,n-2, and n-3.
Because of the adjacency relation among these vertexes, there is only one way
(disregarding symmetry) to number these vertexes to maintain a cycle-bandwidth no
larger than two- namely, f(xo)-l, f(yo)---n, f(ym)=n-2, and f (Xmb+)-)----n--3.
Now, notice that there is a path with m(b+l) vertexes from the vertex Xo to the
vertex Xmtb+)- (including both endpoints). The numbers used by f for these vertexes
must be chosen from the set {1,2,...,n-3}, since n-2, n-l, and n have already been
assigned to the vertexes Ym, Xm(b+l), and Yo. Since vertex Xo and vertex Xm(b+l)_
have already been assigned the numbers and n-3 respectively, and since the

5A is actually a multiset since we allow duplicate integers to be in A. For convenience in presentation,
we shall refer to a multiset simply as a set.
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(Xb+
b-1

VERTEXES

FIG. 2. Hlustrating the construction in Theorem 1.

numbers assigned to any two neighbors on the path can differ by at most two (because
of the cycle-bandwidth two condition), there is only one way to number the vertexes on
this path namely, f (xi)’2i+ 1.

Now, consider the vertexes Yl,Y2,...,Ym-1. Since Yi is adjacent to both Xi(b+l)-i
and xi(b+l) which have been assigned the numbers 2i(b+l)-I and 2i(b+l)+l
respectively, the only way to satisfy the cycle-bandwidth two condition is by having
f(yi)=2i(b+l). From the above discussions, we see that the numbers left for the 3m
chains V’,V’2 g’3m consist of m sets of b consecutive even numbers
I={2,4,...,2b}, I2={2b+4,2b+6, 4b+2} Im={2[(m-1)(b+l)+l],
2[ (m -1) (b +l) +2] ,n-4}. Since only even numbers are left, a chain having
vertexes must use 1 consecutive even numbers in order to satisfy the cycle-bandwidth
two condition. Moreover, since the numbers in Ij and Ij+l differ by more than two,
each chain must be assigned numbers from only one set, say Ik. We have m sets of
numbers with b numbers each and a total of mb vertexes in all chains. It follows that
we can arrange the 3m chains into m groups such that the sum of the numbers of
vertexes of the chains in each group is b. Since each number aj EA was represented
by a chain having aj vertexes, we must have a partition A,A2,...,Am such that
ajA,aj----b for each < <m. O
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We note that it is easy to modify the above proof to show that the
cycle-bandwidth problem is NP-complete for each fixed k > 2.

THEOREM 2. The separation problem is NP-complete for k--1.
Proof. The separation problem is clearly in NP. We shall reduce the

NP-complete hamiltonian path problem[6] to it. In the hamiltonian path problem, we
are given a graph G=(V,E) and we are asked to determine if there is a path going
through each vertex in V exactly once. Given an instance G--(V,E) of the
hamiltonian path_problem, we construct an instance G.-(V__,E) of the separation
problem, where E--{{u,v}lu,veV,uv and {u,v}C.E}; i.e., G is the complem_entary
graph of G. It is easy to see that G has a hamiltonian path if and only if G has a
linear layout such that any pair of adjacent vertexes are. separated by one or more
vertexes, rq

COROLLARY 3. The cycle-separation problem is NP.complete for k--1.
Proof Reduce the hamiltonian cycle problem[6] to it. t
We note that it is easy to reduce the separation problem with k--ko to the

separation problem with k---k0+l, thus showing that the separation problem is
NP-complete for each fixed k >/1. The same remark applies to the cycle-separation
problem as well.

THEOREM 4. The multiprocessor scheduling problem is reducible to the directed
separation problem.

Proof Given an instance <k,D,G1--(V1,E1)> of the multiprocessor scheduling
problem, we construct an instance <k,G2--(V2,E2)> of the directed separation
problem as follows. Without loss of generality, assume that G has kD vertexes and
let V1--{Xl,X2 Xko}. Let G--(V,E) be the graph consisting of k(D+l) vertexes,
where v--{y,yl0<i <D,1 <j <k} and E--{(yi,p,Yi+l,q)[O<i <D-I,1 <p,q <k}. G2 is
simply the union of G and G; i.e., V2=V [..J V and E--E E. Clearly, G can be
constructed in polynomial time.

To complete the proof, we need to show that the instance <k,D,GI> of the
multiprocessor scheduling problem has a solution if and only if the instance <k,G2>
of the directed separation problem has a solution. First, suppose there is a schedule of
G1 on k identical processors. For each l<i<D, let {Xi,l,Xi,2,...,xi,g} be the set of k
tasks scheduled in the th time slot. We can obtain a layout f as follows:
f(xi,j)--(2i-1)k+j for each l<i<D and l<j<k, and f(Yi,j)--2ik+j for each
0<i <D and <j <k. It is easy to verify that f satisfies the separation requirement.

Conversely, suppose f is a layout that satisfies the separation requirement. We
first consider how f assigns numbers to the vertexes in G--(V,E). For each 0<i <D,
let si and b denote the smallest and the largest number assigned by f to the vertexes
in the set {Yi,l,Yi,2 Yi,k}, respectively. Clearly, we have bi>si+(k-1), since there
are k vertexes in the set. Since there is a directed edge from each vertex in the set
{Yi,l,Yi,2 ,Yi,k} to each vertex in the set {Yi+l,l,Yi+l,2,...,Yi+l,k}, we must have
si+l>bi+k in order for f to satisfy the separation requirement. Now, define the
interval Ii--[si,bi+k] for each 0<i <D-1 and Io’-[so,bo]. From the above argument,
we have lo<11 < <Io. Furthermore, since we have exactly n--(2D+l)k vertexes
in G2, we must have bo < (2D+l)k and So> 1. Now, each of the intervals lo,ll Io-
contains at least 2k numbers and the interval Io contains at least k numbers. It then
follows that for each O<i<D-1 the interval Ii contains exactly the numbers
2ki+1,2ki +2, 2ki +2k. From the definition of Ii, the remaining unassigned numbers
must consist of intervals J1,J2 ,Jo where Ji--{(2i-1)k+l,(2i-1)k+2, (2i-1)k+k}
for each l<i<D. These numbers are used to assign to vertexes in G1. Since each
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interval Ji contains exactly k consecutive numbers, any two vertexes of G1 assigned to
the same interval must be independent in order for f to satisfy the separation
requirement. Thus, by scheduling the vertexes f-1 ((2i_ 1) k + 1), f-1 ((2i_ 1) k +2),...,
f-l((2i-1)k+k) in the ith time slot for each <i <D, we obtain a valid schedule of
G1 on k identical processors, o

COROLLARY 5. The MSIRD problem is reducible to the directed separation
problem.

Proof. If a task xi E V1 has a release time ri >0 and a deadline di <D, then we
add the edges {(y,_,j,x)[1 <j <k} and {(xi,Yd,+l,j)[1 <j<k}. This will guarantee
that xi be assigned a number from one of the intervals Jr,+l,Jr,+2 ,Jd,, and hence its
release time and deadline constraints are satisfied, t2

COROLLARY 6. The directed separation problem is NP-complete for arbitrary k.
Proof The directed separation problem is clearly in NP. The result then follows

from Theorem 4 and the fact that the multiprocessor scheduling problem is
NP-complete for arbitrary k. t2

THEOREM 7. The directed separation problem is reducible to the MSRRD
problem.

Proof Given an instance <k,GI--(V1,EI)> of the directed separation problem,
we construct an instance <k+l,G2--(V2,E),r,d> of the MSRRD problem as follows,
where r and d are the release time function and deadline function respectively (i.e., for
each x EV2, r(x) and d(x) denote the release time and the deadline of x
respectively). In order to simplify our discussions, we shall first assum that n---[ Vii is
divisible by k+l. For n not divisible by k+l we have to make some slight
modifications, which will be described later. Let V’--{xilOi<k} and
V"={YilO<i<k}. G2 is simply G1 and the isolated vertexes in V’ and V"; i.e.,

The release time function and the deadline functionV2 V V’ l,.J V" and E2=E 1.

are defined as follows:

r(x)

for xV,

for x--xi, O<i <k,
k+l
n+i + for x--y, O<i<k
k+l

and

d(x)
n+k + for xV,
k+l
r (x)+l for x I/" V"

Since G2 has n+2(k+l) vertexes, the construction can clearly be done in polynomial
time.

We now show that the instance <k,Gl> of the directed separation problem has a
solution if and only if the instance <k+l,G2,r,d> of the MSRRD problem has a
solution. First, suppose f: Vl’--’{1,2 n} is a layout that satisfies the separation
requirement. We shall construct a valid schedule of G2 on k+l identical processors.
Let the processors be denoted by Po,P1,P2 Pk Let s(x) denote the starting time of
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task x in G2 and p(x) denote the index of the processor on which task x executes.
Then, we have

r (x) for x E V’ V",
s (x) ,k +f (X) for x t V

k+l

and

(x) I for x-*xi or x---yi,
P (f (x)-l)mod(k/l) for x Vi

It is easy to verify that the release time and deadline constraints of each task are met,
and that no processor executes more than one task at the same time. Moreover, if
(u,v) is a directed edge in G2, then by our construction, (u,v) must be a directed edge
in G1. Thus, f(v)-f(u)>/k+l and hence

s(v)-s(u) k+f (v) k+f (u) f (v)-f,(u,) >/ 1.
k+l k+l k+l

Therefore, all precedence constraints are observed in the schedule.
Conversely, suppose there is a valid schedule of G2 on k/l identical processors.

For each x fi V2, let s (x) denote the starting time of task x in the schedule. Because
of the deadline constraint, each task x fi V’ V" must be executed immediately after it
is released; i.e., s(x)--r(x) for each xV’[,.)V". Consider the time interval
[1,(n+k)/(k+l)+l], which is the time interval the tasks in V1 can execute. During
this interval of time, the total amount of time devoted to tasks in V’ V" is exactly k.
Thus, the total amount of time available to tasks in V1 is exactly n. Since VI has n
tasks, we see that the schedule cannot have any idle time in the time interval
[1,(n+k)/(k+l)+l]. This fact, along with the release time and deadline constraints
of tasks in V’, implies that tasks in V1 are started at times l+i/(k+l) for 0<i <n-1.
We can obtain a layout f of G1 as follows: f(x)--(s(x)-l)(k+l)+l for each xEV1.
From the above discussions, we see that f: V-*{1,2 ,n}. Moreover, if (u,v) is a
directed edge in G1, then by our construction, (u,v) is also a directed edge in G.
Thus, s(v)-s(u) >/1 and hence f(v)-f(u)=[(s(v)-l)(k+l)+l]-
[(s(u)-l)(k+l)+l]--(s(v)-s(u))(k+l)>/k+l>k. It follows that f satisfies the
separation requirement.

We now come back to the point when n is not divisible by k+l. In this case, we
introduce additional tasks zj, zj+l ,Zk, where j--’n mod(k+l). By setting
r(zi)--r(yi)-I and d(zi)=.r(yi) for each j<i<k, we can enforce that tasks in V1 are
executed as soon as a processor becomes available for assignment. Thus, the same
argument applies.

COROLLARY 8. The directed separation problem is reducible to the MSUPS
problem.

Proof Given an instance <k,G---(V,EI)> of the directed separation problem,
we construct an instance <k+2,D,G2-(Vz,Ez),U > of the MSUPS problem as follows,
where u is the processor speed function (i.e., u (Pi) denotes the speed of processor Pi
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for each 0ik/l). The construction is very similar to the construction in
Theorem 7, except that we have one "high-speed" processor in addition to the k/l
"normal" processors. This "high-speed" processor is used to simulate the individual
release times and deadlines which are not allowed in the MSUPS problem. In order to
simplify our discussions, we shall first assume that tl-----IVll is divisible by k/l; for n
not divisible by k/l we have to make some slight modifications. Let

V"’-{hV’={xilO<i <k}, V"-’-{yilO<i <k} and ill <i <n+3k+2}. Let V2=V1 (.J
V’ v" V’". Let E’--{(xo,hk+2)} [,.J {(hi,xi),(xi,hi+k+2)ll <i <k}, E"=
{(h,,+k++,y),(yi,h,,+Zk+3+i)lO<i <k-1} (.J {(h,,+Zk+l,Y,)} and E"’--{(h,hi+)[1 <
< n +3k+ }. Let E2--E E’ E" J E’". Let u (Pk+l)--k + and u (Pi)-- for

each 0<i<k. Finally, let D--(n+k)/(k+l)+2. It is clear that the construction can
be done in polynomial time.

The main idea of the proof is that the chain V’" must be executed entirely on
processor Pk+l in order to meet the overall deadline D. This fact, along with the
precedence relations among tasks in V’" and tasks in V’, will ensure that each xi be
executed in a specified time interval; specifically, x; can only be executed in the time
interval [i /(k + ,l +i /(k + ]. Similarly, each Yi can only be executed in the time
interval [l+(n+i)/(k+l),2+(n+i)/(k+l)]. This structure will then enable us to use
the same argument as in Theorem 7 to show that the instance <k,Gl> of the directed
separation problem has a solution if and only if the instance <k+2,D,Gz,u > of the
MSUPS problem has a solution. Finally, if n is not a multiple of k+l, then we can
introduce additional tasks z.i,zj+ Zk as we did in Theorem 7. []

3. Algorithms. The purpose of this section is to show that several scheduling
algorithms[ 3], 10], 13 for the multiprocessor scheduling problem can be adapted to solve
the directed separation problem. First, we show that Coffman-Graham’s algorithm[3]
can be adapted to solve the directed separation problem for k--1. Next, we show that
Hu’s algorithm[10] can be adapted to solve the directed separation problem for forests
and arbitrary k. Finally, we show that Papadimitriou-Yannakakis’s algorithm[13] can
be adapted to solve the directed separation problem for interval orders and arbitrary k.
These results are given in the next three sections.

3.1. Arbitrary directed acyclic graphs and k--l. Coffman-Graham’s scheduling
algorithm[3] takes as input a directed acyclic graph G--(V,E) without transitive
edges,6 and produces a minimum-length schedule of G on two identical processors.
We shall first review how Coffman-Graham algorithm works and then show that it can
be adapted to solve the directed separation problem for k--1. The algorithm first
assigns a label to each vertex of G (which we shall call Coffman-Graham labeling
algorithm and will be described later). After the labeling is done, the schedule is
constructed as follows: Whenever a processor becomes idle, scan the list of unassigned
vertexes instantaneously. From among those unassigned vertexes, choose the one all of
whose immediate predecessors7 have already been executed and which has the largest
label. Assign this vertex to the idle processor.

For each vertex x E V, let S(x) denote the set of immediate successors7 of x.

6If the graph has transitive edges, we can use the algorithm given in to remove all transitive edges.
7A vertex u is said to be an immediate predecessor of a vertex v if there is a directed edge from u to v"

v is also called an immediate successor of u.
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Coffman-Graham’s labeling algorithm assigns to each vertex x E V an integer label
a(x) {1,2,...,n}, where n is the cardinality of V, and is defined recursively as follows:
(1) An arbitrary vertex x with S(x)--o is chosen and a(x) is defined to be one.
(2) Suppose for some i<n the integers 1,2 ,i-1 have already been assigned. For
each vertex x for which a has been defined on all elements of S (x), let N(x) denote
the decreasing sequence of integers formed by ordering the set {a(y)[yS(x)}.
Choose a vertex x* such that N(x*)<N(x) 8 for all such vertexes x, and define
a(x*) to be i. (3) Repeat step (2) until all vertexes have been assigned a label.

We are now ready to state the algorithm for the directed separation problem.
This is given as algorithm A below. The algorithm takes as input a directed acyclic
graph G--(V,E) without transitive edges, and produces a layout f, whenever one
exists, such that f(v)>f(u)+l for all (u,v)E.

ALGORITHM A
1. Label all vertexes of G by Coffman-Graham’s labeling algorithm.
2. From the list of unassigned vertexes, assign the next "ready" vertex to the

layout whose label is the largest among all "ready" vertexes, where a vertex is
defined to be "ready" to be put into the layout if all of its immediate
predecessors are already in the layout and none of its immediate predecessors
was the last vertex put into the layout.

3. Repeat step 2 until all vertexes have been assigned, in which case the
algorithm has successfully produced a layout, or there are some unassigned
vertexes but none of them are ready, in which case the algorithm reports that
no such layout is possible. El

We note that the layout produced by Algorithm A is in general not identical to
the schedule produced by Coffman-Graham’s scheduling algorithm. It is therefore
somewhat surprising to find that the correctness proof of Algorithm A is very similar
to the correctness proof of Coffman-Graham’s scheduling algorithm. This is shown in
the next theorem.

THEOREM 9. Algorithm A correctly solves the directed separation problem for
k---1.

Proof. By the nature of the algorithm, it is easy to see that if Algorithm A
terminates successfully, then the layout produced by the algorithm must satisfy the
separation requirement. To complete the proof, we need to show that if Algorithm A
terminates unsuccessfully, then there can be no layout satisfying the separation
requirement. The proof of this statement is very similar to the proof that
Coffman-Graham’s scheduling algorithm produces a minimum-length schedule.

We shall divide the partial layout produced by Algorithm A (at the time it
unsuccessfully terminates) into segments. To this end, we define vertexes Vi and IV,.
recursively as follows: (1) V0 is defined to be the last vertex put into the partial layout
when Algorithm A terminates unsuccessfully. Wo is undefined. (2) In general, for
>/1, IV,. is defined to be the last vertex put into the partial layout before V,.-1 such

that a(W,.)<a(V,._). V,. is defined to be the vertex put into the partial layout

8Let N--(n,n2 nt) and N’-(n’,n’2 n’t,) be two decreasing sequences of positive integers; i.e.,
ni>ni+t and n’j>n’j+t for l<i<t and l<j<t’ We say that N<N’ if either (a) for some i, l<i<t, we
have nj--n’ for all <j <i-1 and n; <n’, or (b) <t’ and nj=n’ for all <j <t. We say that N--N’ if

t--t’ and nj--n’ for all <j <t. We say that N <N’ if either N <N’ or
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L _I L _I L _I L _I L _I L _I
V W V W V W2 Y W V

FIG. 3. (a) Graph labeled by Coffman-Graham labeling algorithm.
(b) Layout produced by Algorithm A with definitions of V., W,., Xi, and X’.

immediately before IV,.. Suppose now we are able to define Wt but not Wt+. We
shall divide the partial layout into 1+1 segments X0,X ,Xt, as follows: (1) For each
O<i <l-1, Xi is the set of vertexes between Vi and W,.+I, including Vi but not W,.+.
(2) Xt is the set of vertexes starting from the first vertex in the partial layout up until
Vt, and including Vt. Finally, we define X’ to be the set of unassigned vertexes all of
whose immediate predecessors have been put into the partial layout when Algorithm A
terminates unsuccessfully. A graph for which Algorithm A terminates unsuccessfully
is shown in Figure 3.a. (This graph is taken from the example given in [2] which is
used to illustrate the correctness proof of Coffman-Graham’s scheduling algorithm.)
The vertexes of the graph are labeled by Coffman-Graham’s labeling algorithm. In
Figure 3.b, we show the partial layout produced by Algorithm A along with the sets Xi
(0 < < 1) and X’.

The heart of the proof is contained in the following claim. We shall omit the
proof of this claim, since it can be proved by double induction in a similar manner as
in [3].

CLAIM 1. For each < < 1, every vertex in Xi is a predecessor of all vertexes in
Xi_l.9 Moreover, every vertex in Xo is a predecessor of all vertexes in X’.

By Claim 1, every vertex in Xi must be assigned before any vertex in Xi-1 for
each <i <l. Similarly, every vertex in X0 must be assigned before any vertex in X’.

9A vertex u is said to be a predecessor of a vertex v if there is a directed path from u to v.
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Thus, we have 1+2 sets of vertexes each of which has to be separated from the others
by at least one vertex. Since we have only 1 vertexes (namely, W1,W2 WI) that
can be used for this purpose, there can be no layout of the graph that satisfies the
separation requirement, r3

3.2. Forests and arbitrary k. In this section we shall give an algorithm for the
directed separ,ation problem when the graph is a forest. The algorithm is very similar
to Hu’s scheduling algorithm[ 10] for tree-precedence constrained task systems. Before
we present our algorithm, we shall first define some terminologies. An out-tree (in-
tree) is a directed acyclic graph in which every vertex, except one vertex called the
root, has exactly one immediate predecessor (successor). The root of an out-tree (in-
tree) has no immediate predecessor (successor). A leaf of an out-tree (in-tree) is a
vertex that has no immediate successor (predecessor). The length of a directed path is
the number of vertexes on the directed path. The height of an out-tree (in-tree) is the
length of the longest directed path from the root (a leaf) to a leaf (the root). A forest
is a collection of out-trees or in-trees, but not both.

There are two observations concerning the directed separation problem when the
graph is a forest. First, we can restrict our attentions to forests consisting of out-trees
only. This is because if we are given a forest consisting of in-trees, then we can
convert it to a forest consisting of out-trees by reversing the arrows on the in-trees. If
a valid layout exists for the converted forest, then by reading the layout backwards we
obtain a valid layout for the original forest. Conversely, if no valid layout exists for
the coverted forest, then there can be no valid layout for the original forest. Thus, for
the remainder of this section we shall restrict our attentions to forests consisting of
out-trees only. For convenience, we shall refer to an out-tree simply as a tree.
Secondly,. if a forest contains trees, then there can be no layout of the forest with
separation or more. This is because one of the roots can never be separated from its
immediate successors by or more vertexes.

We are now ready to state our algorithm which is given as Algorithm B below.
The algorithm takes as input a positive integer k and a forest. It produces a layout f,
whenever one exists, such that f(v)>f(u)+k for all directed edges (u,v) in the
forest. Theorem 10 below shows the correctness of Algorithm B.

ALGORITHM B
1. Count the number of roots in the forest. If there are less than k+l roots,

report no valid layout exists and terminate the algorithm; otherwise, continue.
2. Choose the roots of the k+l tallest trees and place them in the layout

beginning with the root of the tallest tree, followed by the root of the next
tallest tree, etc., until all k +1 roots have been put in the layout. If two or
more trees are of the same height, choose the root of the tree whose
immediate predecessor was assigned earliest. Roots without immediate
predecessors are chosen last among trees of the same height.

3. Eliminate the k+l roots chosen in step 2, along with all the edges emanating
from them, to form a new forest.

4. Repeat steps 1-3 until the algorithm terminates unsuccessfully, or all trees
are of height in which case a valid layout can be produced. The remaining
roots may now be put in the layout in the order their immediate predecessors
were assigned (roots without an immediate predecessor are assigned last), r3

THEOREM 10. Algorithm B correctly solves the directed separation problem for
forests.
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Proof. The proof of the theorem consists of two parts: (1) showing that the layout
produced by Algorithm B is valid whenever the algorithm terminates successfully, and
(2) showing that no valid layout can exist whenever the algorithm terminates
unsuccessfully. First, suppose Algorithm B terminates successfully. We shall show
that every non-leaf vertex is separated by k or more vertexes from its immediate
successors in the layout. Take an arbitrary non-leaf vertex and call it y. We know
that it was one of the k+l vertexes chosen during a given iteration of the algorithm.
Assume it was the lth vertex put in the layout among those k/l vertexes. Since all of
the vertexes chosen during an iteration are roots, none of the k+l-I vertexes chosen
after y in the given iteration can be immediate successors of it. It can also be seen
that the l-1 vertexes assigned before y in the given iteration will each have at least
one immediate successor that will be used in the next iteration before any immediate
successors of y. Thus, there are k+l-I vertexes assigned after y in the iteration in
which y was chosen, and at least l-1 vertexes assigned in the next iteration before the
immediate successors of y are assigned. Therefore, there are at least
(k+l-l)+(l-1)--k vertexes between a non-leaf vertex and any of its immediate
successors, satisfying the separation requirement.

Conversely, suppose Algorithm B terminates unsuccessfully at the start of the th
iteration. We know that at this point there are less than k /1 roots in the forest and at
least one tree is of height larger than 1. Let Y be the set of roots of those trees with
height larger than at the th iteration. Since there are less than k/l roots at the th
iteration, at the (i-1)st iteration a root was chosen which had no immediate successors
(i.e., a tree of height 1). Since roots of taller trees are always assigned first, the only
reason why one of the vertexes in Y was not used instead of this vertex was because
the immediate predecessors of all vertexes in Y were used in the (i-1)st iteration.
Continuing this argument, it is easy to show that the vertexes in Y must have had a
predecessor used in each of the previous i-1 iterations. Since each vertex in Y had a
predecessor used in each of the i-1 previous iterations and since only k+l vertexes are
used in each iteration, the vertexes in Y cannot be assigned at an earlier position than
they would be according to Algorithm B. Finally, since there are less than k+l
vertexes which could possibly be used at the th iteration, one of the vertexes in Y
cannot be separated from its immediate successors by k or more vertexes. Hence,
there can be no layout satisfying the separation requirement, r

3.3. Interval orders and arbitrary k. If G-(V,E) is an arbitrary directed acyclic
graph, then G+--(V,E+) is the transitive closure of G, where E+--[(u,v)[u,v,E V,uv,
and there is a directed path from u toy in G}. Clearly, G+ corresponds in a natural
way to an irreflexive partial order. 10 An irreflexive partial order P--(W,A) is called
an interval order if there is a one-to-one correspondence between W and a set of
intervals on a straight line such that (u,v)EA if and only if the interval corresponding
to u is entirely to the left of the interval corresponding to v. Papadimitriou and
Yannakakis[13] first considered the class of directed acyclic graphs whose transitive
closures are interval orders. 11 They showed that the multiprocessor scheduling problem

10An irreflexive partial order P=(W,A) is an ordered pair where W is a set of elements and A is an

irreflexive, antisymmetric and transitive relation on W.
lit is easy to recognize this class of directed acyclic graphs. It was shown in [13] that this class of

graphs is incomparable to forests. We refer the reader to [13] for some of the characterizations of this class

of graphs.
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is solvable in polynomial time.for this class of directed acyclic graphs. We shall show
in this section that their algorithm can be adapted to solve the directed separation
problem for the same class.

We shall first review Papadimitriou-Yannakakis’s scheduling algorithm. Let
G---(V,E) be a directed acyclic graph such that its transitive closure G+--(V,E+) is an
interval order. For each vertex uV, let S (u )-- {v (u ,v E+}. Papadimitriou-
Yannakakis’s scheduling algorithm first assigns a label a(u) to each vertex u fi V such
that c(u) >c(v) whenever IS (u)I> IS (v)I. (We shall call this labeling algorithm the
Papadimitriou-Yannakakis’s labeling algorithm.) After the labeling is done, the
scheduling is done in the same way as Coffman-Graham’s scheduling algorithm (see
Section 3.1 for details).

The algorithm for the directed separation problem is given as Algorithm C below.
The algorithm takes as input a positive integer k and a directed acyclic graph
G---(V,E) whose transitive closure G+--(V,E+) is an interval order. It produces a
layout f, whenever one exists, such that f (v) >f (u)+k for all (u,v) fiE.

ALGORITHM C
1. Label all vertexes of G by Papadimitriou-Yannakakis’s labeling algorithm.
2. From the list of unassigned vertexes, assign the next "ready" vertex to the

layout whose label is the largest among all "ready" vertexes, where a vertex is
defined to be "ready" if all of its immediate predecessors are already in the
layout and none of its immediate predecessors were among the last k vertexes
put in the layout.

3. Repeat step 2 until all vertexes have been assigned, in which case the
algorithm has successfully produced a layout, or there are some unassigned
vertexes but none of them are ready, in which case the algorithm reports that
no such layout is possible. El

THEOREM 1. Algorithm C correctly solves the directed separation problem for
graphs whose transitive closures are interval orders.

Proof By the nature of the algorithm, if Algorithm C terminates successfully,
then the layout produced by the algorithm satisfies the separation requirement.
Conversely, if Algorithm C terminates unsuccessfully, then we can show in the same
manner as in [13] that no valid layout can possibly exist. We omit the routine
details. []

4. Discussions. In this paper we gave complexity results for several variants of
the bandwidth minimization problem. We showed that the cycle-bandwidth problem is
NP-complete for each fixed k >/2, the separation and cycle-separation problems are
both NP-complete for each fixed k>/1, and the directed separation problem is
NP-complete for arbitrary k. We gave reductions from the multiprocessor scheduling
problem and the MSIRD problem to the directed separation problem, and reductions
from the directed separation problem to the MSRRD and MSUPS problems. Finally,
we gave polynomial time algorithms for several special cases of the directed separation
problem. It should be noted that the algorithms given in Section 3 can be modified to
solve a related problem in which we are asked to find the minimum number of isolated
vertexes needed to add to the graph G so that it has a layout with separation k or
more.

There are several open questions which we think are worthwhile to pursue for
future research. The first and the most important one is the complexity of the directed
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separation problem for each fixed k )2. An answer to this question will solve several
open problems in deterministic scheduling theory. If the directed separation problem
were shown to be solvable in polynomial time for each fixed k)2, then the
multiprocessor scheduling problem and the MSIRD problem are solvable in polynomial
time for each fixed k 3, answering the open questions posed in [5,15]. On the other
hand, if the directed separation problem were shown to be NP-complete for each fixed
k )2, then the MSUPS problem is NP-complete for each fixed k >/4 and the MSRRD
problem is NP-complete for each fixed k )3, answering an open question posed in [7].
On a less fundamental level, is it possible to reduce the directed separation problem to
the multiprocessor scheduling problem and the MSIRD problem (thus showing they
are equivalent), or reduce the MSUPS and MSRRD problems to the directed
separation problem? As we noted in section 1, the directed separation problem
appears to be not much harder than the multiprocessor scheduling problem. It is
conceivable that such reductions exist.

Secondly, how hard is it to find an approximate solution with a constant
worst-case bound to the problem of finding a layout that minimizes the
circular-bandwidth or the bandwidth? As we noted in section 1, an approximation
algorithm with a constant worst-case performance bound for one problem gives an
approximation algorithm for the other. Thus, an answer to one question gives an
answer to the other. Finally, our generalization of linear layouts to circular layouts
can be applied to other graph layout problems such as the cutwidth minimization
problem [6 ], [9] and the optimal linear arrangement problem [6] [8]. What are
the complexities of these problems for circular layouts?

Acknowledgment. I. Hal Sudborough provided the proof of Theorem 2 and the
relationships between the bandwidth and cycle-bandwidth of a graph.
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DISK PERFORMANCE IN A TRANSACTION-ORIENTED SYSTEM*

D. P. HEYMANf AND S. TSUR*

Abstract. In this paper we address the performance issues that arise as a result of the two level scheduling
in a database/operating system. At the upper (database) level transactions are logically scheduled so as to

maintain the database integrity. At the lower (operating system) level physical disk requests are scheduled.
We consider the performance problems that result from the interplay between these two levels of scheduling.
Our model assumes the existence of a dictionary that must be consulted prior to the execution of a transaction.
We derive the optimal disk placement of this dictionary and our results show that the waiting time for
dictionary look-up is the critical component in the transaction response-time for a wide range of transaction
sizes. To alleviate this problem we suggest alternative approaches to dictionary placement in such systems.

Key words, database, transaction scheduling, disk scheduling

1. Introduction. Many contemporary database applications are centered around
the concept of a transaction. A transaction is a sequence of operations on the data of
a database which, from the users’ point of view, must be executed as one indivisible
unit. From a system perspective, the objective is to preserve the database integrity in
a concurrent-user environment. The database component entrusted with this task is
the transaction manager.

The transaction manager must schedule the various transactions in a way that is
consistent with the integrity preservation requirement. The most common way is to
produce a serializable schedule [5J--one that is equivalent to a schedule in which each
of the transactions is executed in a non-overlapping fashion without interference from
other co-resident transactions.

To produce a schedule, the transaction manager consults a dictionary--a repository
of descriptive data which is kept with the database. The information gleaned from this
dictionary lookup is checked for potential read/write conflicts between transactions
and translated into information about access to the participating entities (data elements)
of the transactions to be scheduled. Consequently, at the transaction scheduling level,

1. the scheduling of each transaction is preceded by dictionary lookup, and
2. as a result of this lookup all participating entities are known.2

The transaction schedule is passed to the underlying operating system for execu-
tion. At this level a standard disk scheduling algorithm such as SCAN [3] is employed.
Disk scheduling at this level does not utilize any information specific to the database
environment.

This paper addresses the performance issues that arise as a result of the interplay
between the two levels of scheduling that we described: the logical, transaction-oriented
level at the database and the physical, disk oriented level at the operating system. We
will see that the requirement that a dictionary lookup precedes the entity-access
strongly influences the order in which the transactions are processed.

* Received by the editors November 30, 1982, and in final revised form June 14, 1983.
f Bell Communications Research, Holmdel, New Jersey 07733.
$ IBM Scientific Center, Haifa, Israel.
A set of conditions on the stored data that are determined by the semantics of the database

applicationwe.g., AGE> 0 in a database containing personnel data. These conditions must hold irrespective
of the operations that are performed on the database.

Those cases in which the accessed entities cannot be known prior to execution because of data-
dependency are excluded from this discussion.
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The model presented in this paper, and its analysis, build on the analysis of the
SCAN rule by Cottman, Klimko and Ryan [1] and recently by Coffman and Hofri [2].
Their model as well as other published work on disk scheduling [4], [6], [8] concentrates
on the lower, operating-system level. Our work here differs in the following respects:

1. In the published literature, the basic work-unit to be scheduled is a single
disk-access whereas we consider a transaction.

2. The performance measure that we optimize is the response-time of individual
transactions.

3. The operating constraints are different in that the imposition of a dictionary
limits the randomness of access to the data. Therefore, the use of a dictionary should
not be regarded as a device to improve the performance of the system, but rather as
a "necessary evil" with which the system must work.

Section 2 describes the transaction model and the assumptions that we have made
with respect to the operating system environment. The pertormance ot the model is
analyzed in 3 and some numerical results and their interpretation are presented in
4. In concluding this paper we suggest some extensions to our work in 5.

2. The transaction model and its environment. The transaction arrival process
in the system is assumed to be Poisson with mean A. Each transaction is of the form
[e0, el, e2,""", en] where e0 is a dictionary entry and el,’’’, en are the related data
entities that must be fetched.3

We assume that N, the number of entities fetched for a transaction, is a random
variable with a known distribution. The dictionary and data entities reside on a
moving-arm disk (Fig. 1).

o

FIG. 1. A simple disk model.

We approximate the discrete track-set of the disk by the continuous interval [0, 1]
and assume that the dictionary occupies one cylinder or a part thereof which is
positioned at a distance d from the lettmost position of the arm. The disk arm moves
at speed a (time/cylinder) over the disk surface and the database entities are distributed
over the surface locations with a known density f(. ). The arm movement is governed
by a simple scan algorithm which moves it cyclically from 0 to 1 and back to 0. During
this cycle the arm stops on those tracks where it reads either data or the dictionary.
The time (rotation + transfer) to read/write an entity is the constant r and the time
to read the dictionary entry at position d for a transaction is the constant 6. These
are the times for block-reading and consequently, 6 is independent ot the transaction-
size.

The transaction service process in the system is as follows. During a cycle the arm
visits the dictionary twice: once when it moves right from 0 to 1 and once when it
moves left from 1 to 0. During each visit the dictionary is read and the transactions
that have arrived since the last visit are available to be processed. That is, the positions
of their entities are obtained through the dictionary lookup and they are fetched during
the subsequent part o the cycle when the arm passes over them. A complete cycle of
this process is show in Fig. 2. Note that in this regime,

The same model is also applicable for indexed file access. In this case, the dictionary consists of the
index to the file and the entities are the data pages accessed through the index lookup.
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Yr (’) 1

FIG. 2. A transaction processing cycle. ASZ, ASZt dictionary reading phases; z, z’ typical entity
reading/writing phases (all quantities depicted are expected values).

1. the servicing of separate transactions may be interleaved and is governed by
the movement of the arm and the positions of the data entities, and

2. entities for a given transaction may be fetched in an order which may be
different from their logical order in the transaction specification. We assume that the
system employs an appropriate buffering system in which the entities can be "recon-
structed" before unlocking the transaction.

In 4 we analyze the question of the optimal placement of the dictionary in this
system, i.e., what is the optimal value of d when the objective is to minimize the
transaction response-time for an individual transaction in the system. Note that this
objective is different from the published work on disk performance analysis in that
the usual measure of performance is to maximize the service rate per task where a
task is the processing of either a dictionary entry or an entity.

3. Analysis of the model. In this section we will describe our model in detail and
solve for the mean delay of a transaction in the steady state. For completeness we list
here the notation that we will use in this analysis.

time to read a dictionary record (a constant),

=time to read an entity (a constant),

p, probability that a transaction contains n entities to be fetched,

np mean number of entities to be fetched in a transaction,

F(x) =Io f(y dy probability an entity is located in [0, x],

FC(x)=l-F(x),

arrival rate of transactions,

d location of the dictionary,

a disk arm speed (time/cylinder).

3.1. Equilibrium conditions. By a cycle we mean an interval of time in which the
head starts at d and is traveling left (i.e., towards 0) and ends at the next such instant.
That is, it is an interval in which the arm moves from d to 0 to 1 to d. Let c be the
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expected length of a cycle in the steady state. A simple algebraic derivation of a formula
for c will emerge from our subsequent analysis, but the following heuristic derivation
will lead to a condition for the existence of the steady state.

In every cycle, 2a time units are spent moving the head. In the steady state, the
average number of transactions that arrive is Ac, so Ac must be the mean number of
transactions that are processed. Each transaction requires one dictionary look-up and
an average of v entity transfers, so 8 + vr is the mean time to process each transaction.
Therefore,

(1) c=2a+A(8+ vr)c=
2a

l-h(8+ vr)"

Since 0 < c < oo is required, we must have

(2) A(8+ vr) < 1.

Since 1/a is the mean time between transaction arrivals, (2) asserts that the mean
interarrival time is larger than the mean processing time. By using the theory of
regenerative processes (see e.g., [7, 6.4]), it can be shown that (2) is sutticient or
the existence of the steady state. We will not pursue that issue here.

For the remainder o this section we assume that (2) is valid and that the system
is in the steady state.

3.2. Head travel times. Let yr(x) be the expected time for the head to travel
from 0 to x and y(1- x) be the expected time for the head to travel from 1 to x (a
distance of 1- x). These are the functions we will obtain in this subsection.

Since all entities that are in [0, d] are fetched while traveling left from d to 0,

(3a) yr(x)=ax, x<d.

When the head reaches d, all the transactions that arrived since the last visit to d
receive a dictionary look-up. When the head is traveling to the right, let Z be the
expected value of the length of time since the head was last at d plus the current
length of time .spent at d. Then AZr8 is the expected amount of time needed to read
the dictionary. Note that we assume that a transaction which arrives when the head
is at d uses the dictionary at that time. Thus, Zr satisfies

(4) Zr Yl(1) Yl( 1 d) + ad +.Z
and so

(3b) y(d) ad +

When the head is traveling to the right, those entities it can read in (d, 1] must have
arrived during the last interval of time in which the head traveled from d to 1 to 0 to
d. It is easy to see that the expectation of the length of this interval is the expected
cycle length c. Since F(x)-F(d) is the probability that an entity resides in (d, x],
Ac[F(x)-F(d)]vr is the expected amount of time spent reading entities as the head
travels from d to x, x > d, so

(3c) yr(x)=ax+AiSZ+Ac[F(x)-F(d)]vr, x> d.

When the head is traveling left, equations for y(.) are obtained from (3) by
symmetry. From (3a) we obtain:

(5a) yl(x)=ax, x<l-d.



DISK PERFORMANCE IN A TRANSACTION-ORIENTED SYSTEM 673

When the head reaches d, let Zt be the expected value of the length of time since
the head was last at d. Adapting the derivation of (4) yields

(6) Zl yr(1) yr( d) + a(1 d)+ ,.ZI.

Adapting the arguments leading to (3b) and (3c) yields

(5b) yl(1- d) a(1- d)+ hSZl
and

(5c) yl(x)=ax+h,Zt+hc[F(d)-F(1-x)]v’r, x> 1-d.

In order to solve (4) and (6) for Zr and ZI, we use (3) and (5). From (5b) and (5c),

Yt(1) Yt(1 d) ad + rvAcF(d)

3.3. Waiting times. In this section we provide equations for calculating the expec-
ted wait that is incurred per transaction. By the wait of a transaction we mean the
length of the time interval that starts when the transaction arrives and ends when all
the entities of the transaction have been fetched.

Let the generic random variable D denote the length of the time interval that
starts when a transaction arrives and ends at the very next completion of a dictionary
look-up. For the same transaction, let the generic random variable S denote the time
to fetch the entities. The expected waiting time of the transaction is E(D)+ E(S). We
will obtain E(D) and then E(S). The first step is to describe the position of the head.

Let Gr(X) be the probability that the head position is between 0 and x and that
the head is traveling right at an arbitrary epoch. Since the cycle lengths are i.i.d.
random variables, regenerative-reward arguments (see, e.g., [7, Thm. 6-8]) show
that

(10) G,(x)=y,(x)/c.

For x d, we may write gr(X) Grr(x) y’,(x)/c, where a prime denotes differentiation.
For notational convenience, we will write

g,(d) dx=[Gr(d)-Gr(d-)] AZr/C,

which is the probability that the head is at d and traveling right.
Similarly,

(11)
Gt(x) P {head position =< x and moving left}

[yl(1)- yl(1 x)]/c

and so

gt(x)= y(1-x)/c,

(7)

substituting (7) into (4) yields

(8) Z, [2ad + rvXcF(d)]/(1 A5).

Similarly, we obtain

(9) Z, {2a(1 d) + r,hc[1 F(d)]}/(1 AS).

Observe that C=Zr+Z, which with (8) and (9) yields (1) and provides a partial
check of our results.
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with the convention

gl( d) dx A6ZI/ c.

From (10) and (3c) we obtain

(12) P{headtravelingtotheright}=yr(1)/c=(a+A6Zr)/c+vA[1-F(d)].

Similarly, (11) and (5c) yield

(13) P {head traveling to the left} (a + )t6Z)/c + ruAF(d).

The independent-increments property of a Poisson process implies that the condi-
tion "an event occurs at t" does not affect the distribution of the events which may
occur before or after t. For example, if it is given that a transaction arrives when the
head is at position x < d and traveling to the right, the mean time until the head
reaches x +e < d is yr(x +e)-y(x). The reason for this is that the amount of time
required to move from x to x + e depends only on those transactions which arrived
prior to the last visit to the dictionary, and they are completely independent o the
event "a transaction has just arrived at position x." A [ormal proo o these assertions
is given in a more general setting in [9].

When we trace the progress of the transactions in the arrival process we note that
they all have effects first when the dictionary is read, and secondly, when their
corresponding entities are fetched. We will select one particular transaction and call
it the tagged transaction. The dictionary processing time for the tagged transaction is
6, and during this time an average of A6 new transactions arrive which require processing
time, during which new transactions arrive and so forth. Let A be the amount of
additional time spent in dictionary reading due to the arrival of the tagged transaction
(this time is conditional on the arrival of the tagged transaction); then

(14) E(A) 6 + A6E(A) 6/(1- A6)

where (2) ensures that E(A)< oo. Let a be the expected number of transactions that
arrived during an interval of length A; then

(15) a=AE(A)=A6/(1-A6).

To obtain E(D) we consider six cases. For brevity we use the symbol - (resp.
-) to indicate that the head is moving right (resp. left).

Case 1. The transaction arrives when the head is in position x < d and traveling
right. Here, D corresponds to a trip from x to d plus A, so

(16a) E(DIx < d, -) y,(d)- y(x) a(d- x) + A6Z + E(A).

Case 2. The transaction arrives when the head is at the dictionary and traveling
right. In this case, D equals A plus the equilibrium excess (or forward recurrence-time)
distribution of a renewal process where the renewal lengths correspond to the lengths
of visits to the dictionary. We know that the mean of this distribution depends on the
first and second moments of the renewal lengths. We have not been able to obtain
the required second moment, so we will make the approximation

(16b) E(D[x d, ’) 6Zr+ E(A).

This approximation will be good when E(A2) is close to 2[E(A)]2 where A is the length
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of a visit to the dictionary. If the probability that the head is at d is small, the inaccuracy
of this approximation will not be significant. We will return to this point below.

Case 3. The transaction arrives when the head is at position x > d and traveling
right. Here, D is a trip from x to to d plus A, so

(16c)
E(DIx > d,--)=y,.(1)-y,.(x)+y,(1-d)+E(A)

a(2- x- d) + zuAc[1 F(x)] +AZ+E(A).

Case 4. The transaction arrives when the head is at position x > d and traveling
left. Here, D is a trip from x to d plus A, so

(16d) E(DIx> d,-,,,)=yt(1-d)-yt(1-x)+E(A)=a(x-d)+ASZt+E(A).

Case 5. The transaction arrives when the head is at position d and traveling left.
This is similar to Case 2, and we make the approximation,

(16e) E(DIx= d, -) AZ +E(A).

Case 6. The transaction arrives when the head is at position x < d and traveling
left. Here, D is a trip from x to d plus A, so

(16f)
E(DIx < d,-,,,) y,(1)-y,(1-x)+ y,.(d)+ E(A)

a(x + d)+ ’trAcE(x)+ A$Zr + E(A).

Removing the conditions yields

(17) E(D) E(DIx, r)gr(X) dx + E(DIx,-,,,)g,(x) dx.

Let : be the probability that the head is at d. The expected amount of time in a
cycle that the head is at d is A(Zr +Z)= AC, so

(,c)/c .
When is small, the approximation errors in (16b) and (16e) should not significantly
affect (17). In the examples presented in 4, 6 r 18 msec., and a 100 msec. Only
in case c of Fig. 3 does : exceed 0.08 (in case c, : 0.45).

Now we will obtain E(S). The first step is to determine the location distribution
of the entities in a transaction. Recall that the random variable N denotes the number
of entities in a transaction and Pn P{N n}. When N n, the probability that all
the entities are to the left of y is IF(y)]n. Therefore, the probability that the largest
entity location, denoted by L, is no bigger than y, L(y) say, is

(18) L(y) _, [F(y)]"P{N n} =/3IF(y)]

where 16(z)= Y. z"p,. Let/(. be the derivative of/3(. and L’(. be the derivative
of L(.); then

(18a) L’ (y) [F(y)]f(y)

is the density function for the location of the rightmost entity location.
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The probability that not all of the entities are to the right of y, when N n, is
1-[F(y)]. Let M be the minimum location of all the entities. The probability that
M is no bigger than y, M(y) say, is

(19) M(y)= (1-[F(y)])P{N 1}= 1-/[F(y)].

The corresponding density function is

(19a) re(y) [F (y)]f(y).

To obtain E (S), we observe that every transaction requires, on average, an amount
m- of time to do the data transfer on the entities. The remaining component of E (S)
is the expected travel time to fetch the entities, which we denote by E(T). To obtain
E(T) we examine four cases. We will use the notation E(T) for E(T) in case i. In
each case we divide T into two parts which we call T* and T**. The former is the
travel time that would have occurred had we not conditioned on the presence of
the tagged transaction and the latter is the travel time generated by the presence of
the tagged transaction. This dichotomy is justified by the independent increments
property of a Poisson process, as described after (13).

Case 1. The head is traveling right and d < M. In this case T* is the length of a
trip from d to L, and so

E( T*]L x > d, ) y(x)- y(d) a(x- d) + ruAc[F(x)- F(d)].

Since [F(x)-F(d)]u is the mean number of entities located between d and x for an
arbitrary transaction, and a is the expected number of additional transactions present
due to the tagged transaction,

E(T**[L= x> d, ,’)=[F(x)-F(d)]vra.

Let rr be the probability that the head is traveling right when it leaves the dictionary.
Since we condition on the event that the tagged transaction has arrived, 7r, is not 1/2.
Equivalently, this is the probability that a transaction arrives when the head is .to the
left of the dictionary. Then

7r, G(d+) + G(d-);

using (3b), (7), (8), (10) and (11) we obtain

(20)

We have

,n-,, [2ad + rAcF(d)]/ c(1 ,,).

p{L <_ x&d < M}= y’. [F(x)-F(d)]"p,, =_[F(x)-F(d)],
n=l

SO

(21a) E(T,)=rr, [E(T*IL=x,--)+E(T**IL=x,,-’)][F(x)-F(d)]f(x) dx.
d

Case 2. The head is traveling right and M < d. When M x, T* is the length of
a trip from d to 1 to x for every value of L, so

E( T*IM x < d, ,,,-) y(1) y(d) + y(1 x) a(2- d- x) + X6Z + ru,cF(x).

We analyze T** by dividing it into three parts: the effects of transactions that arrive
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(i) during the dictionary look-up of the tagged transaction, (ii) while the entities of
the transactions in (i) are read, and (iii) while the entities in the tagged transaction
itself are read. The steps required to do this analysis are relegated to the Appendix.
The result is

E( T**IM x, ,,-) a’,F(x) + Ad/fl + flAr’M,

where ’U is the conditional expectation of the number of entities in a transaction
which are to the right of the dictionary when M x < d, and q,/3 and v are given
in equations (A.1), (A.2) and (A.3) in the Appendix.

Thus, we have

(21b) E(T) r [E(T*IM=x, ’)+E(T**IM=x, ,,,-)Ira(x) dx.

Case 3. The head is traveling left and L < d. In this case, T* is the length of a
trip from d to M so

T*IM x, L < d, -,,,) y(1 x) y(1 d) a(d x) + r,.c[F(d) F(x)].

The analysis of T** parallels the analysis in case 1; we obtain

E( T**IM x, L < d, -) IF(d)- F(x)] ,ra.

We have

P(M> x&L < d) P(all entities in [x, d)} Y [F(d)-F(x)]"p,, [F(d)- F(x)].

The corresponding density function is

d 13[F(d)_F(x)]=[F(d)_F(x)]f(x)
dx

which, with 7r 1- 7r. yields

(r) r [E(T*IM x, L < d,

(c
+(T**IM x, < d, --)][f(d)-F(x)]f(x) dx.

Case 4. The head is traveling left and L > d. In this case, T* is the length of a
trip from d to 0 to L, and so

E T*IL- x > d, --) y(1)- y(1 d)+ y(x) a(d + x) +IZ+ r,IcF(x).

The analysis of T** parallels the analysis in case 2 with F(. replacing F( ). The
result is

E(T**IM x) arF(x) + Atp +

where ’L is the conditional expectation of the number of entities in a transaction which
are to the left of the dictionary when L x > d, and q,/3 and ’L are given in equations
(A.4), (A.5) and (A.6) in the Appendix.

Thus we have

(21d) E(T4) ’ [E(T*IM=x)+E(T**IM=x)]m(x) dx.
d
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(21e)

Cases 1 through 4 are mutually exclusive and collectively exhaustive, so

Thus,

(22)

with E(T) computed rom (21e).

4

E( T) E E( T).

E(S) ,z+ E( T)

4. Numerical results and discussion. In this section we present some of the
numerical results that we have obtained with the model for specific distributions of
entity locations and the size of transactions. In our calculations we have used the beta
distribution with integer parameters for entity locations, i.e.,

(23) f(x)=(Yl+Y2+l)!xV(1-x)’2 O<x<l

or parameters Yl, )’2 > --1. We have chosen this distribution because of its unimodality
and the convenience with which we can control its mean by suitable parameter choice.
In our experiments we have used the parameter values yl 4 and T2 "-2 which place
the mean at x 0.625. Note that this distribution reduces to the uniform distribution
when 3/1 2-’0. We have used the geometric distribution for the transaction size
(number of entities); i.e.,

(24) p,=p(1-p)n-1 n>0

or a given parameter p. The average transaction size for this distribution is

(25) v= Y’. np,, lip.
n=l

In 3 we analyzed two actors that determine the system’s performance: E(D),
the expected time from transaction arrival until the next dictionary visit completion,
and E(S), the expected time to read the related transaction entities as well as the
entities of other co-existing transactions after the visit. Fig. 3 depicts these quantities
as functions of the dictionary location d for four different transaction loads. The
transaction-load parameters that we have varied in these cases are A, the transaction
arrival rate, and ,, the average transaction size. In all cases we have kept the scan-speed
a as well as " and 6 fixed. From (2), Amax (6 / u’)-1 is the upper bound on the arrival
rates for which the steady-state exists. In cases (a) and (b), the average cycle time is
202 ms; it is 2000 ms. in cases (c) and (d).

From the results we observe two conflicting trends: The optimal placement is at
the mean of the data distribution as ar as the expected time to reach and read the
dictionary, E(D), is concerned. This can be explained by observing that this time is
dominated by the time it takes to read the data entities on the way to the dictionary.
Therefore, these times become balanced if d is at the mean. On the other hand, the
entity read-times after dictionary lookup are minimal if the data can be collected in
one sweep over the disk surface without having to reverse directions (and, consequently,
first visit the dictionary again). Therefore from this aspect the optimal d is at that
extreme point which is closest to the mean. In the lightly loaded cases the performance
is insensitive to the actual dictionary placement whereas in the heavily loaded cases
placement becomes critical and should be at the mean of the data.
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FIG. 3. Expected transaction waiting times as a function ofdictionary location for different transaction-load
types. (a) A =0.01A = 1. (b) A =0.01A ,= 10. (c) A =0.9A t,= 1. (d) A =0.9A t,= 10. In
all cases, z 18 ms, a 2 ms, Yl 4 and Y2 2.

In all four cases, the largest component of E(D) is due to either (16c) or (16f),
according to whether the dictionary is to the left or right of the center of the disk
surface. These components include a phase where the arm moves from an extreme to
the dictionary without doing any useful work. In cases (a) and (b) which have light
loads, these components account for about 70 percent of E(D). In case (c) which has
a heavy load of small transactions, these components account for about 60 percent of
E(D). The most dramatic case is (d), where these components account for 97 percent
of E(D).

We note also the difference in performance between a traffic process of small
transactions and one of large transactions. For a transaction load of small transactions
the maximal arrival rate for which the system remains stable is much higher than the
maximal load of large transactions. Since each new transaction requires a dictionary
lookup, the lookup phase becomes a major performance barrier with respect to
completion time in heavy traffic streams of small transactions--much more so than in
the heavy traffic situations of large transactions.

5. Conclusion. In this paper we have extended the results of disk scheduling in
an operating system to include transaction scheduling in a database system. Our main
conclusions are that the dictionary placement has a critical influence on the perform-
ance, particularly with heavy transaction traffic, and that the use of a dictionary carries
a significant overhead compared with systems that can function without it.

It might seem to be easy to relax the assumption that the read/write and dictionary
look-up times for each entity are constants. If this were done, the analysis would have
to deal with length-biased sampling, as mentioned in the development of (16b). We
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have attempted to analytically obtain the optimal placement of the dictionary by
differentiating the formula for the expected wait-per-transaction with respect to the
dictionary parameter. The complexity of the formula prevented us from completing
this task. Perhaps a simpler model can be devised that lends itself to analytic optimiz-
ation and also preserves the essential dynamics of the system.

We noted in the introduction that the use of a dictionary is a constraint which
stems from the functional requirements of the transaction system and therefore,
assuming that we cannot dispense with it, we can ask whether the overheads incurred
by its use can be reduced. An examination of the transaction processing cycle in Fig.
2 reveals that it contains 2 phases in which the arm moves "blindly" from the extremes
to the dictionary without doing any useful work. Intuitively, if these phases could be
shortened, the overhead incurred in the dictionary lookup would be reduced. To
achieve this goal we could use multiple dictionaries; e.g., we could place one dictionary
at each extreme of the disk. The result would be that the blind phases would disappear
altogether and that the dictionary lookup times would be twice as frequent and therefore
shorter.

The main pitfall of such a scheme is that the data must now be distributed: either
in a partitioned or a replicated form. Dictionary updating would be more complex in
this environment. We suggest this extension as well as other performance problems
that would arise from the use of multiple dictionaries as a topic for further research.

Appendix. In this Appendix we give the details of the derivation of E(T**) in
cases 2 and 4. Recall that for case 2, we analyze T** by dividing it into three parts:
the effects of transactions that arrive (i) during the dictionary look-up of the tagged
transaction, (ii) while the entities in the transactions in (i) are read, and (iii) while the
entities in the tagged transactions itself are read.

(i) For each additional transaction that arrived during the dictionary look-up of
the tagged transaction, we read the entities to the right of x. For each transaction, the
mean number of such entities is uFC(x), so the mean time to read all the entities is

E (T/**) a’ruF(x).

(ii) For all transactions together that are described in (i), the mean time spent
reading entities in (d, 1] is

(A.1) q cF(d),
The mean number of transactions that arrive while this is happening is AS. Let/3 be
the mean contribution to T** from each of these transactions. Then

(A.2) E(A) + (a + 1)[F(d)-F(x)]vz.

The first term reflects the time spent at the dictionary and the second term reflects
the time spent reading entities in Ix, d). The "one" in the (a + 1) term is the effect of
the transaction that arrived when the head was in (d, 1]. Thus,

E(T*) ,/3.
(iii) While the entities of the tagged transaction are read, new arrivals may occur

which will be felt at the subsequent visit to the dictionary. For each of these arrivals,
the tagged transaction will wait for a dictionary look-up as well as for those entities
that are in [M, d). For the tagged transaction, let K be the number of entities in (d, 1].
Then zE(KIM= x) is the mean number of transactions that arrive while these K
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entities are being read. The mean time spent on each of these transactions is/3, so

E(T*) flh-E(K]M x).

The formula for E(KIM x) is obtained as follows. When N n and M x < d, there
is one point at x and (n- 1) points that can be placed in [d, 1]. The probability that
a point is placed in [d, 1 whenM x is F (d)/F (x) and all placements are independent
so

Now
E(KIM x, N= n) (n- 1)FC(d)/F(x).

P{M= xlN= n}P{N= n} n[F(x)]"-lp,,
P{N=nlM=x}=

P{M=x} /3[F(x)]
where (19a) is used to evaluate the denominator. Consequently,

F F(d)
p,,[FC(x)],E(KIM x)

d) 1
n(n- 1)[F(x)]"-lp,,

[FC(x)]F(x) .[FC(x)] =1

where/"[F(x)] is the second derivative of/(.) evaluated at F(x). It is also the
derivative of/(.) evaluated at F(x) so

FC(a)p’[FC(x)]
(A.3) E(KIM x)= ut /3[FC(x)]
Since

E( T*z*IM x) E(T**) + E(T*) + E(T*)
we obtain the unnumbered equation preceding (21b).

Case 4 parallels case 2 with [0, d) replacing (d, 1]. We obtain immediately

(A.4) E(T**) a’ruF(x), d/ aF(d)u’r,

and

(A.5) (a + 1)[F(x)-F(d)]ur.

Let K be the number of entities in [0, d). Adapting the arguments leading to (A.3) yields

(A.6) E(KIL= x) F(d)ff[F(x)]/[F(x)].
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EQUIVALENCE RELATIONS, INVARIANTS,
AND NORMAL FORMS*

ANDREAS BLASS" AND YURI GUREVICH*

Abstract. For an equivalence relation E on the words in some finite alphabet, we consider the recognition
problem (decide whether two words are equivalent), the invariant problem (calculate a function constant
on precisely the equivalence classes), the normal form problem (calculate a particular member of an
equivalence class, given an arbitrary member) and the first member problem (calculate the first member of
an equivalence class, given an arbitrary member). A solution for any of these problems yields solutions for
all earlier ones in the list. We show that, for polynomial time recognizable E, the first member problem is
always in the class Az (solvable in polynomial time with an oracle for an NP set) and can be complete for
this class even when the normal form problem is solvable in polynomial time. To distinguish between the
other problems in the list, we construct an E whose invariant problem is not solvable in polynomial time
with an oracle for E (although the first member problem is in NPz fqco-NPZ), and we construct an E
whose normal form problem is not solvable in polynomial time with an oracle for a certain solution of its
invariant problem.

Key words, polynomial time, Turing reducible, NP-complete, equivalence relation, certificate, normal
form

Introduction. This paper was stimulated by [3], where finite structures (e.g. graphs)
were considered as inputs for algorithms. Since one is usually interested only in the
isomorphism types of structures, it is natural to ask whether these types can be
represented in a form suitable for use as inputs in place of the structures themselves.
To avoid trivial "solutions", we insist that the isomorphism type of a structure be
(rapidly) computable when the structure itself is given. For this to be possible, it is
necessary that the isomorphism problem, for the structures considered, be (rapidly)
solvable; indeed, to tell whether two structures are isomorphic, one just computes
their isomorphism types and checks whether they are equal. Is this necessary condition
sufficient as well? That is, does a solution of the isomorphism problem yield a presenta-
tion of the isomorphism classes as well? In many cases it does, because the solution
of the isomorphism problem proceeds by calculating an invariant (or a system of
invariants) such that two structures of the sort considered are isomorphic exactly when
their invariants agree. In such a case, the invariants themselves can be used as a
presentation of the isomorphism classes. It is not at all obvious, however, that every
solution of an isomorphism problem must yield such invariants. For example, the
solution in [2] for trivalent graphs does not appear to yield invariants. We shall show,
in the more general setting of arbitrary equivalence relations rather than isomorphism,
that one cannot, in general, calculate invariants even if one can tell when two objects
are equivalent.

We shall also consider two problems more difficult than the invariant problem.
One is obtained by insisting that the invariant be a member of the equivalence class
it represents. In the isomorphism-type situation discussed above, this amounts to
insisting that one can (rapidly) compute from an isomorphism type some structure in
it. An even more difficult problem arises if one insists that the invariant be the first
(in some suitable ordering) member of the equivalence class. We shall prove that each
of these problems is strictly more difficult than its predecessor.
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To make these ideas precise, we consider an equivalence relation E over E*,
where E is a finite alphabet, and we consider the following four problems:

Recognition problem. Given x and y in E*, determine whether xEy.
Invariant problem. Calculate, for x in E*, an invariant F(x) (in El* for some finite

alphabet El) such that, for all x and y in E*, xEy if and only if F(x)= F(y).
Normal form problem. Calculate, for x in E*, a "normal form" F(x) (in E*) such

that, for all x and y in E*, xEF(x) and if xEy then F(x)= F(y).
First member problem. Calculate, for x in E*, the first y such that xEy.
In the first member problem, "first" refers to the following standard ordering of

E*" y precedes z if either y is shorter than z or they have the same length and y
lexicographically precedes z. For many of the equivalence relations we consider,
equivalent words have the same length, so "first" can be understood as "lexicographi-
cally first".

It is clear that any solution of the first member problem solves the normal form
problem and that any solution to the normal form problem solves the invariant problem.
Furthermore, given a solution of the invariant problem, we can solve the recognition
problem by computing and comparing F(x) and F(y).

In the context of ordinary recursion theory, all four problems are equivalent, for,
if we know how to solve the recognition problem, then we can solve the first member
problem by testing each y in E* in turn (in standard order) until we find one equivalent
to x. Since the search is bounded by x, the problems remain equivalent if we consider
only primitive recursive computations. Our objective is to prove that all four problems
are inequivalent in the context of polynomial time computability. (They are also
inequivalent in higher-type recursion theory, but that does not concern us here.)
Unfortunately, this objective cannot be achieved without proving P NP.

Indeed, the search procedure indicated above implies that, when the recognition
problem is in P, the first member problem is in the polynomial hierarchy of Stockmeyer
[4] and is therefore in P if P NP. More precisely, the first member problem is in
Stockmeyer’s class A, that is, it is computable in polynomial time with an oracle for
an NP set, if E is in P. The computation proceeds as follows, using an oracle for the
NP set

{(x, y)Isome member of the equivalence class of x precedes y}.

Given x, we begin by querying the oracle about (x, 1), for various values of
-<_ length (x), to determine by binary search the length m of the first y in the equivalence

class of x; this takes approximately log (length (x)) steps. Then we query the oracle
about (x, 10’-1) to determine the first digit Yl of the desired y. Then we query about
(x, yll0’-2) to determine the next digit Y2, etc. In m such steps we determine all of y.

We shall, in 1, show that the complexity estimate just obtained is optimal, by
constructing an E whose first member problem is A’-complete while the normal form
problem has a solution in P (and therefore so do the invariant and recognition
problems). This result implies that, if P NP, the first member problem is strictly
harder than the normal form problem.

In 2, we shall show that no problem in our list is polynomial time Turing reducible
to an earlier one. Specifically, we shall show that the invariant problem is strictly
harder than the recognition problem by constructing an equivalence relation E whose
invariant problem has no solution computable in polynomial time with an oracle for
E. We improve this result by showing that we can simultaneously arrange for the first
member problem to be in NPE f3 co-NPE. Then we show that the normal form problem
is strictly harder than the invariant problem by constructing an equivalence relation
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E and a solution F of its invariant problem such that no solution of the normal form
problem is computable in polynomial time with an oracle for F. The corresponding
result for the normal form and first member problems, namely the existence of an
equivalence relation E and a solution F of its normal form problem such that the first
member problem is not solvable in polynomial time with an oracle for F, follows
immediately from Theorem 1, relativized, to an oracle A such that pA NpA [1].
Nevertheless, we present a direct and somewhat simpler construction of such E and
F using some of the same methods as the other constructions in 2.

It is natural to ask whether the inequivalence of each pair of consecutive problems
in our list can be proved for absolute (without oracles) polynomial time computability.
As indicated above, this cannot be done without proving P NP. Still, in view of
Theorem 1, one could hope to show that these questions are equivalent to natural
questions such as NP & co-NP. Results of this sort will be presented in a subsequent
paper (to appear in the proceedings of the Recursive Combinatorics Symposium,
Miinster, 1983, Springer Lecture Notes).

Finally, in 3, we formulate some open problems.

1. The first member problem. We show, in this section, that the upper bound of
A, for the complexity of the first member problem associated with a polynomial time
computable equivalence relation, is optimal, even if we require a polynomial time
solution for the normal form problem rather than just the recognition problem.

THEOREM 1. There is an equivalence relation E on {0, 1}* for which the normal

form problem is solvable in polynomial time, but the first memberproblem is A-complete.
Remark 1. When we say that the problem of computing a certain function F from

E* to El* is complete for (or hard for, or in) a certain complexity class, we mean that
the following decision problem is complete for (or hard for, or in) that class: Given
a word x in E*, a letter a in E and a positive integer n (in unary notation), decide
whether the nth letter in F(x) is a.

Remark 2. In the statement and proof of Theorem 1, completeness refers to
log-space reductions. (The proof of the weaker result, where completeness refers to

polynomial time reduction, would be no easier, although the words w in the proof
could then be assumed to be empty by coding them into m.)

Remark 3. For the equivalence relation E that we shall construct, the last member
problem is solvable in polynomial time.

Proof of Theorem 1. We shall work with the alphabet {0, 1, 2}; the reduction to
{0, 1} is routine. Let A be a fixed NP-complete set in {0, 1}*, accepted by a particular
nondeterministic Turing machine N in time bounded by a polynomial. Let p be a
monotone increasing polynomial (essentially the square of the time bound) such that
every computation of N with an input of length can be coded (in a standard way)
by some c in {0, 1}* of length p(l). Henceforth, we shall not distinguish between c
and the computation it codes.

Consider the following auxiliary problem. An instance of the problem is m2w2k,
where m is a word in {0, 1}* coding, in some standard way, a query machine M (a
deterministic Turing machine with alphabet {0, 1} that is to interact with an as yet
unspecified oracle), w is a word in {0, 1}*, and k is a positive integer. The question
in the instance m2w2k of the auxiliary problem is whether machine M with oracle A,
henceforth written MA, with input w, halts in fewer than k steps. It is routine to check
that this problem is A-complete.

To prove the theorem, we shall, after some preliminary work, define an equivalence
relation E on {0, 1, 2}*, give a polynomial time computable solution for its normal
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form problem, and give a log-space computable reduction of the auxiliary problem to
the first member problem for E. For each instance of the auxiliary problem, we define
its plausible computations to be the words in {0, 1, 2}* that consist of

(i) m2w2k, followed by
(ii) a string aa,""", ak of length k, followed by
(iii) a single digit h, followed by
(iv) a string of length k2, which we think of as consisting of k blocks qa,""", qk

each having length k, followed by
(v) a string of length k. p(k), which we think of as consisting of k blocks ca," , ck

each having length p(k),
subject to the following requirements"

(a) When the query machine M coded by m is started with input w and allowed
to run for k-1 steps (or until it halts if this occurs earlier), its first query (if any) to
the oracle concerns the unique string q such that ql q10 for some r. (Note that,
by the time bound, length (q)< k length (qa), so this makes sense.) If the answer
to this first query is al, under the convention that 0 means "Yes" and 1 means "No",
then the next query, if any, concerns the q& such that q2=q&10 for some r. If the
answer to the second query is a2, the next query (if any) concerns the q such that
q3--q10 for some r, etc. (Note that, by the time bound, there will be fewer than k
queries altogether.)

(/3) If there are exactly j queries in the computation described in (a), then ai 1
and qi 0 and c 0k for j < -< k.

(7) If the computation in (a) reaches a halting state, then h 0; otherwise h 1.
() For each such that a- 0, c has the form cll0r, where cl is a computation

showing that N accepts q. If a- 1 then c is a string of O’s.
Observe that the property of being a plausible computation is decidable in

polynomial time.
For orientation and future reference, we construct, for each m2w2k, a particular

plausible computation, called the correct computation. Let the machine MA with input
w run for k- 1 steps. Let q,. , q} be its queries to the oracle, and let al," a
be the oracle’s answers, with 0 representing "Yes". By the time bound, j and each
length (q’ ’IO r, where r isi) must be smaller than k. For each iN j, define q to be q
chosen (depending on i) so that length (qi) k. For j < -< k, let a 1, q Ok, C 0p(k)

as required by (/). Note that, with our choices of a’s and q’s, the computation of M
with oracle A is exactly the computation described in (a) above. Let h be 0 if this
computation enters a halting state, and 1 otherwise. Finally, define c to be 0p(k) if

where rO is a computation of N accepting qa landtobecl ifa=0, wherec
is chosen to make length (c)-p(k), and where c is chosen, among all computations
accepting q, so that ci is lexicographically as early as possible. It is immediate that
s m2w2aa akhqa qkca c is a plausible computation for m2w2k. We call
it the correct computation for m2w2k.

The important fact about this correct computation is that it lexicographically
precedes all other plausible computations for m2w2k. Indeed, suppose s*=
m2w2ka*l a’h*q*l’" q*kC*l’’" C’ were a lexicographically earlier plausible com-
putation for the same m2w2k. If the first difference between these two plausible
computations occurs at a, then we would have a* 0 and a 1. The computations
described in (a) for s and s* are identical up to, but not including, the oracle’s response
to the ith query. In particular, that query itself is the same: q =q*. Since a* =0,
condition (8) for s* guarantees that c* contains a computation c*’ of N accepting q*.
So qi A. But this contradicts the fact, expressed by ai 1, that the A oracle responded
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negatively to query qi. Therefore, the first difference between s and s* must come
later than all the ai’s. The computations described in (a) for s and s* are therefore
the same. Thus h h* (by (3’)) and q =q* for all (by (c) and (fl)). The first difference
between s and s* must therefore be at some c, and, by (), we must have ai 0 for
this i. But then we cannot have c* lexicographically preceding ci, because o the way
we chose c for the correct computation.

We are, at last, ready to define E. For each m2w2k, we put into one equivalence
class all its plausible computations together with the extra word m2w2kl , where

k(p(k) + k + 1) + 1. This value ot was chosen so that the extra word has the same
length as the plausible computations for m2w2k..Note that the extra word is always
the (lexicographically) last member of its equivalence class. To complete the definition
of E, we declare that any word that is neither a plausible computation nor an extra
word shall be equivalent only to itself.

The normal form problem for E is solved by the following polynomial time
algorithm. Given x, check whether it is a plausible computation for its maximal initial
segment ending with a 2. If not, give x as output. If so, give the extra word for that
initial segment as output. This algorithm always produces the last member of the
equivalence class of x.

The auxiliary problem is reduced to the first member problem for E by the
following algorithm. Given an instance m2w2k of the auxiliary problem, calculate

k(p(k)+ k + 1)+ 1, and then write m2w2kl . The answer to this instance is given
by the digit h in position length(m2w)+ 2k + 1 of the first member of the equivalence
class of m2w2kl I. This algorithm works because the equivalence class of the extra
word m2w2kl contains all the plausible computations for m2w2k and its first member
is, as we saw above, the correct computation for m2w2k; the h digit in this correct
computation encodes the answer to the auxiliary problem for m2w2k. [3

2. Nonreduilility. The main result of this section is that, in the context of
polynomial time computability, the recognition problem, the invariant problem, the
normal form problem and the first member problem are of strictly increasing com-
plexity. None of these problems can be reduced in general to the previous problem
on the list.

THEOREM 2. (a) The invariant problem is not polynomial time Turing reducible to
the recognition problem. Indeed, there is an equivalence relation E on {0, 1}* such that
the invariant problem for E cannot be solved by a polynomial time algorithm with an
oracle for E.

(b) The normalformproblem is notpolynomial time Turing reducible to the invariant
problem. Indeed, there are an equivalence relation E on {0, 1}* and a polynomially
bounded solution F:{0, 1}* {0, 1}* of its invariant problem, such that the normal form
problem for E cannot be solved by a polynomial time algorithm with an oracle for F.

(c) The first member problem is not polynomial time Turing reducible to the normal
form problem. Indeed, there are an equivalence relation E on {0, 1 }* and a polynomially
bounded solution F of its normal form problem, such that the first member problem for
E cannot be solved by a polynomial time algorithm with an oracle for F.

Remark 4. To say that a function F is polynomially bounded means that the
length of F(x) is bounded by a polynomial in the length of x. We think of computation
with an oracle for a function F (rather than a predicate) as follows. The machine can
write a word x on its query tape and receive from the oracle, in a single computation
step, the value of F(x), printed on a special tape. A query of this sort can be simulated
by a sequence of queries concerning the predicate "The nth letter in F(x) is a".
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Remark 5. Theorem 1 is relativizable to any oracle. By taking an oracle relative
to which P NP, as in [1 ], we immediately obtain part (c) of Theorem 2. Nevertheless
we shall give another, more direct proof of (c).

Proof of Theorem 2. Fix an enumeration M0, M1,’" of all polynomial time
bounded query machines with alphabet {0, 1}, and let Pn be the polynomial clock
bound of Mn.

We construct the desired equivalence relation E in stages. Initially E is the equality
relation on {0, 1}*. At each stage n we may update E by putting into it two pairs
(x, y) and (y, x) for some binary strings x, y of the same length dn. Here do < dl < .
Thus the resulting equivalence relation has the special properties that each equivalence
class has at most two members, the two members of any nontrivial equivalence class
are words of the same length, and there is at most one nontrivial equivalence class for
each length.

In part (b) we construct the desired invariant function F simultaneously with E.
Initially F(x) x 1 for every binary word x. At a stage n we may update F by stipulating
that F(x)=0a"+l for one or two words x of length dn. In part (c) we construct the
desired normal form function F simultaneously with E. Initially F is the identity
function F(x) x. At each stage n we may update F by stipulating that F(x) 1 a- for
one word of length d,.

The sequence do < dl < d2 < is chosen in such a way that for each n, p,(d,) <
dn+l and p,(d) < 2a--1. Thus, computing on an input of length d,, Mn asks.fewer than
2a--1 queries and each query is shorter than

In the rest of the proof we consider a stage n of the construction. Let x and y
range over the binary words of length d d,. Let M M, and p pn.

(a) For each x let x’ be the result produced by M on the input x, when it uses
the current E as an oracle. If there are distinct x, y with x’= y’ go to the next stage.
M fails to solve the invariant problem for E because M(x) x’= y’ =M(y),
whereas’(x, y) E. (Note that later stages of the construction will not affect the values
of M(x) and M(y), because they alter E only on words longer than any query
involved in the computation of these values.)

Suppose, on the other hand, that x’ y’ for all x y. We say that x affects y if
M queries E about (x, y) or (y, x) in the computation of y’. Each y is affected by at
most p(d)< 2a-1 elements x.

LEMMA 1. LetR be a binary relation on a nonempty set S of cardinality 2 k. Suppose
that for each u S there are fewer than k elements v S with u, v) R. Then there exist
distinct u, v S such that neither u, v) nor v, u) is in R.

Proof of Lemma 1. Otherwise, the set of all k(2k-1) two-element subsets of S
would be the union of the 2k sets

R,={{u,v}:(u,v)R}

each of which has cardinality -< k- 1. This is a contradiction. The lemma is proved.
By the lemma (with S {0, 1}a and R being the relation "is affected by") there

are distinct x, y such that neither of x and y affects the other. Put (x, y) and (y, x)
into E. This does not alter the computations of x’ and y’. Go to the next stage. M
fails to solve the invariant problem for E because (x, y) e E, whereas M (x) x’ y’
M(y).

(b) For each x let F by the current F with the following change: Ix(x)=0
Let x’ be the result computed by M with input x and the oracle Fx.

If there is an x with x’ x, then choose one such x, and update F by making it
equal to Fx. This does not affect the computation of x’. Go to the next stage. Note
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that the updated F is one-to-one on {0, 1}a so that there is no need to update E. Since
(x, x’): E, MF fails to solve the normal problem for E.

Suppose, on the other hand, that x’= x for all x. Choose distinct x and y such
that M does not query Fx about y in the computation of x’, and M does not query
Fy about x in the computation of y’. This choice is possible, by Lemma 1, because
each computation involves at most p(d)<2d-1 queries. Update F by stipulating
F(x) =F(y)=0d+l, put pairs (x, y) and (y, x) into E, and go to the next stage. MF

fails to solve the normal form problem for E because MF(x) x y MF(y), whereas
(x, y) e E.

(c) For each x let Fx be the current F with the following change: Fx(x)= 1. Let
x’ be the result computed by M with oracle Fx on input x. If there is an x with x’ x,
then choose one such x, update F by making it equal to Fx, put (x, 1 e) and (1 e, x) into
E, and go to the next stage. MF fails to solve the first member problem for E because
Mr(x)- x’ x whereas x is the first member in its equivalence class.

Suppose, on the other hand, that x’ x for every x. In particular (1 e)’ 1 d. Choose
x < 1 e such that M does not query the oracle about x in the computation of (1) ’.
This choice is possible because the computation involves at most p(d)< 2e-1 queries.
Update F by making it equal to Fx. This does not change the computations of x’ and
(le) ’. Put (x, 1 d) and (1 e, x) into E, and go to the next stage. MF fails to solve the
first member problem for E because MF(1e) 1 e, whereas 1 e is not the first member
in its equivalence class. V1

Our last result is an improvement of part (a) in Theorem 2. It asserts that the
invariant problem can be intractable even when the recognition problem is tractable
and the first member problem is nearly tractable.

THEOREM 3. There is an equivalence relation E on {0, 1}* such that
(i) the invariant problem for E .is not solvable by a polynomial time algorithm with

an oracle for E; and
(ii) the first member problem for E is in NP and co-NP relative to E.
Proof. In the proof of part (a) of Theorem 2 we constructed an equivalence relation

E such that every equivalence class has at most two elements, the two members of
any nontrivial equivalence class are words of the same length, and there is at most
one nontrivial equivalence class for each length. We shall modify the construction so
that for each length > 0 there is exactly one nontrivial equivalence class.

First make sure that 4pn(dn) < 2an 3. Then turn to a stage n of the construction.
Here we first update E by adding to it all pairs (0, 1 ) and (1 , 0) such that 0 < < do
if n 0, and dn-1 < < d otherwise. We use the notation of the proof of Theorem 2.
Let x’ be the result produced by M on input x e {0, 1} with an oracle for the current
E. If there is a pair x y with x’ y’ pick one such pair x, y. Computing x’ and y’,
M queried E about -<2p(d) pairs (u, v) altogether. Hence at most 4p(d)<2a-3
words were involved in all those queries. Choose u, v e {0, 1} such that u, v, x, y are
different and u, v were not involved in the queries of the computations of x’, y’. Update
E by adding (u, v) and (v, u) to E. This does not alter the computations of x’, y’. Go
to the next stage. If, on the other hand, x’ y’ for all x y proceed as in the proof
of part (a) of Theorem 2.

To show that the function sending each x to the first member of its equivalence
class is in NPE co-NPE, we first observe that its graph, i.e. the binary relation "y is
the first member of the E-class of x," is NP by the following procedure. If y < x and
(x, y)e E, then accept; if y= x, then guess two distinct but E-related words of the
same length as x, and accept if x is not. the later of these two words. To finish the
proof, we make the general remark that any polynomially bounded function F whose
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graph is in NP is itself in NPe f3 co-NPe. The NP procedure for determining that
the nth letter in F(x) is (resp. is not) a is to guess the value y of F(x) and a computation
showing that (x, y) belongs to the graph of F and then to accept if the nth letter of y
is (resp. is not) a.

3. Problems. The results in this paper suggest several natural problems. Two that
strike us as particularly interesting are the following.

1. Can results similar to ours be obtained if, instead of considering arbitrary
equivalence relations, one restricts attention to the relation of isomorphism between
(standard representations of) structures?

2. Are there analogues of Theorem I for the invariant and normal form problems?
That is, is there a polynomial time computable E such that every polynomially bounded
solution of its invariant problem is A-hard? And is there an E such that the invariant
problem is solvable in polynomial time but every polynomially bounded solution of
the normal form problem is A2P-hard?
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PREEMPTIVE SCHEDULING OF A MULTIPROCESSOR SYSTEM
WITH MEMORIES TO MINIMIZE MAXIMUM LATENESS*

TEN-HWANG LAIf:!: AND SARTAJ SAHNI"

Abstract. We develop an O(q2n + n log n) algorithm to obtain a preemptive schedule that minimizes
maximum lateness when n jobs with given due dates and memory requirements are to be scheduled on m
processors (n _>- rn) of given memory sizes q is the number of distinct due dates. The value of the minimum
maximum lateness can itself be found in O(qn + n log n) time.

Key words, preemptive scheduling, maximum lateness, memory requirements

1. Introduction. The problem of scheduling n jobs on a multiprocessor system
consisting of m processors, each having its own independent memory of size tz/, has
been considered by Kafura and Shen [2]. Associated with each job are a processing
time tj and a memory requirement rnj. Job ] can be processed on processor if and
only if rn =< tz/. No job can be simultaneously processed on two different processors
and no processor can process more than one job at any given instant of time. In a
preemptive schedule, it is possible to interrupt the processing of a job and resume it
later on a possibly different processor. In a nonpreemptive schedule, each job is
processed without interruption on a single processor.

Obtaining minimum finish time nonpreemptive schedules is NP-hard even when
m 2 and tzl =/z2 [1]. Hence, Kafura and Shen [2] study the effectiveness of several
heuristics for nonpreemptive scheduling. For the preemptive case, they develop an
O(n log n) algorithm that obtains minimum finish time schedules (without loss of
generality, we may assume n => m). Their algorithm begins by first computing the finish
time, f*, of a minimum finish time schedule. This is done as follows. First, the jobs
and processors are reordered such that /1 >-/z2 >=" ->/z,, and ml >= m2 >=" >- m,,.
This reordering takes O(n log n) time (again, we assume n >-- m). Let F/be the set of
all jobs that can be processed only on processors 1, 2,..., because of their memory
requirements. Let X/ be the sum of the processing requirements of the jobs in F/.
X/= 0 if and only if Fi b. Kafura and Shen [2] show that

(1.1) f* max {max {t}, max/{X//i}}.
The jobs may now be scheduled in the above order (rnl => m2 =>" -> rn,) using f* and
McNaughton’s rule [4].

In this paper, we extend the work of [2] to the case where each job has a due
time d associated with it. Every job is released at a common release time. We are
interested in first determining whether or not the n jobs can be preemptively scheduled
in such a way that every job is complete by its due time. A schedule that has this
property is called a feasible schedule.

The existence of a feasible schedule can be determined in polynomial time using
network flow techniques [3]. The complexity of the algorithm that results from this
approach is O(qn(n+qs)log2 (n+qs)) where q is the number of distinct due dates
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and s the number of different memory sizes. In fact, a feasible schedule (whenever
one exists) may be obtained in this much time. In 2 we develop another algorithm
for this problem. This algorithm is considerably harder to prove correct, but has a
complexity that is only O(qn + n log n). A feasible schedule can be constructed in
O(qZn + n log n) time. In arriving at the algorithm of 2, we develop a necessary and
sufficient condition for the existence of a feasible schedule. With the help of this
condition, in 3, we develop an algorithm to obtain a schedule that minimizes the
maximum lateness. This algorithm is also of complexity O(qZn + n log n).

Sahni [5] and Sahni and Cho [6], [7] have done work related to that reported
here. They have considered preemptive scheduling of n jobs with due dates when
1 =/z m. For the special case when all memory sizes are the same, Sahni [5]
has developed an O(n log ran) algorithm to obtain a feasible schedule (when one
exists). Sahni and Cho [6], [7] have obtained efficient algorithms for the case when

1 z /m and the processors run at different speeds.

2. A fast feasibility algorithm. In this section, we first derive a necessary and
sufficient condition for the existence of a feasible schedule. This condition is used to
obtain a fast algorithm to construct a feasible schedule whenever such a schedule exists.
In 3, this necessary and sufficient condition is used to obtain a fast algorithm to
minimize the maximum lateness.

Each job is characterized by a triple (tj, dj, m) where t is the task time of job j,

d is its due time, and m, its memory requirement. Let 61, 62," , 6q, 61 < 62 <" < 6q,
denote the distinct due times in the multiset {dl, dE," , dn}. Let 60 be the common
release time for the n jobs. Without loss of generality, we may assume that 60 < 61.

Let/.(1),/(2), .,/.(s),/(1) >/(2) >. > (s) be the distinct memory sizes
in the multiset {/1,/2," ",/.}. Let/.(s + 1)= 0 for convenience. Let Pk denote the
set of all processors with memory size equal to/(k); i.e., Pk {il/i (k)}, 1 =< k =< s.
Let Jk be the set of all jobs that can be processed only on processors in P1, Pz," , Pk
because of their memory requirements; i.e., Jk ={jltz(k)=> mj>/z(k+ 1)}, 1 <-k -< s.
We shall refer to Pk as processor class k and Jk as job class k.

2.1. A necessary and sufficient condition. It is easy to see that in every feasible
schedule for the n jobs, at least the amount

if
b(j, d)=

t-min {t, dj-8} otherwise

of job ] must be completed by 8d, 1 -<_ ] -<_ n, 0 -<_ d -<_ q. Observe that if there exist ] and
d such that b(], d)> 8d- 80, then there is no feasible schedule.

Of the minimum amount b(], d) that must be completed before 8a, at most

a(j, d)= min { b(j, d), 81-80}

can be completed by 81
Define B(k, d) to be the sum of the b(j, d)s for those jobs j in Jk. Define A(k, d)

in a similar manner. Specifically,

and

B(k,d)= E b(.i,d), l<-k<-_s, C<-_d<-q
jeJk

A(k,d)= E a(],d), l<-k<-s, O<=d<=q.
].k
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B(k, d) gives a lower bound on the amount of jobs in Jk that must be completed by
8a. A(k, d) gives the maximum amount of B(k, d) that can be done by 81.

Define a capacity function C(k, d) such that

C(k,d)=le,l(Sa-8o), l<--k<=s, O<=d<=q.

C(k, d) gives the available processing capacity in processor class k from the release
time 8o to the due time 8d.

One readily observes that if a feasible schedule exists, then

k k

(2.0) B(i, d) <_- C(i, d)
i=1 i=1

for all k, d, 1 _-< k _-< s, 0_-< d -_< q. While (2.0) provides a necessary condition for the
existence of a feasible schedule, it does not provide a sufficient condition. We leave it
to the reader to construct an instance that satisfies (2.0) but for which no feasible
schedule exists.

This necessary condition can be strengthened by using the notion of a profile
function. Let 7r be the set of all nonincreasing functions tr with domain {0, 1, 2,. , s}
and range {0, 1,..., q}. Recall that s is the number of processor classes and q the
number of distinct due times. Thus

7r {o.lo.: {0, 1,..., s)-{O, 1,... ,qIando.(k)>-o.(k+l),O<=k<st.

r defines the set of profile functions. Each profile function o. defines a profile in a
timing diagram (see [8]), i.e., the curve of t= 8(i, i= 1, 2,..., s. We shall refer to
the profile defined by o. simply as the profile o.. For example, consider the case s 4,
q 5 and the profile function o. such that o.(0) o.(1) o.(2) 4, o.(3) 2, and o-(4) 1.
Figure 2.1 displays o- pictorially.

t: 80 81 82 83 84 85

P!

profile r

FIG. 2.1. Example profile.

Let o- be a profile function. In any feasible schedule, at least the amount B(i, o-(i))
of processing from Ji must be done on P1, P2,"’, P, by time 8(0. Since o- is
nonincreasing, B(i, o-(i)) is a lower bound on the amount of processing from J that
must be scheduled between 80 and the profile o- (see Fig. 2.2). Since the Js are pairwise
disjoint, it follows that Y=a B(i, o-(i)) is a lower bound on the amount of processing
that must be scheduled between 8o and the profile o-. Since Yi=l C(i, o-(i)) is the total
processing capacity of Pa,..., Ps between 8o and the profile o-, it follows that if there
is a feasible schedule, then

(2.1) B(i, o’(i))<-_ C(i, o.(i))
i=1 i=1
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A B

D C profile o-

FIG. 2.2. B(i, or(i)) must be scheduled in the rectangle ABCD and hence to the left of the profile or.

for every r e r. We shall show in Theorem 1 that there is a feasible schedule if and
only if (2.1) holds.

2.2. Obtaining a feasible schedule. We are now ready to introduce the ideas that
lead to the feasibili.ty algorithm of 2.3. Our algorithm begins by computing the
amount wj of each job j that is to be scheduled between 8o and 81. These wjs are
determined so that they can be scheduled in the interval 8o to 81 and the remaining
processing requirements {t-w" 1 =< j <= n} can be feasibly met from 81 to 8q.

Once the ws are known, the schedule from 8o to 81 may be obtained. The schedule
for the remaining q- 1 intervals is similarly obtained. The ws are computed starting
with jobs in J1 and proceeding to J2, etc. Observe that jobs in Jk/l t_J. t_J Js compete
with the jobs in Jk for the processing time available on P1,’", Pk from 80 to 81.
Hence, while determining wj, j J, we must also determine a value R that represents
the amount of P1,"" ", Pks processing capacity in the interval 80 to 81 that is to be
reserved for the jobs in J/l U... t.J Js.

Considering the definition of a( j, d), it seems plausible to compute the wjs using
the greedy method:

for d -O, 1, 2,... until satisfied do
set w to a( j, d) for every j J

end.

We would like to compute R in a similar manner from a yet to be defined quantity
Y(k, d). We shall define Z(k, d), Y(k, d), and X(k, d), 0 -<_ k <= s, 0 =< d -<_ q, so that:

(i) In any feasible schedule, at least Z(k, d) much of J/l U... kJ J must be
done on P1,’"", e/ by time 8a.

(ii) In any feasible schedule, at least X(k, d) much of Ju/l t.J... U J must be
processed on P1,"" ", P between 81 and 8a.

(iii) Y(k, d) Z(k, d) X(k, d). Hence, one may think of Y(k, d) as representing
the maximum amount of Z(k, d) that can be done between 80 and 81.

It is important to note that (R, Z(k, d), Y(k, d)), when regarded as an attribute
of J+l t.J. t.J J is the counterpart of (w, b(j, d), a(j, d)) if the latter is considered
an attribute of job j, j Jk.
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We now proceed to define Z(k, d). Define rd as below"

rd {tr[tr 7r and tr(i) -< d, 0 =< <= s}.

From the discussion of 2.1, it follows that for any profile tr rd,

B(i, tr(i))- C(i, tr(i))
i=k+l i=k+l

gives a lower bound on the amount of Jk/l U" U Js that must be done on P1," e/
by time k/l (and hence by time d as tr(k+ 1)=< d). Hence.

(2.2) Z(k, d)=max { B(i, tr(i))- C(i, tr(i))}i=k+l i=k+l

is also a lower bound on the amount of Jk+l -J" -J Js that must be done on P1," ek
by

From (2.2) we may obtain a simple recurrence for Z(k, d). Let r’ ra be the tr

at which

B(i, tr(i))- C(i, tr(i))
i=k+l i=k+l

is maximum. Assume that k < s. If tr’(k + 1) d, then Z(k, d) Z(k, d- 1). If
tr’(k + 1) d, then

Z(k, d)= B(i, tr’(i))- C(i, tr’(i))
i=k+l i=k+l

This yields

i=k+2 i=k+2
C(i, tr’(i))+B(k+ 1, d)-C(k+ 1, d)

=Z(k+ 1, d)+B(k+ 1, d)-C(k+ 1, d).

(2.3)

O

Z(k, d) Z(k, O)

max {Z(k,

if k=s,

ifd =0,

d-1),Z(k+ 1, d)+B(k+ 1,d)-C(k+ 1, d)} otherwise.

Define D(k, d) by

0
C

if d 0,
D(k, d)

(k, 1) otherwise.

When d # 0, D(k, d) is nothing but the processing capacity of Pk from 0 to t1.

To arrive at a formula for X(k, d), we note that for any and d, B(i, d)-A(i, d)
is a lower bound on the amount of Ji’s processing that must be done between 31 and
6a. The processing capacity of Pi in this interval is C(i, d)- D(i, d). So, for any profile
function tr ra,

[B-A](i, tr(i))- [C-D](i, tr(i))
i=k+l i=k+l
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is a lower bound on the amount of Jk+l U’.. U Js that must be done on P1,""", Pk
between 81 and 8d. Consequently X(k, d), 0 -<_ k <- s, 0 _-< d <_- q, as defined by

(2.4) X(k,d)=max{ [B-A-C+D](i, cr(i)))i=k+l

is a lower bound on the amount of Jk+l U. U Js that must be processed on P1," Pk
between 81 and 8a.

From (2.4) the recurrence

0 if k s,

(2.5) X(k, d) X(k, 0) if d 0,

max {X(k, d-1),[X+B-A-C+D](k+ 1, d)} otherwise

may be obtained in the same way as (2.3) was obtained from (2.2).
Define

Y(k,d)=Z(k,d)-X(k,d), O<-_k<-s, O<-d<-q.

Some of the identities that we shall use in 2.3 are stated below.
LEMMA 1. If i=1B(i, tr(i)) =<,i=1C(i, tr(i)) for every tr 7r, then

(la) A(k,O)=B(k,O)=O, l<-k<-s.

(lb) A(k, 1)=B(k, 1), l<-k<-s.

(2a) X(k, 1) =0, O<-k<-s.

(2b) X(k, 0) Y(k, 0) Z( k, 0) 0, 0 -_< k -< s.

(2c) X(0, d) Y(0, d) Z(0, d) 0, 0 <- d =< q.

(3) The functions a, b, A, B, C, D, X, Y and Z all have nonnegative values and
are nondecreasing in the second variable; i.e.,

O<-f(k,a)<-f(k,a+l) forf=a,b,A,B, C,D,X, YandZ.

Proof. See Appendix.

2.3. The algorithm. We are now ready to describe our preemptive scheduling
algorithm. The jobs will be scheduled in q phases. In phase d we determine the amount
of each job j that is to be scheduled from 8a-1 to 8. Once this amount has been
determined the actual schedule from 8-1 to 8 is constructed using the Katura-Shen
algorithm.

line

1
2
3
4
5
6
7
8
9

10

PROCEDURE COMPUTE_W
//wj is the amount of job ] to be processed from 80 to 81//
R0-0
for k 1 to s do//consider jobs by classes//
Qk -{dlA(k, d)/ Y(k, d)<-Rk_l /C(k, 1)}

ii Qk t then print (’infeasible job set’)
stop endif

hk max {did Qk}
case

:(1) hk=q: wja(j,q), jJk
:(2) hk<q,A(k, hk+l)+ Y(k, hk)>-Rk_l+C(k, 1):
set w for j Jk such that
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11
12
13
14
15
16
17

a(j, hk) <---- wj <= a(j, hk + 1) and

JJk wj+ Y(k, hk)=Rk_l +C(k, 1)
:(3) else: w,-a(j, hk+l), jJ,

end case
Rk - Rk-l+C(k, 1)-jk wj
end for
end COMPUTE_ W.

Procedure COMPUTE_W determines the amount w of job ] that is to be
scheduled from 80 to ,31. The wjs are determined in a way such that { w)" 1 =< j-< n} can
be scheduled from 80 to 81 and the remaining processing requirements {t- w: 1 <= j <- n}
can be feasibly scheduled from 81 to 8q. Once the ws are determined, the amount w
of job j, 1 =< j =< n, that is to be scheduled from 81 to 82 is determined by applying
COMPUTE_W to { tj w" 1 =< j <- n}. Repeatedly applying COMPUTE_W in this way,
one may successfully determine the ws for each interval.

In procedure COMPUTE_ W, R denotes the amount of idle time remaining on
processor classes 1, 2,. , k following the scheduling of the ws corresponding to jobs
in job classes 1, 2,. , k. (One may also think of R as the amount of processing $ime
on processor classes 1, 2,..., k that is to be reserved for jobs in job classes k + 1,
k + 2,. , s.) Roughly speaking, COMPUTE_W computes the ws (job) class by class.
In determining the wjs for job class k, the processing capacity available is equal to
Rk-l+C(k, 1). Initially, let w.-a(j,O) for jJk and Rk - Y(k,O). If Fj wj+Rk <
Rk-1 +C(k 1), then w, jeJk, is incremented to a(j, 1) and Rk incremented to Y(k, 1).
If it is still the case thatj wj+Rk <R_I+C(k, 1), then w, jeJk is incremented
to a(j, 2) and Rk to Y(k, 2). This procedure continues until Rk-1 +C(k, 1) is used up
(i.e., until F.j wj / Rk Rk-1 + C(k, 1)).

When actually implementing COMPUTE_ W, the subscripts on h, R, and Q may
be omitted. We have kept them in the version given so that we may easily refer to
the values of h, R, and Q during different interations of the for loop. One should also
note that in case (2), since A(k, hk + 1)+ Y(k, hk)>--_Rk_l +C(k, 1) and A(k, hk)+
Y(k, hk)<--Rk_l +C(k, 1), there exist w, a(j, hk)<= w <--a(j, hk + 1), such that

w+ Y(k, hk)=Rk_l +C(k, 1).
JJk

These ws are easily determined by first setting all wj a( j, hk), j Jk, and then
incrementing the ws one by one (up to at most a (], hk + 1)) until the desired equality
is satisfied.

2.4. Correctness and complexity. We now proceed to prove the correctness of
the above algorithm and analyze its complexity. We have pointed out in 2.1 that if
there exists a feasible schedule, then F.=I B(i, r(i)) _<- =1 C(i, tr(i)) for every tr r.
We shall show in the following that if ,= B(i, tr(i)) <-_Y.= 1C(i, tr(i)) for every tr r,
then the above algorithm generates a feasible schedule.

DEFINITION. For convenience in proving Lemmas 2 and 4, we arbitrarily define
Q0 {0, 1} and h0 1.

We first show that if =1B(i, o’(i))_-<___ 1C(i, tr(i)) for every tr r, then pro-
cedure COMPUTE_W will not terminate in line 5.

LEMMA 2. If i=1B(i, tr(i))_-<’.i= 1C(i, tr(i)) for every tr r, then

(1) Qk and hk>--_l, O<-k<-s;

(2) Rk >-- Y(k, hk), 0 <--_ k <- s;
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(3) R <-Y(k,h+l) ifhq, O<=k<-s.

Proof. We shall show (1), (2) and (3) by induction on k.
I.B. When k 0, Oo # b, ho 1 and Ro Y(0, ho)= Y(0, ho + 1)= 0 (either by

definition or by Lemma 1).
I.H. Assume that (1), (2) and (3) are true for k-1 where 1 <= k-1 < s.
I.S. We shall show that (1), (2) and (3) are true for k. To show (1), we see that

R_ _-> Y(k- 1, h_)

>= Y(k- , )
=Z(k-,)

>=[Z+B-C](k, 1)

(induction hypothesis)

(Lemma 1)

(Lemma 1)

(2.3)

=[Y+A-C](k, 1) (Lemma 1).

Hence, 1 Qk and so Qk and hk >- 1.
To prove (2) and (3), consider the three cases of COMPUTE_W (lines 7-14).
Case 1. In this case, wj= A(k, hk). From lines 3 and 6, we observe that

A(k, hk)/ Y(k, hk)<=Rk-1 / C(k, 1). Combining these two facts with the definition of
Rk (line 15), we obtain Y(k, hk) <-- Rk.

Case 2. From lines 12 and 15, we obtain Rk-" Y(k, hk) <- Y(k, hk / 1).
Case 3. In this case, A(k, hk/l)+Y(k, hk)<Rk_l+C(k, 1)<A(k, hk+l)+

Y(k, hk / 1) and wj=A(k, hk + 1). From these and line 15, we immediately obtain
Y(k, hk)<Rk< Y(k, hk+l).

Before establishing the correctness of our scheme to compute the ws, we obtain
some relationships concerning the amount of processing t of job ] that remains to be
done following time 81. Note that t t- w, 1 <]< n.

DEFINITION. Define b’(], d), a’(], d), B’(k,d), and A’(k,d) to be the values
obtained for b, a, B and A when t is used in place of tj. Let C’(k,
l<-_k<-_s, l<-_d<-_q, and W(k) =j w, l<-k<-s.

LEMMA 3. If -’-i=1B(i, cr(i))-<_}".i= 1C(i, tr(i)) for every tr 7r, then

(1) B’(k, d) <- B(k, d)-A(k, d), d <- hk,

(2) B’(k,d)=B(k,d)-W(k), d>hk#q.

Proof. It is easy to see that for any job j, 1-< j_-< n,

b’(], d)=max {0, b(], d)- w}.
When d <- hk, from Lemma 1 and lines 8-13 of COMPUTE_W, we have a (], d) _-<

a (], hi) <- w. Hence,

b’(], d)=max {0, b(], d)- w} <- b(], d)-a(], d).
Hence,

B’(k, d) <-_B(k, d)-A(k, d).

When d> hk q, from cases (2) and (3) of COMPUTE_W, Lemma 1 and the
definition of a(], d), we see that

a(j, hk) <- wj <-- a(j, hk / 1)-< a(j, d) <- b(j, d).
So,

b’(j, d)=max {0, b(j, d)- w}= b(j, d)- w.
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Hence,

B’(k,d)=B(k,d)’W(k).

LEMMA 4. If i=1B(i, r(i))-<i=1C(i, or(i)) for every cr 7r, then the following
are true for every k, 0 <= k <= s and every cr such that or(k) >= 1"

k k

(1) B’(i, cr(i))+Z(k, cr(k))-Rk <= C(i, or(i)).
i=1 i=1

(2) If or(k) <= hk, then

k k

B’(i, cr(i))+X(k, or(k)) <- C(i, or(i)).
i=1 i=1

Proof. The proof is by induction on k.
I.B. When k=0, =1B’(i, cr(i))=i__l C(i, cr(i))=Ro=O by definitions, and

Z(0, or(0))=X(0, or(0)) =0 by Lemma 1. Hence, (1)and (2) hold.
I.H. Assume that (1) and (2) are true for k-l, where k-1 is in the range

0=<k-l<s.
I.S. We proceed to establish (1) and (2) for k by considering the three cases: (1)

or(k) > hk, (2) o’(k)<=hk and or(k-I)-< hk_l, and (3) o’(k)<-hk and or(k-l)> hk-1.
Case 1. or(k)> hk. We first obtain the following

k-1 k-1

Z S’(i, tr(i))+Z(k-l,o’(k-1))-Rk-i <- , C(i,o’(i)) (I.H.),
i=1 i=1

Rk_I--Rk W(k)-C(k, 1) (def. of Rk),

B’(k, tr(k)) + W(k)= B(k, tr(k)) (Lemma 3),

Z(k, tr(k)) + B(k, tr(k)) C(k, (r(k))

<-Z(k-1, tr(k)) ((2.3) and tr(k)_-> 1)

>-Z(k-l, tr(k-1)) (tr(k-1)_->tr(k) and (2.3)).

Adding these four equalities and inequalities yields
k k, B’(i, o’(i))+Z(k, tr(k))-Rk <- ., C(i, or(i)).

i=1 i=1

Case 2. tr(k) <-_ hk and tr(k- 1) -< hk-1. From the induction hypothesis, we have

k-1 k-1

(2.6) , B’(i, tr(i))+X(k-1, it(k-I))_-< C(i, o’(i)).
i=1 i=1

From (2.5) and the fact that it(k-I)_-> tr(k)>-1, we get

X(k- 1, tr(k- 1))>_- X(k- 1, tr(k)) >-[X +B-A-C+ D](k, (r(k)).

Using Lemma 3, this reduces to

X(k-1, (r(k-1))>-_X(k, tr(k))+B’(k, tr(k))-C(k, tr(k)).

Combining with (2.6) yields
k k

(2.7) , B’(i, tr(i))+X(k, tr(k))<-_ C(i, tr(i)).
i=1 i=1
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Since Rk >- Y(k, hk) >- Y(k, tr(k)) (Lemmas 2 and 1), we conclude that Z(k, tr(k))-
Rk <= X( k, tr( k)). Substituting into (2.7) yields

k k

B’(i, tr(i))+Z(k, tr(k))-Rk <-_ C(i, tr(i)).
i=1 i=1

Case 3. tr(k)<-hk and tr(k-1)> hk-1. From the induction hypothesis, we get
k-1 k-1

(2.8) , B’(i, tr(i))/Z(k-l, tr(k-1))-Rk_l <- C(i, tr(i)).
i=1 i=1

Since hk_ q, we obtain from Lemma 2

(2.9) gk_l <- Y(k-l, hk_l+l)<-_ Y(k-l, tr(k-1)).

From Lemma 3, (2.5), and the inequality tr(k- 1) >_- tr(k)->_ 1, we get

(2.10) [X+B’-C](k, tr(k))<-_X(k-l, tr(k))<-_X(k-l, tr(k-1)).

Adding (2.8), (2.9) and (2.10) yields
k k

B’(i, tr(i))+X(k, tr(k))<= , C(i, tr(i)).
i=1 i=1

Using the same reasoning as in Case 2, we may now conclude the truth of (1) for k. U
THEOREM 1. There exists a feasible preemptive schedule for the given n jobs if and

only if

B(i, tr(i)) <- C(i, tr(i)) for every tr 7to.
i=1 i=1

Proof. We have already pointed out that if a feasible schedule exists, then the
above inequality is satisfied for every tr rq. So, we need only show that when the
above inequality is satisfied for every tr rq, there is a feasible schedule. Assume that

(2.11) B(i, or(i))<-_ C(i, tr(i)) for every tr 7rq.
i=1 i=1

From (2.11) it is clear that when q 1, the ts and (1.1) yield f* _-< 1 0, and so
a feasible schedule exists.

For the induction hypothesis, we assume that there exists a feasible schedule when
(2.11) is satisfied and q r for some r, 1-< r. We show that if (2.11) is satisfied when
q r/ 1, then there is a feasible schedule. From Lemma 2, we see that Qk tip for
any k. Hence procedure COMPUTE_W successfully computes the ws. Let P(k)=
t_J k= p. It is clear from COMPUTE_W that w <- a(j, d) <_- il- 0 where d q or hk + 1
and that jJ1U...t.JJ,, w.i<=lP(k)l(tl-8O) -Rk-<lP(k)](il-o) for every k. Hence, the

ws satisfy (1.1) (i.e., f*-<t$1-t$o) and may be scheduled from go to 1 using the
Kafura-Shen algorithm.

Now, consider the t}s. We know that X(s, d) Z(s, d) 0, 0 -< d <- r + 1. If hs <
r + 1, then from Lemma 2 we obtain 0 <-Rs <- Y(s, hs + 1)= 0 or Rs 0. Using this in
Lemma 4 yields

(2.12) B’(i, r(i))<-_ C(i, r(i))
i----1 i=1

for every tre rr+l such that tr(s) >= 1.

If h, r + 1 then o-(s) <= hs and from Lemma 4 we once again obtain (2.12). One readily
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sees that (2.12) is equivalent to

(2.13) B’(i, r(i)+ 1)-< C(i, r(i)+ 1)
i=1 i=1

for every

Following the scheduling from go to 1, we are left with the problem of scheduling
the ts from 31 to r+l. The number of distinct due times is now r (note that t} =0 for
every ] such that dj =/1). Relabel the start time 31 as and the due times 2," , r+l
as ,. , ’. Define b"(j, d), B"(k, d), and C"(k, d) to be the values obtained for b,
B, and C when t is used in place of tj and is used in place of u. We immediately
see that B"(k, d) B’(k, d + 1), and C"(k, d) C’(k, d + 1), for every k, d, 1 _-< k =< s,
0 =< d =< r. Substituting into (2.13) yields

B"(i, r(i)) =< C"(i, or(i)) for every r
i=1 i=1

It now follows from the induction hypothesis that the ts can be scheduled.
From Theorem 1, it is clear that by repeatedly using COMPUTE_W to determine

the amount to be scheduled in each interval, a feasible schedule can be obtained
whenever such a schedule exists. Each time COMPUTE_W is used, we need to
recompute b, a, Z, X and Y. The time needed for this is O(nq) (note that recurrences
(2.3) and (2.5) will be used to compute Z and X). The for loop may be executed in
O(qs+ n) time. We may assume that s=< n and so the complexity of COMPUTE_W
is O(qn). The Kafura-Shen algorithm is of complexity O(n). Hence, the overall
computing time for the q phases of our scheduling algorithm is O(q2n). An additional
O(n log n) time is needed to sort the jobs by memory size mi. Hence, the overall
complexity of our preemptive scheduling algorithm is O(q2n + n log n). As for preemp-
tions, since each job may be preempted at most twice in each interval Irma,
0=<i=< q-1, the total number of preemptions is O(nq).

3. Minimizing maximum lateness. Let S be a preemptive schedule for (t, d, m),
1 =< =< n. Let f. be the finish time of job j in S. If f. _<-d, 1 =< =< n, then S is a feasible
schedule and no job is late. The lateness of job ] is f-dj and the maximum lateness
of the n jobs is Lmax max {])- d: 1 =< =< n}. Note that Lmax =< 0 if and only if all jobs
finish by their due times. Also, note that if Lmax =< 0 then go-tl =< Lmax.

From the definition of Lmax, it follows that by changing the release time from t0
to g0-Lmax we obtain a job set that can be scheduled such that no job finishes after
its due time. Hence, to determine the minimum Lmax, we need to determine the least
x such that the condition of Theorem 1 is satisfied when a release time of 6o-X is
used. This x may be obtained from a form equivalent to that of Theorem 1. We observe
that Yi__ B( i, r( i)) <= Yi=l C(t,r(t)) for every rTr if and only if
max, {i__ B(i, or(i)) Y 7--- C(i, or(i))} <- 0. It is helpful to rewrite this form separat-
ing out the case when r(i)=0, l=<i<=s. For this r, we see that Yi__iB(i,r(i))-
i= C(i,o’(i))==1.b(j,O). For every other o-, there is a k, l=<k<=s, such that
(/)_>- .

Define Hk by

Hk max B(i,r(i))- Y C(i,r(i l<=k<=s.
"rr,o’(k)_-> i=1 i=1

We immediately see that

max{
i=l B(i,r(i))-i._l C(i,r(i))}=max{,__, b(j,O),HI, H,...,Hs}.
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Let Xl= maxl__<j_<_, {tj-di+ 6o} and let x2 max k__< {H/IP(k)I}, where IP(k)l is
the cardinality of P(k)= U k=l Pi.

Clearly, if we change the release time to 30- max {Xl, x2} then max {Y. b’(], 0), H,
H,. , H’s} 0 (the b’, HI values are computed with respect to the new release time
60-max {xa, x2}). Hence, max= { B’(i, (i))- C’(i, (i))}0 and 2 B’(i, (i))

C’(i, (i)) for every e . Moreover, x=max {Xl, x2} is the least value of x for
which this happens. Hence,

(Lmax)rain max {x, x2}.

The HkS may be computed in O(qs) time as follows. Define H by

g= max B(i,(i))- C(i,(i)) 1NkNs, 1NdNq.
i=’1 i=1

(k)d

Hence, H H, 1 N k N s. We immediately obtain the following recurrence for H"
max {B(1, i)-C(1, i)} if k 1,
i>__d

Hk= , B(i,q)- C(i,q) ifd=q,
i=1 i=1

max {Hk_l / B(k, d)-C(k, d), Hka+l} otherwise.

Using this recurrence, all the Hs may be obtained in O(qs) time (excluding the
time needed to determine the b(], d)s, B(k, d)s etc.). The additional time needed to
compute the B(k, d)s and C(k, d)s is O(qn + n log n) (assuming n >_- m). Hence, the
minimum Lmax may be determined in O(qn / n log n) time. Having determined the
minimum Lmax, a schedule having this Lmax value can be obtained by changing 80 to
t0-- (Lmax)mi and using procedure COMPUTE_W.

4. Conclusions. We have developed an O(qEn/ n log n) algorithm to obtain a
preemptive schedule for n jobs (t, d, m), 1 -<_ ] _-< n, on m processors with given memory
sizes. This schedule minimizes Lmax and contains at most O(qn) preemptions. The
minimum value of Lmax can itself be obtained in only O(qn / n log n) time.

Appendix. Proof ot Lemma 1. Assume that

(A.1) B(i, tr(i))<- C(i, (r(i))
i=1 i=1

for every tr r. Using tr(i) =0, l<=i<=s, in (A.1), we obtain B(i, 0) =0 for l<-i<=s.
From this, we have b(j, 0)=0, 1-<_ j =< n, and, therefore,

(A.2) tj <- d- 8o, l <- j <-_ n.

From (A.1) and (A.2), it is easy to verify (1), (2) and (3) (except the case when f Y)
of Lemma 1.

The rest of this Appendix is devoted to proving (3) for f Y; i.e.,

0 <-Y(k,d) <-Y(k,d+l), O<-k<-s, O<-d<-q-1.

To prove this inequality since Y is defined as Z-X, we need to know the relation
between X and Z (see Claim 2 below). But X and Z are in turn defined through A
and B, so we first establish the relationship concerning A and B"
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CLAIM 1.

B(k, d)-A(k, d) <B(k, d)
l<-k<-_s, l<d<=q.

d- tl td- 0

Proof. Since a(], d) min { b(], d), ,3 ,o}, a(], d) b(], d) or a(], d) t tO.

I[ a (], d) b(], d), then

1-ob(j,d)<=a(j,d)
,Sd- o

as <=/a. If a(j, d) =/1- o, then since t _<- d- o implies b(j, d) <= ’d- o, we get

1-0 b(], d) <_- 1- o-- a(j, d).a-o
So, in both cases we have

Hence,

,- ,o
b(!’, d) <- a(], d).

d-

or

d B(k, d)-A(k, d) B(k, d)
[B( k, d) A( k, d)] <= B( k, d) or <=

CLAIM 2.

(a-t%)X(k,d)<-(a-l)Z(k,d), O<-k<-s, O<-_d<-q.

Proof. The proof is by induction on k and d.
I.B. on k. When k s and 0 <- d <- q, X(k, d) Z(k, d) 0.
I.H. on k. Assume that the inequality is correct when 0 =< k k’ + 1 =< s and

O<=d<-q.
I.S. on k. When k k’ and 0 <- d <= q, the inequality may be shown correct by

induction on d.
I.B. on d. When d 0 or 1, X(k’, d) 0 and Z(k’, d) >= 0.
I.H. on d. Assume that the inequality is correct when q >- d d’- 1 _>- 1.
I.S. on d. We need to show the inequality is correct for d d’ (and k k’). From

(2.5), we see that there are two possibilities for X(k’, d’)"
Case (i). X(k’, d’) X(k’, d’- 1). In this case,

(d’-I to)X(k’, d’) (td,_ to)X(k’, d’- 1)

<=(,3a,_l-,3)Z(k’,d’-l) (I.H. on d)

<--(,5d,-1--,l)Z(k’, d’) (by (2.3)).

Since a’- o> a’- tl 0, we get

X(k’, d’) _-< Z(k’, d’) or (id,-- d,-1)X(k’, d’) _-< (d,- d,-1)Z(k’, d’).

Adding this inequality to the previous one yields:

(,- o)X(k’, d’) -<_ (,- )Z(k’, d’).
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Case (ii). X(k’, d’) IX + B-A- C+ D](k’ + 1, d’). Now we obtain

X(k’, d’) IX +B A C + D](k’ + 1, d’)

Using I.H. on k, Claim 1 and

C(k’+ 1, d’)-D(k’+ 1, d’)= ip,/ll C(k’+ 1, d’)
td, t 8d, t0

we obtain

X(k’,d’) <_Z(k’+l,d’)+B(k’+l,d’)-C(k’+l,d’)

Z(k’ d’)_<_
a’- o (by (2.5)).

We are now ready to show Y(k, d) >- Y(k, d 1) >_- 0, 0 <_- k <_- s, 1 <_- d -<_ q.
CLAIM 3. Y(k,d)>-_O, O<-k<-s, O<-d<-q.
Proof. For k _-> 1, this follows from Claim 2 and the fact k- t0 > tk- 1 0. For

k 0, this follows from part (2b) of Lemma 1.
CLAIM 4. Y(k,d) > Y(k,d-1), O<-k<-s, l<-_d<-_q.
Proof. The proof is by induction on k.
I.B. When k=s and l<-d<-q, Y(k,d)= Y(k,d-1)=O.
I.H. Assume that Y(k, d) -> Y(k, d 1) for 1 _-< k’ < k _-< s and 1 _-< d _-< q.
I.S. We need to show that Y(k’,d) >- Y(k’,d-1) for l<=d<-_q.
Let d be in the range 1-<_ d _-< q.
Case (i). Z( k’, d) >-_ Z( k’, d-1) and X(k’,d)=X(k’,d-1). In this case, it is

readily seen that Y(k’, d) >_- Y(k’, d 1).
Case (ii). Z(k’,d)=Z(k’,d-1) and X(k’,d-1)<X(k’,d)=[X/B-A-

C + D](k’ + 1, d). This case is not possible. To see this, suppose that this case is possible.
Let k"_-> k’ be the largest k" which

(A.3) Z(k",d)=Z(k",d-1) and X(k",d-1)<[X+B-A-C+D](k"+I,d)

for some d. Let d" be the smallest d or which (A.3) holds. Note that d"> 0. So

(A.4)Z(k",d")=Z(k",d"-l) and X(k",d"-I)<[X+B-A-C+D](k"+I,d").

Since X(k", d"-1)_-> 0, it follows from (2.5) and (A.4) that X(k", d")> 0. Assume that

Z(k", d") Z(k", d"- 1) Z(k", d"- 2) Z(k", d*) # Z(k", d*- 1).

Then it follows from our choice of k" and d" that

X(k", d"-l)=X(k", d"- 2) X(k", d*).
I[ d* 0, then 0 Z(k", d*) Z(k", d") -> X(k", d") > 0. Hence,- d* # 0. Now, from
the choice of d*, we get

Y( k", d*) Z( k", d*) X(k", d*)

(A.5)
<-[Z+B-C](k"+I,d*)

[X+B A- C+ D](k"+ 1, d*)

=[Y+A-D](k"+I,d*).
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Also,

and

So

X(k", d"-I)<[X+B-C-A+D](k"+ 1, d")

Z(k", d"-I)>=[Z+B-C](k"+ 1, d").

Y(k", d*)= Y(k", d"-I)>[Y+A-D](k"+ 1, d").

Substituting into (A.5) yields

[Y +A- D](k"+ 1, d*) > [Y+A- D](k"+ 1, d")

or

Y(k"+ 1, d*)>[Y+A-D](k"+ 1, d")-[A-D](k"+ 1, d*)

>= Y(k"+ 1, d") (Lemma 1 and definition of D).

But k"/ 1 > k’ and so from I.H. it follows that

Y(k"+l,d") >- Y(k"+l,d"-l)>- .>= Y(k"+l,d*).
So Case (ii) is not possible.

Case (iii). Z(k’,d)=[Z+B-C](k’+l,d) and X(k’,d)=[X+B-A-C+
D](k’ + 1, d). Now Y(k’, d) Y+A D](k’ + 1, d). Suppose that

(A.6) Z( k’, d 1) Z( k’, d 2) Z( k’, d*) Z( k’, d* 1).

From the proof of Case (ii), it follows that X(k’,d-1)--X(k’,d-2)=...=
X(k’,d*). So Y(k’,d-1)= Y(k’,d*). If d*=0, then Y(k’,d-1)= Y(k’,0)=0_<
Y(k’, d). If d* O, then

Y(k’, d- 1)= Y(k’, d*)

<-_[Y+A-D](k’+I,d*)
<-_ Y(k’ + 1, d)+[A-D](k’ / 1, d*)

<-_[Y+A-D](k’+I,d)

=- Y(k’,d).

(by (A.6), (2.3), (2.5))

(I.H.)

(Lemma 1)
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SCHEDULING INDEPENDENT TASKS ON UNIFORM PROCESSORS*

GREGORY DOBSON’

Abstract. A worst-case analysis is given for the LPT (longest processing time) heuristic applied to the
problem of scheduling independent tasks on uniform processors. A bound of 19 is derived on the ratio of
the heuristic to the optimal makespan and an example is given where the error is greater than -. A
generalization of the classic result of Graham for the case of identical processors is given. Here tight bounds
are derived for the ratio of the heuristic to the optimal makespan which depends on the ratio of the longest
task to the makespan.

Key words, scheduling independent tasks, uniform processors, finish time, approximate algorithm

1. Introduction. This paper addresses the problem of scheduling n independent
tasks, T, with processing times tl ->-" => tn on rn processors with speeds Sl ->" => s,.
The objective is to find a schedule, i.e. a partition P (P1," ’, P,), of the tasks which
minimizes the maximum finishing time. Formally,

z* minimum maximum
t(P)

p lirn Si

where t(P)= jp, tj and the minimization is over all partitions of P of T.
This problem is well known to be NP-hard since it contains 3-Partition (see Garey

and Johnson (1979)). To see this observe that if N were an instance of 3-Partition
with items of weight tl,’", t, and there were m bins of size sl sm K, a
constant, then a packing of the items into the bins exists if and only if z*=< K.

The paper considers the heuristic which schedules the tasks, in order of processing
time, placing the longest remaining task on the processor which would complete that
task first. Ties are broken arbitrarily. The heuristic is commonly referred to as the
LPT (longest processing time) heuristic in the literature. Let P (P,..., P,,) be the
partition given by the LPT heuristic and define

e--- max t(P).
_irn

There are numerous other results for this and similar problems where there is a
precedence structure on the tasks. The reader is referred to Kunde (1981) and Graham
(1969) for results where there is a precedence constraint. For the problem where the
tasks are independent, Graham (1969) gave the first analysis of the case where the
processors have identical speeds. In Cottman et al. (1978) another heuristic for this
problem, called MULTIFIT, is given which uses bin packing to give a bound of 1.220.
Special cases of the problem that are solved optimally by this heuristic are discussed
in Coffman et al. (1977) and a slight generalization of some of their results is given
in Dobson (1981). Recently Friesen (1984) has improved the bound on the MULTIFIT
heuristic to 1.2 and Friesen and Langston have shown that a variation on the MULTIFIT
heuristic gives a bound of 1.4 when applied to the problem with uniform processors.

* Received by the editors December 7, 1982, and in revised form July 22, 1983. This research was
partially supported by Department of Energy Contract DE-AC03-76SF00326, PA# DE-AT03-
76ER72018, Office of Naval Research contract N00014-75-C-0267, and National Science Foundation
grants MCS76-81259, MCS-79260009 and ENG77-06761.

" Graduate School of Management, University of Rochester, Rochester, New York 14627,
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The previous best known bound for the LPT heuristic was g/z*=< 2 and worst
known examples had g/z*>={-e for arbitrary e>0 (Gonzalez, Ibarra and Sahni
(1977)) (Ibarra and Kim (1977)). The theorem in 4 shows that g/z*<= i19 and gives
an example where there is an error greater than {. In the case where the processors
all have identical speeds, Sl s,,, Graham (1969) showed that g/z* =<{- (1/3m).
The results in 2 and 3 generalize this for the case where the task lengths are
t<-(1/k)z* for some integer, k->2. The bounds are (k+3)/(k+2) and (k+2)/(k+
1)-l/(m(k+l)).

We have often found it easier to discuss this problem in the language of bin
packing rather than that of multiprocessor scheduling. Here items take the place ol
tasks, size of an item for processing time of a task, bins for processors, size of bin for
speed of processor, level of bin for finishing time of processor. The problem is then
to pack the n items into m bins in order to minimize the maximum level in any bin.
This terminology will be used freely throughout the rest of this paper.

2. The case of identical processors. This section considers the special case of the
scheduling problem where the processors’ speeds are identical. Graham’s result for
the LPT heuristic, ignoring the term for the number of processors, gives a bound of. One would suspect that the worst-case error, E/z*, would be smaller if all the
processing times of the tasks were relatively small.

THEOREM 2.1. If for all j T, t_ [0, (1/ k) z*] where k is a positive integer and if
the LPT heuristic gives a partition P with value then

k+3
z*- k+2

and the bound is tight.
Note that t <-_ z* so that k >- 1 always holds and thus the ratio 2/z* -<_-. Thus the

theorem reduces to Graham’.s wlen k--1. To apply the theorem to obtain a better
than bound requires prior knowledge of z*. Note though, that (k’ + 3)/(k’ + 2) over-
estimates the ratio (k+3)/(k+2) when k’= [(t(T)/m)maxr (1/t)J since t(T)/m
is a lower bound on z*.

Scaling. We may assume without loss of generality that z*= 1. By scaling each
weight by 1/z* (i.e. ti <--ti/z*) we have the new scaled value of z*= 1 and 0 _-< t _-< 1
for all ] T.

Proof of Theorem 2.1. The proof is by contradiction. Assume there is an example
in which the heuristic places an item in a bin and the resulting level exceeds k + 3)/ k +
2). Assume this is the example with the fewest number of items. The first item to
exceed level (k + 3)/(k + 2) in some bin is item n. If this were not the case then item
n could be removed producing a smaller counterexample.

First observe that t [0, 1/(k+2)]. To see this observe that if t [0, 1/(k+2)]
and if it were placed in bin to give a level greater than (k + 3)/(k + 2) then the level
in bin (as well as every other bin) must be greater than 1. Thus t(T)>
t({1, , n- 1}) >_- m, contradicting z* 1. Second, if t, e (1/(k + 1), 1/k] and it over-
fills a bin to a level (k + 3)/(k + 2), then the level in every bin must be at least

k+3 1 1 k-1
>1

k+2 k k k

Every bin must have k items in it. Certainly no bin can hold more than k such items
and have a level under z*. Hence there is no way to pack items T so that the maximum
level is at most z*, contradicting the definition of z*.
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It remains to show that t,C:(1/(k+2), 1/(k+ 1)].
Case k 1. Here we assume item n is the first item to exceed level z*. If t, (-, -]

then there are either one or two items in each bin (after packing { 1,. , n- 1}). Say
the heuristic places item n in bin i. If there is only one item, k, in the bin i, so t,, + tk > 1,
then clearly h + tk > 1 for every T. Hence any optimal packing of T must have item
k in a bin by itself. Since the heuristic placed item n in the most empty bin, all other
items stored one to a bin are larger than k, they too must be by themselves in any
optimal packing of T. Every other bin has 2 items in it. If n is to be placed without
exceeding the z* level, then 3 items must go in some bin but t>- for all ], a
contradiction. [3

Case k 2. Item n is the first to exceed level . If t, (1/4, 1/2] then we can write
.._11t, =1/2.---e where 0---e <. Each bin is filled to a level at least --1/2+ e + e. There

are at least 2 other items in a bin. If there are 2 then the larger one weighs at most
1/2 so the smaller, r, weighs at least + e. Item r can only be packed in a bin with 2
items in an Olatimal packing since if we compute the total weight of item r and the 2
two smallest items we have

t + t,_ + t, > 2+ e + 2(1/2- =-e>1.3
Here every item that is packed in a bin with 2 items can only fit in a bin with 2 items
in an optimal packing of T. Every bin can only take 3 so there is at least one too many
items, l-1

Case k>-3. We assume that t, e (1/(k+2), 1/(k+ 1)] and that n is the first item
to exceed a level of at least (k + 3)/(k + 2). We will show that the items T could not
be packed in m bins of size 1.

CAIM 1. Let t, 1/(k + 1) e where 0 <-_ e < 1/((k + 2)(k 1)). The level in the
most empty bin is at least

1
1- t-e.

(k+l)(k+2)
Proof.

k+3 1 (k+3)(k+l)-(k+2)+e= -e
k+2 k+l (k+ 1)(k+2)

k2+3k+2-1 1
+e=l +e.

(k+ 1)(k + 2) (k+ 1)(k + 2)

CLAIM 2. Every bin has k, k + 1 or k + 2 items in it.

Proof. If some bin had k / 3 items then since each item weighs strictly more than
1/(k + 2), the current level would be strictly greater than (k + 3)/(k + 2), contradicting
the definition of n being the first item to exceed that level. If it had k-1 items then
the current level would be at most

k-1 1
<1 +e,
k (k+l)(k+2)

contradicting Claim 1. [3

CLAIM 3. Them is at least one bin, r, with k elements.
Proof. If this were not the case then every bin has at least k + 1 items and there

would be at least (k + 1)m + 1 items all of weight greater than 1/(k / 2), but only k / 1
of these items could possibly fit in a bin of capacity z* 1. This contradicts the definition
of z*. l"1
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CLAIM 4. If X >--__’’" >- Xk are weights of items in bin r, the one with k items, then
1

Xk> k+l+e"
1

Xk 1 t- e X Xk_
(k+l)(k+2)

1 k-1
_->1- -e-

(k+l)(k/2) k

(k+l)(k+2)-k kE+2k+2 1
be= +e> -+e.

k(k + 1)(k + 2) k(k + 1)(k + 2) k / 1

CLAIM 5. Some bin contains at least k + 1 items.
Proof. Otherwise every bin would contain exactly k items each at least of size

1/(k + 1) + e. Including item n there would be km+ 1 items. At least k + 1 would have
to go in some bin, but

1
k k+ 1

+e + +l-e >=l+e,

contradicting the definition of z*= 1.
CLAIM 6. Let Yl >=’’" >- Yk+l be the weights of items in a bin q containing k + 1

items. Then
1

yk-> k/l+e.
Proof. If not, then by Claim 4 and the fact that the items are packed by decreasing

weight, the (k- 1)st item was placed after the kth item in bin r (the one with k items).
Thus the level in the q bin is at least

Xl /" / Xk-1 / Yk-1 / Yk / Yk+l >= 1

>1+

since

=1+

1 1 (1(k+l)(k+2)+e-+3 k+i-e
3 1 1

-2e
k+l k (k+l)(k+2)

3k-(k+l) 3
k(k+l) (k+l)(k+2)

(2k-1)(k+2)-3k
k(k+l)(k+2)

=1+ k/2 k(k+l) =k+2’

2k2-2 ift 2kE-2-k(k+1)>=O
c(k+ 1 -->1

iff k2-k-2=>0
iff k(k- 1)-2-_>0

iff k2

contradicting that n was the first to exceed the level (k + 3)/(k + 2). [3
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It is clear that if bin q had had k + 2 items of weights Yl >-"" -> Yk+2 then

1
Yk-1 > k -t.-’l’+ e.

CLAIM 7. There are no bins with k + 2 items in an optimal solution.
Proof. Assume there were; then the level in such a bin would be

k ) 1
(k+2) ’+l-e =l+k,,+l -(k+2)e >1"

CLAIM 8. Let u be the number of bins with k items. Let s be the number of bins
with at least k / 1 items. Then we have by the previous claims that there are at least
ku + k 1) s "large" items which weigh strictly more than 1/(k + 1) + e, and at least
2s + 1 "small" items which weigh at least 1/(k + 1) e. The claim is that any repacking
of the bins so that some bin q has k + 1 items and a level of at most z*= 1 must have
at least 3 small items.

Proof. Assume you can do it with only 2. The level in such a bin with k- 1 large
and 2 small items is strictly greater than

(k-l) k+l+e +2 k+i- e) l+(k-3)e-> 1,

provided k => 3.
To finish the proof of the upper bound in Theorem 2.1 observe by Claim 7 that

at least s + 1 bins must have k + 1 items. The only way to place k + 1 items into bins
of capacity 1 is to have at least 3 small items. There are at most 3s + 1 small items
available. We can create at most [(3s+ 1)/3J < s+ 1 bins with k + 1 items by claim 8.
This contradiction of the definition of z* shows that t, ((1/k + 2), 1/(k + 1)].

To see that the bound is tight consider the following examples parameterized by
k 1, 2, 3,.. . We will produce an example that has an error of at least (k + 3)/(k +
2)- & Let p be large enough so that 6 (1/p)(1/(k + 1)- 1/(k + 2)) is "small" enough.
We defined 6 so that 1/(k+2)+p6= 1/(k+l). The list of items is

k+ 1 of weight 1/(k+2)+(2p-1)8,

k+l of weight 1/(k+2)+(p+l)8,

k + 1 of weight 1/( k + 2) + p8,

(k-1)(k+l) ofweight 1/(k+2)+p,=l/(k+l),

k+l of weight 1/(k+2)+(p-1)8,

k + 1 of weight 1/(k + 2) + 18,

k + 2 of weight 1 / (k + 2) + 08.

There are (k + 1)p bins. The LPT heuristic places the items in the bins so that there
are k + 1 identical sets of p bins as displayed in Fig. 1. Here a 1/(k + 2) and each
bin contains k+l items. The k-1 middle ones are all of weight 1/(k+2)+p8
1/(k+1).
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a+p6

a+(2p-1)6

a+l

a+(2p-2)6

a+(p-2)6

a+(p+l)6

a+(p-1)6

a+p6

(a) (b) (y) (z)

p bins repeated k + times

FIG. 1.

The ((k+ 1)2p+ 1)st item of weight 1/(k+2) is not shown. Observe that each bin is
filled to a level 1 6. To see that all the items can be stored in (k / 1)p bins of capacity
1 we move the item of weight 1/(k+2)+06 out of bin (a) and place it aside. Next
move the item which weighs 1/(k + 2)+ 16 out of bin (b) and into bin (a). Move the
item which weighs 1/(k + 2)+ 26 out of bin (c) and into bin (b) and so on. At this
point all the bins labeled (a), (b),. , (y) are filled to level 1, there are k / 2 items of
weight 1/(k + 2) on the side and all the (z) bins have k items of weight 1/(k + 2)+p6
1/(k + 1). It is now possible to place all the items of weight 1/(k + 2) in one bin and
all the remaining items of weight 1/(k + 1) (there are k(k + 1) of them) in the remaining
k bins. The new packing looks like Fig. 2. The remaining bins labelled (z) look like
Fig. 3.

a+16

a+p6

a+p6

a+(2p-1)6

a+2B

a+(2p-2)6

a+(p-2)6

a+p6

a+(p+2)6

a+(p-1)6

a+p

a +p6

a+(p+l)

(a) (b) (x) (y)

p- bins repeated k + times

FIG. 2.

a+p6

a+p6

a+o6

a+o6

a+o6

a+o6

a+o6

(z) (z) (z) (z)
FIG. 3.
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3. A bound for a small number of processors. Apparently an improvement of
the bound analogous to Graham’s (1969) result is not possible. One might conjecture
a bound of

k+3 1
k+2 re(k+2)’

but the example with m 2 bins, k even, k items of size 1/k and k + 1 items of size
1/(k + 1), gives a heuristic solution value of

kl k+2 1 1 1 k+3 1
k+l=l+2(k+l) > 2(k+2) k+2 2(k+2)

for every k. The optimal solution has a value of 1. For small m, a slightly tighter bound
that can be proved is

THEOREM 3. I. Let k >- 2. Iffor all j T, b [0, / k) z*], and if the LPT heuristic
gives a partition P with value 2 then

2 k+2 1
z*- k+l m(k/ 1)"

Proof. As in the proof of Theorem 2.1 we assume the result is not true and thus
there must be a smallest counterexample. First using a calculation analogous to Graham
(1969) we show that tn> 1/(k+ 1). To see this observe that item n was placed in a
bin whose level was currently at most

1 n-1

-t-<-- Y t

since it was placed in the most empty bin. Thus

1, m-1_-<-- h +---- t..
mi= m

Since the example at hand exceeds the alleged bound

1 1 2-z* 1 m-1
k+l m(k+l)

<
z* <-z*tn’m

which implies

m- l < (m-1)(k + l)--
or

1
t> ’z*.

k+l

Thus, t, e 1/ k + 1), 1/ k]. Before item n is placed the level of every bin must be at least

k+2 1 1 1
k+l m(k+l)->1-"

Since the weight of every item is at most 1/k there are at least k items in every bin.
At most k can fit since t. > 1/(k + 1) and thus there is no way to store the mk+ 1
items in the m bins of size 1, a contradiction. 1-1
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4. Different speed processors. This section considers the problem of scheduling
independent tasks on uniform processors with different speeds Sl," , Sm. The heuristic
considered orders the tasks by time, i.e. tl>=’" >= t,, then starting with an empty
partition it repeatedly executes the following for j 1,. , n.

1) Compute

t(Pr) + t= min
t(P) + ti

Sr <=
_

Si

where P (P1,""", Pro) is the current partition of the tasks {1,..., j-1}.
2) Add item ] to Pr.
The following guarantee exists on the performance of the heuristic.
THEOREM 4.1. Assume is the partition given by the heuristic with a value

=maxli=<m t(Pi)/si and P* is an optimal partition with a value z* then

19
z*- 12"

Proof. Without loss of generality we may scale the task times so that t 1 and
the processors speeds so that z*= 1. Assume to the contrary that there is an example

19with /z* >. As in the proof of Theorem 2.1 assume that this is the smallest example,
that is (a) it is the one with the fewest number of bins, (b) for the example with the
fewest number of bins it has the least number of items and (c) that the first item to
exceed a level of 19 is item n. It is possible to make several observations about this
example. In what follows the partition P will refer to the partition produced by the
heuristic by packing only items {1,..., n- 1}.

LEMMA 4.2. Si -> 1 for all i.

Proof. If not then for some i, tn > si. No item may be placed in bin in an optimal
packing since z*= 1. Removal of this bin will create a smaller counterexample.

LEPTA 4.3. If S > then t(P)/ si > 1.
This says that if a bin is large enough then in any counterexample it must be

overfilled.
Proof. If item n were placed in bin then

t(Pi) + t> 1__9
si 12’

SO

19 1t(Pi)
>____> l

si 12 si

if and only if S

The bins will be classified as either "large" if S > @ or "small" if si <- Let L
be the set of large bins. The next lemma shows that the average size of the large bins
cannot be "too large" in any counterexample to the theorem.

LEMMA 4.4. Let g be the average size of the large bins, i.e. iL s/lLI. Then g < 6.
Proof. First observe that since every large bin is overfilled, t(Pi)/si > 1, the only

way the set of items in L can be packed so that z*= 1 is of the items with sizes less
than are placed in small bins and the smaller items displaced from the small bins
are returned to the large bins. The maximum reduction that can occur is from an item
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of size to one of size 1. This is possible if the following situation occurred:

processor: [’ il 1217’-2e
processor number: + 1 + 2

speed: 12/7 12/7-e l+e

and every item is moved over one slot. One cannot do better than this since every
item is at least as large as tn 1.

Second, observe that small bins contain at most one item. To see this note that
the size of every item is at least tn. If there were two items in a small bin then the bin
and its contents could be removed resulting in a smaller counterexample. Third, if an
item, say p, is packed into a large bin with the result that once item p is included ttie
bin becomes oveffull, t(Pi)> si, then that item, p, cannot be replaced with a smaller
one by exchanging it with any item that was originally placed by the heuristic in a
small bin. To, see this, assume item p is as above and a smaller item q is in a small
bin, say . This implies that tq < tp and thus p < q which in turn implies that bin was
empty when p was placed and it would have been placed in bin/’, a contradiction.

Finally, the total capacity available in large bins is iL si. Every item placed below
level 1 of size less than may at best be reduced to an item of size 1. All items placed
above level 1 cannot be reduced. Thus a necessary condition for our example to have
a heuristic value exceeding 19 and yet still have an optimal solution value of 1, is

(4.1) i/ (2s- 1) + iL2s<s’z
The first term comes from the fact that in this example every large bin must have a

(rs-1)/s and the items stored above level 1 cannot belevel strictly greater than 9

reduced. The second sum is the total size of all items stored below level 1 assuming
they were all of size and all could be reduced to size 1. The inequality states that
if there is to be a solution then all the items must be in the large bins below level 1.
This inequality reduces to YL si < ILl, or g < 6. 1-1

The next lemma shows that if there is a bin of capacity si [2, 6) then it must
contain a "large" item of size at least . Such an item must be packed in a large bin.

LEMMA 4.5. If Si [2, 6) then bin contains an item of size greater than .
Proof. Assume to the contrary that every item is of size at most . There are at

most [s- 1J items packed into this bin since otherwise this bin and its contents could
be removed creating a smaller counterexample. Adding one item of size 1 should
overfill the bin to a level of at least 19. Thus

The reader may check that for s e [2, 6) that the above inequality is not satisfied and
thus some item must be larger than . In any optimal solution it must be packed into
a large bin.

LEMMn 4.6. In a smallest counterexample there can be no bins of size s e [, 2).
Proof. Let si e [, 2). Observe that such a bin is overfull. In any optimal solution

such a bin can hold at most one item. There are currently either two items or one
item that is too large and in either case the bin and its contents can be removed
providing a smaller counterexample.
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LEMMA 4.7. There are no large bins with s < 6.
Proof. If there were then by the last two lemmas s [2, 6) and each bin must

contain an item of size at least This must be packed in a large bin in any optimal
solution. A necessary condition for there to be an optimal schedule is

1+ E \ 12s-1 + Y --+12 + s,-1
sl6 sie[2,6)

s6 si6 s[2,6)

E s.
iL

The terms on the first line are a lower bound on what must be stored in the large bins.
The size of item n is 1. The first sum is the total of all items stored in bins with s 6,
after the items below level 1 have been reduced from to 1 and the items from level
1 to level 9(s- 1)/s remain unchanged. The second sum is for the bins of size s [2, 6).
Here we assume there is at least one item of size which cannot be reduced by trading
with items in the small bins. The total space available in the large bins is s. The
above inequality holds if and only if

2
1+ 3 1

6 iL si=6 st[2,6)

if and only if
1 1
6 6 sie[2,6) 7si[2,6) si>--6

if and only if

1< X 1+- X
s 6 si [2,6)

Assuming the sum over si e [2, 6) is not empty one concludes

1 2
3

a contradiction.
From the previous lemmas we see that for {si}iL, g< 6 but si => 6 for all large

bins in any counterexample. Thus no large bins exist and the theorem follows.
The following example shows that it is possible for the heuristic to do as poorly

as 2/z*= 1.512. The items are as follows

28 of size 2-
28 of size 2- 8- e,

28 of size 2- 2e,

28 of size 1 +
14 + 28 of size 1
8 of size 1.
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The bins are

7 of size 8,
28 of size 2- 8,
28 of size 2- 8- e,

28 of size 1 + 3, + e,

where e is picked as small as you like but divides (2- 8)- (1 + 3’) evenly. The heuristic
places the items in the first 7 large bins as in Fig. 4.

1+3’

1+3,

2-8

1+7

1+

1+3’

1+3’

2-8

2-8

2-8

1+3’

1+3’

2-8

2-8

1 2 6 7

FIG. 4.

As for the remaining bins, the 28 items of size 2-8- ke are placed in bins of size
2-8- (k- 1)e. The optimal solution packs the largest 7 bins as in Fig. 5.

l+y

l+y

l+y

l+y

1 2 6 7

FIG. 5.

The remaining items are placed in bins of the same size. Setting 3,-, the
example has an error
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ON RELATIVIZED POLYNOMIAL AND EXPONENTIAL
COMPUTATIONS*

HANS HELLER"

Abstract. The relationship between polynomial and exponential time bounded relativized computations
is investigated. It is shown that there exists an oracle X such that relative to X nondeterministic exponential
computations yield only the languages in X2e’x from the polynomial hierarchy. More informally, relative to
that X two polynomial quantifiers are as powerful as one exponential quantifier.

Key words. P, NP, relativization, polynomial hierarchy, exponential-time bounded Turing machines

Introduction. The difficulty of several problems in complexity theory such as the
P NP question led to the investigation of relativized computations. An increasing
number of publications about this kind of computations shows the interest in this topic.
Nevertheless--as far as I know--relativized results did not lead to the solution of any
nonrelativized problem. R. Book and C. Wrathall showed in [5] and [6] the equivalence
of statements about relativized complexity classes with statements about nonrelativized
complexity classes. Therefore there is some hope that relativized results may help
solve nonrelativized problems.

The insight we gain from relativized results is mostly of the kind that (1) shows
us the difficulty of a problem and (2) exhibits possible inclusion relations between
certain complexity classes.

1. The existence of oracles X and Y such that P (X)= NP (X) and P (Y)#
NP (Y) (see [1]) tells us that a solution of the P=NP question must be done by
techniques which do not uniformly apply to all relativized P (Z)= NP (Z) questions
and therefore may be intricate.

2. The existence of an oracle X such that P(X)=PSpace (X) (see [1]) shows
that P may not only equal NP but also PSpace in contrast to the more commonly
accepted assumption that P c PSpace.

The results of this paper show inclusion relations between polynomial and exponen-
tial complexity classes relativized to the same X.

1. Basic concepts. The notation used in the following is similar to that of [1].
The reader is assumed to be familiar with the following concepts not explained in
detail: (non-)deterministic Turing machines, oracle machines, time bounded computa-
tions, reducibility (_-<P denotes polynomial many-one reducibility, _-< denotes poly-
nomial Turing reducibility), and completeness with respect to a given reducibility.

The underlying alphabet is X {0, 1}. A Turing machine M can be converted to
a polynomial-time bounded machine by attaching a clock to M which stops the
computation of M on an input x after p([x[) steps for a polynomial p. A recursive
enumeration of all polynomial-time bounded machines, deterministic or nondeterminis-
tic, is generated by attaching a clock for all polynomials to all oracle machines.

Let p(n) + n and P (NP) be an enumeration of the polynomial-time bounded
deterministic (nondeterministic) oracle machines. Without loss of generality it is
assumed that P (NP) runs in time p, Px(Npx) denotes the language accepted by P

* Received by the editors January 5, 1983.
Institut fiir Informatik, Technische Universitiit Miinchen, Arcisstr. 21, 8 M/inchen 2, West Germany.

Present address, Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge,
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(NPi) with oracle X. pX (Npx) also denotes machine Pi (NPi) with oracle X. This
should not cause any confusion.

There is a coding (., .) of finite sequences of words over E into E* for which
encoding and decoding can be done in polynomial time. The coding of oracle machines
is such that the set

K(X) {(i, x, 0): NP accepts x in fewer than steps}

can be computed by a polynomial-time bounded nondeterministic oracle machine with
oracle X. Each of the usual codings satisfies this condition.

For ca a class of languages over define the operators P and NP by

p () {pX: e N, X }, NP () {NPx" N, X }.

We write P (X) for P ({X}) and accordingly for the operator NP. P (NP) also denotes
the class of languages accepted deterministically (nondeterministically) in polynomial
time without oracle X. co is the class of complements of sets in :

co ={X’ Ce }.

Define the polynomial hierarchy relative to X by

IIo a0 P (x);

for ->_ 0,
P,XX,+ NP (Xex),
P,X P,XIIi+1 =co Xi+l,
P,Xa+ P (xf’x).

Obviously the following inclusions hold:
P,X P,X P,X,,f’XuIIPi’X __Ai+ Xi+I [") Iii+

PH (X) {(X/P’x, IIe’x, Ae’x)" e N} is the polynomial hierarchy relativized to X. The
hierarchy PH (X) can also be defined by polynomial bounded quantification"

P,XA e X+ iff there are a B P (X) and a polynomial p such that

x aolylly2"’" OYi+I[IYll,’", ]y,+l]-<- p(lxl) ^ (x, Yl, ", Yi+I) B]

(where O is :! if is even otherwise /).

Accordingly, sets in IIe’xi+l can be defined by + 1 alternating quantifiers starting with
Let us consider the above mentioned set K(X) as image of X under the function

K (see also the analogous jump operation in the theory of recursive functions [11]).
It therefore makes sense to write KE(x) for K(K(X)). Since K(X)NP (,X), we
have Ki(x)xe’x. Obviously K(X) is <_-Pro-complete in XP,x and K’(X) is

Ei+, Hi+,-<-complete in II’x Thereby we achieve one more representation for P,x P,X

AP,x.and
.,x (X)),A -XS+l iff A NP (K

AeIIe,x
s+ iff A e co NP (Ks(X)),

A e. ae’x (X)).s+l iff A P (K

Relativization of a lemma of Meyer and Stockmeyer (see [10, Lemma 3.1]) yields the
following result:

LEMMA 1. E’x LJ II’X AI’X implies x’x for all k > i.
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We say hierarchy PH (X) extends 0 levels if EoP’x =ElP’x. Hierarchy PH (X)
extends + 1 levels, for >= 0, if

2. The exponential hierarchy. Let P be the set of polynomials over N and lin be
the set of linear functions from N to N. 2P (2lin) is the set of functions from N to N
where the exponent is a polynomial (linear function). 22P and 22’in are explained
accordingly. For notational reasons 2P (2lin) is also denoted by EP (EL).

If F is a set of functions (time bounds), then DTime (F, X) (NTime (F, X)) is
the set of languages accepted within a time bound from F by deterministic (nondeter-
ministic) oracle machines with oracle X. DTime (EP, X) and DTime (EL, X) are
denoted by EP (X) and EL (X), respectively. NEP (X) and NEL (X) are used for
the nondeterministic classes.

NEP (X) is the set of languages definable by exponential bounded (bounds from
EP) existential quantification over sets in P (X). EPi (ELi) is the ith deterministic
oracle machine running in time 2p, (2in). NEPi (NELi) are the nondeterministic
analogues.

Time separation results showing that computation within a greater time bound is
more powerful than computation within a smaller time bound are well known from
the literature (see also [12] and for the relativized case [14]). Here we are only
interested in the kind of proper inclusions which are listed in the next lemma.

LEMMA 2 (time hierarchy).
1. P (X) c EL (X) c EP (X) c DTime (221in, X)li
2. NP (X)c NEL (X)c NEP (X)c NTime (22 X) .
We will now describe two methods (called substitution and translation) which

have been applied many times. Each of the two methods is introduced by a single
application. We are more interested in the methods than in the special results exhibited
in Lemmas 3 and 4. Both methods depend on a padding technique (see also [12,
Lemma 4]).

LEMMA 3 (substitution). P (EL (X)) EP (X).
Proof. We must show that EP (X)c_P (EL (X)); the other direction is obvious.

Let A EPx. Set A*--{xOPi(lxl)" xA}. A* is the padded version of A. A* is in
EL (X). Consider the oracle machine Pj which on input x generates y xOpj(Ixl and
accepts itt y is in the oracle. Pj with oracle A* accepts A. Since P runs in polynomial
time and the oracle A* is in EL (X), we yield A P (EL (X)). QED

By the method of substitution we can also prove the following two assertions:
1. EP (EP (X)) EP (EL (X)) DTime (22P, X).
2. EL (EL (X)) EL (EP (X)) DTime (22’in, X).
From these assertions and Lemma 2 (time hierarchy) it follows that Turing

reducibility in exponential time (_<-P and <= /) is not transitive. The reason for this
is that EP and EL are not closed under composition.

Lemma 4 shows how certain equalities achieved for small time bounds can be
transferred to greater time bounds. Translational methods are also used in [4] and [5].

LEMMA 4 (translation). NP (X) co NP (X) implies NEL (X) co NEL (X).
Proof. Let A=NELx. Set A*={xO2’tl:xA}. A* is in co NP(X).

Since co NP (X)- NP (X) there is a ] such that A* =NP]c. The nondeterministic
machine NELk which on input x generates y x02’lxl and simulates NP]c on y accepts
A with oracle X in exponential time. The time bound is in EL since p(2i") is bounded
above by a function in EL. QED
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How can an exponential analogue of the polynomial hierarchy be defined? We
must be careful because of the difference between exponential and polynomial computa-
tion. To maintain the analogy the exponential hierarchy should not exceed

2P 2PDTime (2 X). Since DTime (2 X) NEP (NEP (NEP (X))) by substitution and
tim hierarchy, w cannot dfin th xponntial hierarchy by rpatd application of
th operator NEP. Nvrthlss, th xponntial hierarchy can b rprsntd by
xponntial bounded quantification. Lt

v,x, for 1, is given by

A P,X iff thr is a st B P (X) and a j such that

x A <--> :lylly2... Oy,[lyx[,..., [y,[(2,(11) ^ (x, Yl, Yi) B]

(where O is :1 if is odd otherwise V).

n,x co X,x.
It is easy to see that

Ee,x NEP (K+ (X)).

Therefore Ae’x can be defined by

ae’x (X)).i+1 =EP (K

As usual we have

AEP,X ’ EP,X 0 II EP,X-’iEP’X IIiEP’X *’ti+l -’i+1 i+1

Warning. The exponential hierarchy defined in this way seems to be very similar
to the polynomial hierarchy. We must, however, state a remarkable difference" If
is closed under complements, then Xe,x is not necessarily equal to all P,X for k > i,
in contrast to the polynomial case (see Lemma 1). The reason for this is that 2e is not
closed under composition whereas the polynomials are. An example will be given below.
Some simple facts about exponential-time bounded computations are established next.

(F1)Ki(X) is <-e-complete in ,iEP’X,
(F2) NEP (EP (X)) EP (EP (X)) DTime (22, X).

Since EP (X) is closed under polynomial quantification, we have NP (EP (X))=
P (EP (X)) from which we get the first equation of (F2) by translation. The second
equation follows by substitution.

Define Klog(X) by

Klog(X) {(i, x,/): (i, x, 0 l) K(X)}.

(F3) Kog(X) is <- -complete in NEP (X).
Obviously every set in NEP (X) is -<-reducible to Klog(X). Since Klog(X) is

many-one-reducible to K(X) in time 2 and K(X)NP (X), we yield Klog(X)
NEP (X).

LEMMA 5. P (Kog(X)) NEP (X) iff NEP (X) co NEP (X).
Proof. P (Klog(X)) NEP (X) implies obviously NEP (X) co NEP (X).
Suppose NEP(X) is closed under complements. Let Klog(X)=NEPk and

Klog(X) NEP. By (F3) it is sufficient to show that p/KIg(X) NEP (X) for arbitrary
i. An oracle machine M is described which with oracle X accepts the set P*ox.

MX: On input x simulate P. For each string y queried select nondeterministically
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a computation of NEP and a computation of NEP] on y. If in both computations y
is rejected, then reject x. Else, if NEP: accepts y, then continue the simulation of Pi in
the yes state. If NEP accepts y, then continue in the no state. (Only one of NEP and
NEP can accept y.)
Mx runs obviously nondeterministically in exponential time. QED
In the proof of Lemma 5 a well-known method is applied: a set and its complement

are simultaneously computed. This method is also useful in other cases. For instance,
we can prove the following:

1. p(f,x N/If’x) Ef,x N IIf’x.
2. NP (NEP (X) n co NEP (X)) NEP (X) n co NEP (X).

3.-Main result. The investigation presented here was initiated by the following
result of M. I. Dekhtyar [7]"

THEOREM 6. There exists a recursive oracle X for which NP (X)= EP (X).
Since no proof appears in [7] the proof is presented here for the ease of the reader.

The construction is similar to that of [1, Thm. 5] where an oracle X is constructed
such that PH (X) extends 1 level; i.e., P (X) c NP (X) co NP (X).

Proof. Define DI(X) by

DI(X) {(i, x, l)" EPx accepts in < steps}.

Da(X) is < m-complete in EP (X) AP’x since

x EPx (i, x, 2 P,lxl))

and the string (i, x, 2P,Ixl)) can be computed in polynomial time for fixed i. We shall
construct an X such that

x O1(X) ::1 y[lyl 3lxl ^ xy x]

for all x and therefore DI(X) NP (X). The =re<e-completeness of DI(X) in EP (X)
implies then NP (X) EP (X).

For the beginning set X .
Stage m. For each x of length m such that x is the encoding of’a triple--i.e.

x (i, a,/)--consider the computation of EPx on a for steps. Reserve for all
strings asked during this computation which are not in X. If EPXaccepts a in fewer
than steps, then select a y of length 3m such that xy is not reserved for . Add xy
to X.

We must verify that we can always choose an appropriate y. If x (i, a, l) has
length m then at most strings are reserved for X with respect to the computation
of EPx on a for steps. Since l< 2" and at most 2" different strings are considered
at stage m, it follows that fewer than 22m strings are reserved for ) at stage m. At
stages before m including m fewer than 22 + + 2TM < 23" are reserved. There are
23m different y of length 3m and therefore at least one string xy, where lyl--3m, is
not reserved for X. QED

Define inductively the following classes of .functions e(O,P)=P, e(n+l,P)=
2 en’e), e(n, lin) is defined accordingly. Let X be as in Theorem 6. For this X we can
state the following simple propositions:

(P1) P (X)c NP (X) because P (X) EP (X) by time hierarchy.
(P2) NP (X)= co NP (X).
Note that (P1) and (P2) imply that the polynomial hierarchy relative to this X

extends exactly one level.
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(P3) NEL (X) =co NEL (X) and likewise for greater time bounds by translation
of (P2)

(P4) NTime (e(i, P), X) DTime e( + 1, P), X) for >= 0 by translation.
(P5) DTime (e(i, P), X) NTime (e(i, P), X) by (P4) and time hierarchy.
(P6) DTime (e(i, lin), X) NTime (e(i, lin), X) by translation and (P5).
Let us express these facts more informally" polynomial bounded "quantification

(one existential or universal quantifier) over sets in P(X) is as powerful as deterministic
exponential-time bounded computation relative to oracle X. Exponential bounded
quantification over P(X) (one exponential quantifier) yields more than the polynomial
hierarchy. The same holds for greater time bounds: for example, exponential quantifica-
tion over P(X) is as powerful as deterministic computation relative to X within time
bounds from e(2, P)= 22P. In the following theorem one more possibility for the
relationship of polynomial and exponential computation is established.

THEOREM 7. There is a recursive oracle X for which E’x= EP (K(X))=AP’x.
Proof Define DE(X) by

DE(X) {(i, x,/): EPx) accepts x in < steps}

DE(X) =.,-<Pcomplete in AP’x because

x EPx) --(i, x, 2P’(Ixl)) DE(X)

and for fixed i, 2 p,(Ixl) can be written down in time p,(lxl). The construction of the
oracle will guarantee that

x Oz(X)yVz[ly[ Izl-- 4lxl-, xyz X].

Thereby Dz(X),’x and EP (K(X))C_Z’x. Since Z’X C_EP (X)C_NEP (X)C_
EP (K(X)) we have

z,x EP (X) NEP (X) EP (K(X)) Ae’x.
For the encoding we must determine what EP:x) does and therefore we must

determine K(X), not only X. For that reason we will in the sequel apply a method
which we call settling. Consider a string s, where s represents the acceptance of NP:
on x for steps relative to an oracle X. To settle string s we try to bring s into K(X)
by adding strings to X and thereby generating an accepting computation of NPx on
x within steps. Distinguish two cases:

1. It is possible to yield s K(X)i.e., to make NPix accept x in fewer than
stepsby adding strings to X. Add these strings to X and select an accepting computa-
tion of NPx on x. We can manipulate X, that means delete or add strings, without
yielding s K(X) if we do not change those fewer than many strings asked during
the chosen accepting computation.

2. It is not possible to yield s K(X). NPix does not accept x in few than steps,
for any extension of X which does not contain strings reserved ior X. In this case we
can add to X arbitrary strings, not reserved for X, without changing s

_
K(X) to

sK(X).
In both cases X can be manipulated with certain restrictions without yielding

undesired effects.
For the beginning set X .
Stage m. For each string x of length rn do the following: If x is of the form

(i, a,/)i.e, x is the encoding of a triple--then consider the computation of EPx
on a for steps. Settle one after the other the strings asked by EPx on a by adding
to X strings of length _>-4m. To be more precise, for the first string s (first with respect
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to the order in which the strings are asked by EP(x) on a) such that s is not yet
settled and s is asked by EpI(x) on a, try to bring s into K(X) by adding strings of
length >=4m to X which are not reserved for X. If this is possible then consider an
accepting computation represented by s" since s K(X), s is of the orm (j, b, Ok) and
the computation under consideration is an accepting computation of NP on b for k
steps. Reserve for X the strings asked in this computation which are not in X and are
of length >=4m. After that we say s is settled irrespective if s K(X) or s : K(X).
Continue in the same way with the next such s asked by EPr(x on a. After all strings
asked in the computation of EP(x on a for steps are settled, test if x=(i, a, l)
D2(X). If x is in D2(X), then select a Y0 of length 4m such that no string xyoz where
Izl 4m is reserved for ., and add all strings xyoz to X, where z varies over all strings
o length 4m. Otherwise, if x D2(X), then do nothing.

Let us verify the construction:
1. We must show that there are enough strings leftmnot reserved for Xmsuch

that an appropriate Y0 can be selected. First we estimate the number of strings which
are reserved for X at stage rn and at stages before m. There are 2" strings of length
m. For those strings of length rn which are of the form (i, a, l) the computation of
EPx on a is considered. This computation is bounded by < 2". That means fewer
than 2" different strings are asked and the length of these strings is less than 2".
During the settling of one o these strings fewer than 2" strings are reserved for X.
It turns out that fewer than 23m are reserved at stage m. Therefore at stages before
m including stage m fewer than 23 + (23)2+ + (23) < 24m strings are reserved.
Since there are 24m different Y0 o length 4m, we can always select an appropriate Y0.

2. We must ensure that

x D2(X) yVz[lyl Izl 4[xl- xyz x]

holds. A similar estimation to the above shows that settling of strings at stages up to
and including m adds fewer than 2am strings to X. Therefore for a fixed x and exactly
one Y0 the 2am different strings xyoz where z varies over strings of length 4m are
added to X if and only if this is done at stage m because x D2(X). QED

Consequences of Theorem 7 are listed in the following (X as in Theorem 7).
(Cl) zze’x c Ef,x Iif,x EP (X)

because Aze’x P (K(X)) EP (K(X)) Ae’x E’x by time hierarchy.
Therefore the polynomial hierarchy relativized to this X extends exactly two

levels. Further polynomial hierarchies extending two levels have been independently
constructed in [8] and [9]. Contrast the hierarchy of Theorem 7 also with the result
of T. Baker and A. Selman in [2], where they have shown the existence of an oracle
Y such that EzP’Y# II’Y. This hierarchy extends more than two levels but it is not
known exactly how many levels it extends.

(C2) EP (X) A’x cEP’x DTime (22, X).
By translation of E’x= EP (X) we have y,P,x= DTime (22, X).

(C3) The proposition of (C2) can be translated to greater time bounds. (See also
the propositions following Theorem 6.)

(C4) NEP (X)= EP (X).
That means, Ee’x is closed under complements but Ee,x Aze,x c Eye,x by (C2).
Therefore the exponential hierarchy does not collapse into 1e’x (remember the
warning).

Let us summarize the result in an informal way:
Theorem 7 is optimal in the sense that iz

e’x cannot be encoded into a class below
E2P’x (such as A2P’x) and no class above AP’x (such as ,P.X) can be encoded into
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E,,x. We yield for the X of Theorem 7" Relative to X two polynomial quantifiers are
as powerful as one exponential quantifier. Two exponential quantifiers are more
powerful. The same can be stated for greater time bounds.

4. Open problems. According to Theorems 6 and 7 we would like to achieve a
result which seems to lie between these two results: we would like to encode NEP (X)
y,e,x into P (K(X)) Ae’x. Unfortunately the known methods seem not to work for
this case and the problem seems to be difficult. Encoding NEP (X) into P (K(X))
would yield an X for which EP (X) NEP (X) EP (K(X)) DTime (2, X)
(similar to the consequences of Theorems 6 and 7). That means NEP (X) is closed
under complements and properly contained in EP (K(X)). We can ask for an X such
that EP (X) NEP (X)c EP (K(X)) independent of the polynomial hierarchy. The
problem is unsolved. Even the following less hard problems are not settled.

1. Does there exist an X such that

NEP (X) co NEP (X) c EP (K(X))

or equivalently (see Lemma 5)

P (Klog(X))= NEP (X)c EP (K(X))?

2. Does there exist an X such that

P (K,og(X)) c EP (K(X))

or equivalently P (NEP(X))c EP (NP (X))?

The inclusion P(NEP (X)) C_ EP (NP (X)) holds for all X, since NEP (X) C_
EP (NP (X)). The positive solution of problem 1 solves also problem 2. Additionally
some new problems arise. If question 2 has an affirmative answer, then we can try to
find an X such that

P (Klog(X)) NP (Klog(X)).
More generally, how many levels can the polynomial hierarchy relativized to Klog(X)
contain? The inclusion /t:og<x> C_EP (NP (X)) holds for all X. Besides this, it is near
at hand to ask for higher levels of the hierarchies. If ever it is possible to construct
polynomial hierarchies extending levels, for i> 2, then we can ask the foIlowing:

1. Does there exist an oracle X such that

’,Pi ’x=AP’x for i> 2?

2. Does there exist an oracle X such that
P,XA i+1 X for _>- 1 ?
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THE POWER OF SYNCHRONIZATION MECHANISMS*

H. W. BARZ"

Abstract. A common question in parallel programming is: How to implement a program efficiently for
a particular synchronization problem? Here we pose a more general question: Is a certain synchronization
mechanism capable of implementing efficiently a particular synchronization problem represented by a
program using another synchronization mechanism? We give a definition of "implementing efficiently"
which measures efficiency by the amount of parallelism of the parallel programs. If this measure is reduced
by the implementation the efficiency of the implementation is inferior. It is shown that some synchronization
mechanisms cannot implement programs based on another mechanism without some loss in parallelism,
i.e., a reduced measure. These results imply a power hierarchy (or efficiency hierarchy) of synchronization
mechanisms. A further outcome of this paper is that simple synchronization mechanisms, with only a few
variables, are capable of implementing any synchronization problem implementable by more powerful
mechanisms, albeit at some loss in parallelism.

Key words, synchronization problem, synchronization mechanisms, parallelism of programs, power of
mechanisms

1. Introduction. There exist a great variety of synchronization mechanisms. The
purpose of this paper is not to introduce a new one, but to discuss the differences
between those mechanisms. Such a comparison must be based on specified goals. These
goals may be modularity [22], ease of verification [2], expressiveness [5], [22], run-time
behaviour [12] and the capability to implement problems [17], [18], [25]. Only the
last two goals can be specified exactly.

Here we will treat the capability to implement problems. Since we want to do
our comparison accurately, the problem has to be specified in an exact manner.
Therefore we assume that the problem is already expressed in a parallel program (or
a system of processes). Now we want to know whether we can find any other system
of processes based on another synchronization mechanism that can implement the
same formalized problem. The most serious step in this approach is the definition of
"implement". Lipton’s [17], [18] "simulate" represents his understanding of "imple-
ment". On the basis of his definition he gives a hierarchy of the power of mechanisms
see 6. He states, for example, that there are problems expressed by PV-multiple
[24], a concept which allows the use of several semaphore variables in an operation,
which cannot be "simulated" by PV [9], a concept which allows exactly one semaphore
variable in an operation.

In our opinion these results need some refinement because intuitively every
problem can be implemented by any mechanism [20]meven if this solution is. in no
way elegant. Our approach accepts this intuitive view but points out in what manner
solutions differ. We will show that the solutions differ in the amount of parallelism
and the number of variables used. Our definition of a c-weak simulation ( 3) replaces
one feature of Lipton’s definition of simulate by a measure for the loss of parallelism.
We believe in the intuitive evidence of our results but confess that our proofs are not
as elegant as Lipton’s.

This paper incorporates only semaphore mechanisms but, using an appropriate
model, extensions to other synchronization mechanisms are straightforward.

* Received by the editors September 24, 1982, and in revised form June 30, 1983.
f Institut f/Jr Informatik, Abt. 3, Universtt Bonn, Bertha-von-Suttner Platz 6, 5300 Bonn 1, West

Germany.
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Throughout the paper we use the following notational conventions:
Suppose r/=ala2...akak+l...at.., is a sequence of elements of a set A. If r/

is finite, lg (r/) denotes the length of r/. e is the empty sequence (lg (e) =0). r/[k: l] is
the substring akak+l al of the sequence r/. The set PERMUTATIONS (r/) is the set
of all permutations of r/. The set M(r/) is the set of all elements in the sequence r/. The
sequence a a2 ak is a restriction of 3/= ), a y2a2 3’kak7k+ with respect to N, if
and only if (.J k_-+ M(7i) fq N= and M(a ak)_ N; this will be noted as 7[[N. The
set { m, m + 1,. , n} c 7/, m < n is denoted by [m: hi. The cardinality of a set N is # N.
If x and t are n- and m-tuples x; t9 denotes the concatenated n + m-tuple. Let f: K N
be a function: f(K’) with K’K is the set {f(k’)lk’K’}; f(rl) is the sequence
f(al)f(a2)f(a3) with r/= ala2a3’’’, M(rl) K. For the convenience of the reader
there is a list of symbols in the Appendix.

2. The model. We have incorporated Lipton’s specification of a system of proces-
ses [17] in a model based on the parallel program schemata [14], [27].

A state z of an ordered set Var (vl,. , vi) relative to an ordered set Domain
(D1,..., Di) is a function from Var to Domain with z(vj) Dj.

DEFINITION 2.1. A system of processes SP V, W, z0, A) consists of
(1) a nonempty set of variables V (/31, , ilk, Xl," , Xn, y," , y,);
(2) a domain of the variables

W-- (81 [.J {to}, Bk kJ {to}, X1 Xn, Y1 Ym);

(3) an initial state z0 of V relative to W;
(4) a set of actions A, where every a A has the form

a" when ^ e,,(yl,’", y) do/3 := f(/3/, x,. ., x,,)

x:=g(x," ,x.)

x.:=g.(x,. ,x.)

yl:-h(y,"" ",y)

y, := h(y, , ym)

and defines a partial function ti from the set of states to the set of states (Z)
with f, gl," , g, hi," , h, computable, ea a predicate, ] [1" k], label B
and f(/3J, .) I.

There are functions pr: A-[I" k], adr" A- t_J k__l B (bijective) so that ’a A,
[1 k] (adr (a) is label of a ^ adr (a) B :>pr (a) i).

Several remarks may be helpful for the understanding of this definition:
(/3,..., ilk)=b are the program counters of the k processes.
(x,..., x)= are the nonsynchronizer variables.
(Y, , Ym) t are the synchronizer variables and only these variables are admis-

sible in the predicate e by which synchronization is possible.
The function ti represents the collateral assignment of the values computed by the
functions f, g, h. The function pr gives the unique association of actions to processes.
The function adr defines the bijective association of actions to their labels. The
"stop-symbol" to is not associated with any action.

The set of actions A consists of all actions a with pr (a)= and this set forms a
process. By a we denote that pr (a)= i.
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The function a of an action a is defined in a state z iff z(/3i)=adr (a i) and
ea(Z()) is true. The available-set F(z) is the set of actions a in the state z with
z(i)=adr(a i) and the ready-set (z) is the subset of actions A’ F(z), whose
corresponding functions are defined in z. An action a is available (ready) in z, itt
aer(z)((z)).

DEFINITION 2.2. Let SP= (V, W, Zo, A) be a system of processes and z e Z a
state. Then:

(1) A sequence ? aaza3"" of actions of A is called a transition sequence in z
if and only if a e (z), a e (a(z)), a3 e (eiz(a(z))), ..

(2) A state z, r/ is reached by the transition sequence r/ in z; i.e. z, r/= z if
q=e, z,rl=al(Z,q[l:l-1]) if r/ e, lg(r/) =/.

We will call a transition sequence r in Zo an execution if and only if r is finite and
(Zo* r)= ; or r is an infinite transition sequence. Ese is the set of executions in Zo.

A state z Zo* r/ reached by r/in Zo is reachable and rise is the set of all reachable
states. :se (resp. rise) will be abbreviated : (resp. ll) when the system of processes
is unambiguous.

Example 2.1.

SP1 V1, Wl, ZO1, A),

V (/3 ,/3, Yl,

W ({ l, 12, w}, { 13, 14, 15, w}, 0, 0),

ZO (ll, 13, 1, 3)

(a shorthand for z01( 1) 11, ZoI( 2) 13,’’" ),

A {a1: when/3 I1 ^ Yl 1 do/31 := 12 Yl :’-- 2,

a2: when 1 12 ^ Y2 < 7 do/31: to,

a3: when f12 13 ^ true do 2 := 14 Yl := Yl- 1,

a4: when 2 14 A Y2 < 7 do 2 := 0.),

as: when/32 15 ^ Y2 < 6 do/32 := 14 Yl := Yl 3}.

We do not note identity functions in actions.
Definition 2.1 implies the existence of pr and adr:

pr=(1,1,2,2,2), adr=(11,12,13,14,15), Al={al, a2}, A2=A1-A1,

I"(Zo,) {al, a}-- ’I]’(Zo1

F(Zol* a3) (al, a4} xI/’(Zoa * a3) {a4},

’SP {alaaa3a4, ala3a2a4, ala3a4a2, a3a4},

’SP1 {Z03, (/2, 13, 2, 3), (w, 13, 2, 3), (w, 14, 1, 3), (w, w, 1, 3), (/2, 14, 1, 3),

(/2, w, 1, 3), (/1, 14, 0, 3), (/1, to, 0, 3)}.

To simplify the following discussion we need knowledge of the input/output variables
of actions--see Miller and Yap [23] for an analogous definition. We say a pair of states
z, z’ are, identical except on a variable ve V-b iff Vv’e V-{v} (z(v’)= z’(v’)) and
z(v) z’(v).
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DEFINITION 2.3. Let SP V, W, Zo, A), a e A, A’ c_c_ A, V V-b.

IN (a) { v e Ql::lz, z’ e Z identical except on v, a e F(z) fl F(z’)

((a q(z) ^ a (z’))

v a (z) fq (z’)

^ :Iv’ V(z,a(v’) z’,a(v’) ^ z’ ,a(v’) z’(v’))))},

OUT (a) {v Vl:Iz Z, a (z)(z(v) z,a(v))},

IO (a) IN (a) kl OUT (a),

IN(A’)= (A IN(a), OUT(A’)= (_J OUT(a),
aA’ aA’

IO (A’) IN (A’) U OUT (A’).

A variable v is element of IN (a) if[ there exists a pair of identical states except on v
with a available in both states and

either a is solely ready in one of the two states
or a is ready in both states and a changes at least one variable.

It is not sufficient to state only :lv’ V (z. a(v’) z’. a(v’)) in the above definition
since v’ may be v.

A set of actions A’ is interference-free, iff for every a, b A’, a b

OUT (a)

is valid.
DEFINITION 2.4. SP= (V, W, Zo, A) is legal if and only if there exist pairwise

disjoint sets AR, AN, Aw
_
A and the following conditions hold for any z, z’ Z:

(1) ARI,.JANI,.JAw=A;
(2) Va e AN(a e r(z)a e (z) A IO (a) =_ {x, , x.});
(3)

^ a F(z) fl F(z’) =:> z ai([3 i) z’ ai([3i));
(4) la

^ a (z) I"1 (z’)=ev z ai( i) z’ ai(i));
(5) F(z) fl AN is interference-free.

By this definition only the following actions are admissible in a legal system"

The nonsynchronizers (AN) are not synchronized and do not handle synchroniz-
ation variables.
The releasers (AR) are never waiting but may release other actions by changing
synchronization variables.
The waiters (Aw) may wait on some predicate and handle only synchronization
variables.

Executing a synchronizer--i.e., a releaser or waitermalways leads to the same state
of the program counter, i.e., no branching by synchronizers is allowed. Since these
restrictions as well as the interference-freeness reflect real parallel programming
constructs such as semaphores [9], monitors [6] and message-passing [13], we call such
systems legal systems.
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Example 2. l a.

IN (a) (y} OUT (a), IN (a2) (Y2}, OUT (a2) ,
IN (a3) {Yl} OUT (a3), IN (a4) {Y2}, OUT (a4) ,
IN (as)= {Yl, Y2}, OUT (as) {Yl},

An={a3}, Aw=A-An, Alv=,

SP1 is legal.

We denote by O(z) the set o all possible transition sequences in the state z.
There are five basic properties valid in this model which we will not prove here.

The proofs are given in [3].
THEOREM 2.1. Let SP V, W, Zo, A), for any i, j [1" k] with # j and z Z.
(A) B fq B , i.e., the sets of labels for process and process j have no element

in common.
(B) 4 (F(z) f’) Ai) 1 v z(fl i) to, i.e., every process has exactly one available

action or has already terminated.
(C) Vrl O(z)(M(rl) f’l Ai qb=e;F(z) fq A F(z * rl) fq A), i.e., any transition

s..equence with no actions of a process leaves the available set with respect to
process unchanged.

(D) VaW(z), bF(z)-W(z)(bW(z,a)=kOUT(a)f3IN(b)), i.e., any
action b, which changes from available and not ready in z to ready in z. a,
has at least one common variable in OUT a and IN (a).

(E) Vyaiarl (R)(z)({a i, a} interference-free =:> yaairl (R)(z)), i.e., a transition
sequence in z remains a transition sequence in z if successive interference-free
actions a , a j) are interchanged.

We will refer to these properties by their corresponding letters. Systems of
processes often have additional features, which are defined as follows.

DEFINITION 2.5. Let SP- V, W, Zo, A) be legal. Then"
(1) SP is deadlock-free iff for any r X either r is finite and the available-set

F(Zo. r) is empty or r is infinite.
(2) SP is standard iff for any z Z and for any ready waiter a in z (z)-A

aIt(z*ai)-Ai holds.
(3) SP is uniform iff for any z Z and, for any available waiter a in z with

IN (a)
_
IN (’), ’ (z)f’lAw, the action a is also ready in z.

(4) SP is commutative iff for any z Z and any pair of synchronizers a, b with
ab, b O( z) the implication ba O(z) ^ z ab z ba holds.

(5) SP is IO-limited iff for any synchronizer a IN (a)=OUT (a) holds.
A system of processes is standard, iff for any state z the execution of a waiter moves
no other waiter in the ready set; only very general synchronization mechanisms are
nonstandard (see Table 1, 4). A system of processes is called uniform, if for any
state z the input variables are used in an uniform manner in the predicates of the
waiters, i.e., if the input variables of an available waiter a form a subset of the input
variables of other ready waiters we can conclude that this action is also ready.

Example 2.1 b.
SPl is not deadlock-free since F(z0* a3a4) {al}.
SP1 is not standard since z 11, 15, 3, 4) and (z) A2 (z as) A2.
SP1 is uniform.
SP1 is not commutative since ala3, a3 O(Zo)=;C, a3al O(Zo).
SPx is not IO-limited since IN (a2) {Y2} # OUT (a2) @.
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We assume any system of processes legal for our further discussion. The subscripts N,
R, W for any set S of actions restrict S to As, AR or Aw (SN S fq A,. .) and will
be used mainly for the available- and ready-sets. Whenever possible we will abbreviate
the notation for an action using the following conventions"

ai: e(ylc, YrlCr), goto adr-l(t);
instead of
a: when i ^ y >- c" y >_- c do/3: y := yy- cj" Yr := Yr Cr

ai: V(yIcj, ", yr[Cr), goto adr-l(t);
instead of
a: when i ^ true do fl:= y := yy-F C" Yr := Yy + Cr;

a i" Xl ," , X, :=" ,goto adr-l(t);
instead of
a:whenfli=l^truedofli:=t xl: x

In addition y[1 may be written as y and the goto. may be omitted if the specified
label is always the label of the next action in the listing. A system of processes consisting
only of actions which may be abbreviated according to the conventions with c, , Cr, is standard, commutative and IO-limited. In general such a system is neither uniform
nor deadlock-free. A system SP is called a finite system if all executions have finite
length.

3. Simulation of systems of processes. A system of processes simulates another
system, if certain conditions hold in both systems. The choice of such conditions depends
on the aspects of interest. Since we deal with synchronization mechanisms, we are
interested in synchronization conditions. Synchronization problems are specifications
of admitted or nonadmitted sequences of actions--see for example path expressions
in [7]. This is the basis for the following definitions which are related to Lipton’s [18].

DEFINITION 3.1. Let SP V, W, z0, A) and SP’ V’, W’, z, A’) be systems of
processes and rep: A t.J { e } -> A’ U { e} with rep (e) e.

SP simulates SP’ by rep iff {rep (r)lr EsP} EsP’.
Note, that the representation rep may represent some actions of A by e--i.e.,

the empty word. Consequently, the system SP may have a lower level of abstraction
and may have several actions to "simulate" one action of SP’. Since rep is not unique
several actions of SP may represent the same action a of SP’. This makes sense when
these actions are alternatives of the action on the higher level of abstraction. An action
a A is visible by rep, if a is not represented by e--i.e., rep (a) e.

Example 3.1. This example is an implementation of a general, not necessarily
binary, semaphore by binary semaphores. Using the implementation in more than two
processes could result in an error since the binary domains of the semaphores would
no longer be guaranteed.

H Vn, Wn, z0,, An),

V. (,/, yl),

Wn ({/1, l, 0}, {/3, 14, 0}, [0),

ZOu (/1,/3, 0),

An={b" P(Yl);

b: goto b;
b: V(yl)

b42: goto b32;},
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G Ve, We, Zoo,

Ve (/ 1, 2, Xl Yl,

We- ({/1, 12, 13, 14, 15, 16, .0}, {/7, 18, 19,/10,/11, (.0}, 7], {0, 1}, {0, 1}),

Zo (I1, 17, 0, 1, 0),

a={al’P(yl);
a: x := xa 1, golo ff Xl < 1 lhen a else a;
a: V(ya);

a]: P(Y2), goto a;
a" V(yl);

a" goto a I;
a" P(Yl);

a" Xl := X1 "[- 1, goto if X -1 then a9
2 else a12o;

a29: V(yl, Y2), goto al;

a12o: V(yl);

a" goto a;}.

Let repa" Ae U {e } An U {e} with

repl (a)

bl if a a, a,
blz if a a,
b if a =, ao,
b4z ifa=al,
e otherwise.

The proof that G simulates H by repl is omitted but is similar to the proof of Theorem
5.5.

The simulation of Example 3.1 satisfies some other conditions which are in general
necessary to keep an intuitive understanding of a simulation.

First of all we will define a measure of the parallelism of a system since this is the
basis for our comparison.

DEFINITION 3.2. Let SP V, W, Zo, A), a i, a e A, pnpc_ A xA
(1) (a i, aj) e pnp if and only if i=] or {a i, a} is not interference-free (pnp stands

for potentially _not parallel).
(2) pnpt-is the transitiv closure of pnp.
(3) Since pnp is an equivalence relation, let MPse denote the number of

equivalence classes implied by pnp.
To understand the motivation for this definition let us consider the parallelism of

actions in a state z. Sometimes we find the statement that every set of ready actions

Note, that all functions are executed collaterally, so that xl is tested for the "old" value.
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is also parallel in z if every permutation of these actions leads to the same state. Such
a statement does not reflect the atomicity of synchronization actions which work on
the same variables. Consequently, we are forced to state that every set of interference-
free, ready actions is a set of parallel actions as well. This corresponds directly to the
above definition, since every two actions al, a2 of different equivalence classes (implied
by pnpt) are interference-free and may be parallel in a state z, if al, a2 are ready in z.

The equivalence classes have an additional characteristic if we assume SP deadlock-
free. As long as no process has terminated, at least one available action a exists in
every equivalence classsince (a,a)pnp if i=] and Property (B) holds. Now
suppose a to be not ready. Because SP is deadlock-free a has to be ready at some
time. Due to Property (D), another action working on at least one common variable
must have changed a to be ready. Following this argument further we are able to
conclude that in any state at least one action of every equivalence class is ready if no
process has terminated yet. By this argument we are able to call MP the minimal
parallelism of SP since MPsp processors can work in parallel as long as no process has
reached its end.

In some systems of processes this measure is too pessimistic, but we will use this
measure solely for simulations of systems. If even this pessimistic measure changes in
a simulation, it shows a drastic change in efficiency.

DEFINITION 3.3. Let SP simulate SP’ by rep. SP simulates SP’ c-weakly with
c No iff

(a) for every pair of visible actions a, b e A

pr (a) =pr (b) :>pr (rep (a))=pr (rep (b));

(b) SP’ deadlock-freec:>SP deadlock-free;
(c) there exists an e N so that for any transition sequence r/in z0

lg (n)-< (lg (rep (n)) + 1) e;

(d) MPsp-g MPsp,-C and g denotes the number of equivalence classes with
no visible action;

(e) for every visible action a A rep (a) A’na An;
Definition 3.3 needs further discussion.

Condition (a) is necessary to reflect the unity of a process in the simulation. If
condition (a) does not hold, we can transform explicit synchronization, i.e., by syn-
chronization operations, to sequencing in a process and vice versa. Inhibiting such
transformations avoids garbling simulations.

Condition (c) states the simulation to be busy-wait-free. The addition of is
necessary if # e and rep (r/) e.

Because SP simulates c-weakly SP’ the system SP has a minimal parallelism reduced
by c compared to SP’. The number of equivalence classes with no visible actions is not
part of the comparison since these actions will not influence any important, i.e., visible
action. If we omit the subtraction of g, every system SP simulating SP’ c-weakly may be
extended to a system SP", which simulates 0-weakly SP’. SP" is easily constructed by
adding c processes with no global variables and no visible actions to SP. Consequently,
SP" is still a simulation of SP’ and also a 0-weak one, by Definition 3.3.

Condition (e) is not necessary for our results but shortens the proofs.
Example 3.1a. MPH 1, MP 1. G simulates H 0-weakly.
Example 3.2. At first glance this example looks rather artificial. This is due to

the brevity of the example. A realistic, but more complex example is any simulation
which introduces centralized control (e.g., by a kind of monitor).
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H VH, WH, ZOH, An),

VH (/1,/2, f13,/4, y, Y2),

WH ({/1, to}, {l, to}, {/3, to}, {/4, to}, {0, 1}, {0, 1}),

Zoo/-" (ll, 12, 13, 14, O, 0),

AH { bl" V(yl), goto o;

b: P(y), goto to;

b: V(y2), goto to;

b44: P(y), goto w; },

G V, W, Zoo, A),

VG (/1, f12,/3,/4, Xl X2 Yl),

WG ({/1, 12, 13, to}, {/4, 15, 16, 17, to}, {/8, 19,/10, to}, {/11,/12,/13,/14, to},

{true, talse}, {true, talse}, No),

Zo (l, 14, ls,/11, talse, talse, 2),

A={al’P(yll2);

a: x := true;

a: V(yll3), goto

a42" P(yll3);

a 5" if Xl then a else a;
a: V(yI2), goto a24;

a: V(yll3), goto to;

a: P(yll2);

a93:x2 := true;

a13o: V(yI3), goto to;

al" P(yI3);

a2: ifx then a144 else a143;

a3: V(yI2), goto a4;

a4" V(yl[3),goto o,; },

/b] ifa=a,
/

|b22 ifa=a,
/

rep2 (a) b33 if a a 130,
/

[ ifa=a4’
otherwise,

pnp {(bl, bl), (bl, b), (b, bl), (b, b), (b33, b), (b, hi), (hi, b), (hi, b)},
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PNP {(a, a’)la, a’ Ao},

MPH 2, MPo 1.

G simulates 1-weakly H by rep2.
Now we are able to express our understanding of the power of synchronization

mechanisms.
DEFINITION 3.4. Let and denote sets of systems of processes and c N then:
(a) 3 <= iff VP 3(::10 (0 simulates 0-weakly P));
(b) iff 0 (]P , g [0: c- 1] (P simulates g-weakly O));
(c) iff Vc’N( , ).

If holds, the loss of parallelism simulating a system of by a system of can
in general be c.

Without proof we state a partial transitivity of .
THEOREM 3.1. Let , C and be sets of systems of processes, s, N. Then:
(a) ;
(b) N;
(c) < .

max(s,t)

The reader may wonder why the implication in (c) is not .,. Assume R’
to be a system which can be s-weakly simulated by Q’ and R. In general we
do not know if Q’ is just the system by which is established.

4. General properties ot semaphore-mechanisms. For the proofs in 5 we need
some general properties of semaphore-mechanisms.

4.1. Relations of actions. We are interested in relations of actions which allow
an interchange of actions. Lipton [21] has introduced the notion of the left- and
right-mover property:

An action a: P(yj) is a right-mover, since for every execution aab with pr (a) #
pr (b) aba is an execution as well.

An action a: V(yj) is a left-mover, since for every execution aba with pr (a) #
pr (b) aab is an execution as well.

Kowalk and Valk [15] have somewhat extended his notion and put it in a more
formal framework. We will treat mover properties in a more general way and the
right-(resp, left-) mover properties will only be special cases.

DEFINITION 4.1. Let SP (V, W, Zo, A), and p be a predicate on A*. Then:
(1) p(a) is true;
(2) p(airlai)C(i=j

v:::lbic:A,bkAw, 1, ’r]2, r/3e A*

(airla rlbirlzbkrl3 ^ OUT bi) [’l IN (bk) # ^ p(bkr/3))).

If p(arlb)(p(a)) is true, we say a and b(a) are related by r/(e).
If two actions a and b are related by rt, these actions may have been serialized

by synchronization actions or by the implicit serialization in processes. For example
a and b are related by e, if and only if pr(a)=pr(b) or aeAR^beAw^
OUT (a)f’l IN (b) # . In this example b could have waited for the action a to occur.
If a and b are not related by rt, we know that there is no chance for a to serialize b.
This consideration is the basis for the above definition and the following theorem.
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THEOREM 4.1 (movability of actions). Let SP=(V, W, z0, A) be standard and
commutative. Then

VaaiflaJy ,( -7 p( aifla) 3aft’aaifl"y E(fl’/3" PERMUTATIONS (/3) )).

For the proof we need the following lemma:
LEMMA 4.2. Let SP V, W, Zo, A) be standard and commutative. If aaiflay is

an execution of SP with i# j, the following holds

lb AiR, b Aw, 71, 72, 73 A*

(afla 71 biqEbJq3 ^ OUT b) f3 IN bi) )

c(/3 II{a All i})aai(llAi)y ,.
Proof. Let d denote the last action of A in the sequence ai, i.e., aia t.t, ldietz2

The precondition implies e/z e and iS pr (e).
By (C) (1) d i, e F(z) with z z0* a/z1 holds. We denote the property atzledlxy

by (2).
Case 1. d i, e AlV. Since SP is legal (1) implies d i, e is interference-free. By

Property (E) (2) is true.
Case 2. d AN, e Aw I AR (similarly d Aw [..JAR, e AN). Since SP is legal

IO (di) fqIO (e)= and (E) implies (2).
Case 3. d i, e AR. By (F) d i, e (z). Since SP is commutative (2) holds.
Case 4. d, e Aw. As d (z), de F(z) and de(z.di) the feature standard

implies d. (z). Since SP is commutative (2) holds.
Case 5. d AR, eAw. The precondition states OUT (d) fq IN (e)=f. By (D)

and the feature commutative (2) is implied.
Case 6. d Aw, e An. Consequently, d i, e (z) and the feature commutative

implies (2).
Thus atxleditxey , for any e, d i. This series of actions may be repeated until

/z e. As a result the execution alz el.zdi’y exists. As long as other actions of process
exist in/zl the above transformation may be repeated. The last moved action is a i.

Since the last action of/z is still a the lemma holds. [3

Now the proof of Theorem 4.1 is obvious, since the negation of p(ab) is only a
repetition of the argument in Lemma 4.2 on several processes. Consequently, we will
omit this induction proof here.

The benefit of p for our proceeding further is shown by the following theorem:
THZORZM 4.3. Let SP V, W, Zo, A) be standard and commutative and aaby

E. Then
p(aflb)(a, b) pnpt.

The proof of this theorem is easily established by looking at the pairs of noninterfer-
ence-free actions relating a and b by Definition 4.1. On the other hand let a and b
be actions of different equivalence classes implied by pnpt. From this condition we
may derive by Theorem 4.3 that for every execution a and b are not related at all.

The next two theorems will show that our proceedings includes the right- and
left-mover properties:

THEOREM 4.4. Let SP be standard and commutative and aaifly Z. Then

M(afl)fqaR===>a(fl[[{a alpr (a) i})ai(flllAi)3/,.
THEOREM 4.5. Let SP be standard and commutative and otflai’y ,. Then

M(fla) tqAv-=>(llA)a(ll{a Alpr (a) i}), .
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The proofs of both Theorem 4.4 and Theorem 4.5 require that any pair of actions
b i, b in the sequence/3a not be related.

The substitution of/3 aw, aw e Aw(fl a, a e AR) in Theorem 4.4 (4.3) gives us
the right- and left-mover properties"

aaiaJwy ,
^ ]==otaJwaiy

aaaiy .,
^ iS j:: aaiay Y).

Throughout this chapter we have assumed every system of processes to be standard
and commutative. For the main semaphore-mechanisms we list their features (standard,
commutative, IO-limited, uniform) in Table 1 without proof (c, Cl,""’, Cr IN).

TABLE

Mechanisms Predicates Operations Features

PV [9] /3 ^ yj => yj := yy- standard, comm.
/3 y := yy + 1 IO-lim., uniform

PV-chunk /3 ^ y -> c yj := yy- c standard, comm.
[26] /3 y := y + c IO-lim.

PV-multiple i=l^y.il>=l,’’’,yjr>--I Y.il:=Y.il--1,’’’,y.ir:=Y.ir--1 standard, comm.
[24] fli Y.il := YI + 1,. , Yir := Yir + IO-lim., uniform

PV-general /3 ^ Y]I --> 1," Yjr -> Cr Y]I := YI cx,. , Yjr := Yr- cr standard, comm.
[8] fli yia := yjl + Cl," , Yr := Yr + Cr IO-lim.

UP-DOWN /3 ^ yj ->_ 0 Yk := Yk +
j{jl,’",jm}

[4] fli ^ yy >= 0 Yk := Yk
j{jl ,...,jm}

PV-extended fli ^ yj >= 1,. , Yr => y := yl 1,. , Yyr := Yr- IO-lim.
[1] ^ yjr,=O," ’’, y.ir,,=O

/3 i= YI := Yr + 1," ", yyr: y.r +

LOCK/UNLOCK
fli ^ Y.i yi := 0 standard, uniform

[9] /3 y := IO-lim.

Note, that the above definitions of PV-operations are so-called weak PV-
operations [11], [25]. Strong (resp. blocked-set) PV-operations [11], [25] include
additionally a fairness characteristic (resp. a preference to already waiting actions).

4.2. Uniform systems o| processes. In this subsection we will prove a characteristic
of uniform systems which are necessary for the proofs in the next chapter. The following
theorem is only valid for deadlock-free systems. Since the definition of deadlock-free
contains dynamic properties of a system, we have to restrict the choice of the states
to the reachable states.

THEOREM 4.6. Let SP be uniform, deadlock-free and finite, PNP an equivalence
class induced by pnp where all actions of PNP work at most on one synchronizer
variable yj (IO (PNP-A) ={yj}), z a reachable state (z [l). Then for every action
a PNPfqFw(z) there exists a transition sequence *1 in z so that every other process
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A __. PNP (j i) has already terminated in z, 9] (pr (F(z, 9])) VI (pr (PNP)-{i}) =)
but there is no action of process that has occurred in 9] (i_ pr (M(9]))).

Proof. We will construct the transition sequence 9]. Let F’ (F(z) f’IPNP)-{a i}
denote all available actions of PNP in z without a i. If F’=, pr(F(z,9]))fq
(pr (PNP)-{i})= ^ pr (M(9])) is trivially satisfied by 9] e.

Assume F’ tq (z) with F’ . Consequently, an action b F’ f’) Aw working
on the variable yj exists (IN (b) {yj}). Since SP is uniform the action a is not ready
in z. (Assume a ready. This implies b (z) since SP is uniform.) Therefore, (z)
PNP is empty. Since SP is deadlock-free there has to be a transition sequence 3’ in z
with b (z, 3’) f) PNP and M(3’) f) PNP=. Because of Property (D) there exists an
action c M(3’) with OUT (c) f’) IN (b)

_
{y}. The action c has to be an element of PNP

because {c, b} is not interference-free. This contradicts M(3’)VI PNP=. Moreover, it
contradicts F’ (q (z)=. This way we have found an action b F’ VI (z). This is the
first action of 9]. With a finite repetition of the above (SP is finite) we can construct the
transition sequence 9] only by actions of processes pr (PNP)-{i}.

Note that Theorem 4.6 is only valid because we did not assume any fair scheduling
discipline. The theorem could be refined somewhat if we want to add fairness require-
ments [16].

5. Power of semaphore-mechanisms. Here we will give the results according to
our definition of power of mechanisms (Definition 3.4). Other definitions of power
may result in other hierarchies, see 6.

By we denote the set of all PV-systems according to Table 1. Comparing
PV-systems with other semaphore-mechanisms, we observe that they differ in power
only if we limit the number of semaphores and/or their domain. Consequently, we
denote by (d, m) the set of all PV-systems with at most m synchronizer variables
y,. , y, out of a domain [0: d]. Therefore, (1, m) is the set of systems using only
binary semaphores [9].

Since PV-systems are IO-limited, the sets AV {a Aly IO (a)} are disjoint for
different j. We augment AV if necessary by the use of subscripts R, W according to our
previously introduced conventions. The next theorem characterizes (d, m)-systems.

THEOREM 5.1. Suppose m,d[ and P38(d,m). Then for any transition
sequence 9] in a reachable state z of [l and any j [1: m] the following implication holds

lg (9]IAVi.R)> d=:>:laAV.w, b, c AVj,R, 911, 9]2, 9]3, 914 A*

Proof. Assume first that there is no a sAV,w in 9] (AV,w fqM(9]) =). Since
z(y)s[0: d] and lg (nlIAV,)> d leads to z,9](y)> d, P is not an element of
33(d, m). Consequently, our assumption is false and we can write 9] as

9] aafl.

Suppose that a does not contain an element of AVj,R (M(a)fq AVi,R -’-’@). This leads
to lg (fl []AV,R) > d. We may conclude that there has to be an a s AVi,w in 9] with an
action of AV,R before it. In the same way the assumption M(fl)OAVi,R=@ is a
contradiction.

Therefore, we can rewrite 9], without loss of generality, as

9] 911 bg]2ag]3914, b, c AV,R.

Let us assume that for any such c’-]p(ag]3c) holds. Applying Theorem 4.1 to all actions
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c AVj,R gives us

7’ 71b75a76 ,
^ lg (71b7611AVj,R) > d.

Therefore, we can conclude that there exists an a and c with p(a73c). [3
On the basis of this characteristic of (d, m) we are able to prove the main

theorems of PV-systems.
THEOREM 5.2 (power concerning variables). Let d, m t. Then

3(d, m) <3(d, m+ l).
2

THEOREM 5.3 (power concerning domain). Let d, m N. Then

(d, m) <3(d+ 1, m).

Here we will only deal with Theorem 5.2. The theorem states"
(1) Any PV-system with m semaphores in a domain [0: d] may be simulated by

a PV-system with m + 1 semaphores in a domain [0: d] without a change in
minimal parallelism

(2) There exists a PV-system with m + 1 semaphores in a domain [0: d] which
may only be simulated by a PV-system with m semaphores in a domain [0: d]
and a minimal parallelism reduced by 2.

Stating that every system may in principle be simulated, is a typical result. However,
our results emphasize a different qualitymparallelism.

Proof of Theorem 5.2. Case 1. 988(d, m) <= 8(d, m + l). Since 8(d, m)
(d, m + 1) and every system Pc 3(d, m) simulates itself 0-weakly, the statement
is immediately valid.

Case 2. :iQ 33(d, m+ 1). (]P 33(d, m)(P simulates 0-weakly Qv P simu-
lates 1-weakly O)).

We will consider the following system:

Q=(V, W, Zo, A),
y._ (31 2.(re+l),,’’’, 3 YX," Y,,+I),
W- ({/1, ", la, to},..., [0: d],’’’, [0" d]),

ZO--(II, ld+I," ,O," ,O).

A is given informally for ease of understanding:

A1" at: V(yl); A2: a: P(Yl);

ala: V(y), goto to; a" e(y), goto

A2-’" a2 -’’ V(yi); A2i" a2’: P(Yi);

a2a’-1" Y(y,), goto to; a: P(y), goto to

with [1" m + 1 ].
The subscripts of the actions do not correspond to our conventions, since al

2 should
be noted as a/l or in general a should be noted as aij_l).a/r. However, this notation
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is unique and more convenient. Several features of Q are obvious"

Q 2(d, m + l);

Q is deadlock-free and finite;

MPo = m + 1, where the equivalence classes implied by pnpb are

PNP1 A t_J A2. PNPi A2i-1 I,..J A2i.

First we assume a system P= (V’, Q’, z, A’) to simulate Q 0-weakly by rep with
P3(d,m). Any execution of P incorporates two actions _2-1 2

_(-’/1 _a with
rep (_a2i-1 a21i) a2 i-1 a zi

1, since P simulates Q by rep2. Furthermore, the simulation
specification implies p(_a2-lr/_a2) for any transition sequence _a12i-lrt_a2 by Theorem
4.1. Theorem 4.3 and Definition 3.2 imply the existence of the following equivalence
classes (by pnpo)"

PNP
_
A’1 t.J A’2" PNP A’2i-11,.J A’2i. ie[l: re+l].

Since other equivalence classes cannot contain visible actions due to Definitions 3.3(a),
(d) and 3.2 we are only concerned with the above ones. If all these equivalence classes
are different, they have no common variables. Since tg(_a2-lrt_a2) implies the existence
of at least one synchronizer variable in processes 2i-1 and 2i and since there are
only rn synchronizer variables available in P, the above equivalence classes are not all
different.

This contradicts MPp-g rn + 1, where g denotes the number of equivalence
classes with no visible action.

Now we assume P to simulate Q 1-weakly by rep. The notation PNP will stand
for the equivalence class, which has to contain at least four processes as stated above.
Without loss of generality, let A’1, A’2, A’3, A’4 be these four processes. Suppose that
the actions of PNP use more than one synchronizer variable (# IO (PNP-An)> 1).
This contradicts immediately MPe-g m because of what we stated above, since the
other m 1 equivalence classes have only m 2 synchronizer variables at their disposal.
Consequently, IO (PNP- AN) {yj}, j [1: m] holds.

Let us consider the following execution:

with rep (_aj) a j.
3Since ae A(e) of Definition 3.3 implies _aeA the statement lg (3’IIAV,) > d

holds. By Theorem 5.1 we conclude

:la AVe,w, b, c {_al, .., _a]}, 3’1, 3’2, 3’3, 3’4 A*( 3"1b3"2a3"3c3"4=-3" ^ p(a3"3c)).

Let us assume that every such a is not an element of processes 1 and 3. Since a and
c are related by 3’3, there has to be an action a’ A%c) f"l M(3"3). However, a’ is related
to c and therefore the assumption is false. Without loss of generality, let pr (a)= 3.
We rewrite r’ so that

0"= r/ 3’12a3 3’34’02 ^ M(3’34) [’] {_a 13, _a]} ^ a
3 AVj,w.

Without loss of generality, we assume in this proof pr (a)=pr (rep (a)) for every visible action.
In connection with Definition 3.3 we have noted that condition (e) is not necessary, but that we have

added it to simplify our proofs. This is the case here, since by additional considerations, we could also
conclude _a An.
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Taking z z. T]l12, we see that all preconditions of Theorem 4.6 are satisfied.
Consequently, there exists a transition sequence/31 with

TI1212 A M(/32) (A U A) (R) ^ M(/31) A3 .
Since rep () has to be an execution in Q, every action of A has to be an element of
rep (7). In rep (r/1712) at least one a 3i is missing by the construction of r’. However,
all actions {a12, a, a, , a} are part of rep (/31). This contradicts the simulation
specification. This again contradicts the assumption, that P simulates O 1-weakly.

The reader might be interested now to see a 2-weak simulation of Q. We will show
the principle of such a simulation for m 3 and d 1.

Example 5.1.

O=(V, W, zo, A),

V= (/31,/3:,/33,/4, j35,/36, Yl, Y:2, Y3),
W= ({/1, 0}, {12, 09}, {/3, 09}, {/4, 09}, {/5, 0}, {/6, 0}, [0" 1], [0" 1], [0" 1]),

Zo-" (ll, 12, 13, 14, 15, 16, 0, 0, 0),

A={a" V(yl), goto o;

a: P(Yl), goto o;

a: V(y), goto o;

a: P(y2), goto

a: V(y3) goto

a: P(Y3), goto o}.

To facilitate the understanding we denote P rather informally. Every V(yi)-operated
is substituted in P by

P(Yl);

xi := true;

x4 0 V<
and every P(yl)-operation is substituted by

label" P(Yl);
if not xi then

begin
X4 :’-- X4-[- 1; V(yl);
P(y2); x4 := x4 1
iI x4 =0 then V(yl) else V(y2);
goto label;
end;

The above framed actions are the visible actions. At a first glance the reader may
doubt that the system P is busy-wait-free (Definition 3.3(c)). However, the processes
can repeat a test of xi if and only if at least one other process has executed the substitute
for V(y). Since only a limited number of V(y)’s exist, the test on x is also limited.
Note, that the simulation uses split-binary-semaphores [10].
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Without proofs we list in Fig. 1 the hierarchy o1 semaphore-systems, where

3(d, m) denotes PV-chunk systems with m variables and domain [0: d];
3313(d, m) denotes PV-multiple systems with rn variables and domain [0: d];
St(d, m) denotes PV-general systems with rn variables and domain [0: d];
(d, m) denotes PV-extended systems with m variables and domain [0: d];
a directed arc from to (C) labeled by c denotes (C) < ;
a directed arc from to (C) without a label denotes (C) <1;
an undirected, unlabeled arc between 3 and (C) denotes (C) <= 3 ^ 3 =< (C);
m,d;
[xJ is the smallest number () with [xJ _-> x.

336(d + 1, m + 1) 33@(d+ 1, rn +

[(m+ 1)/2J [(m+ 1)/2J

33(d + 1, m+ 1) 33J(d+ 1, m+ 1)

1

33(d, m+ 1) 393(d, m+ 1)

FIG. 1.

Here, we will treat only those proofs of the stated results, which are not simple analogies
of the proof of Theorem 5.2.

THEOREM 5.4. Let d, m and d > 1. Then

8(d, m) > 3(d, m).
tin/2/

Sketch of the proof of Theorem 5.4. We use a system Pc 3g(2, m) with the
following actions"

Ap" at" P(Yl); a21" V(yl);

al: V(y12), goto o; a22: P(y[2), goto o;

a2 m-l" P(Ym); ai’" V(y.);

a22"-1’ V(Yml2), goto to a22"" P(y.[2), goto to;

zo(Yi)=O, i[1: m].
The system P is not uniform because IN (a22)

_
IN ((Zo* a2) fq Aw) does not imply

a2 ready in Zo* alE. This verifies one feature of PV-chunk systems in Table 1. Now
suppose Q 8(d, m) is a system which simulates P c-weakly. First we tackle the
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assumption that any pair of processes A-1 and Aj (i [1" m]) works only on one
synchronization variable. Since the simulation specification and the busy-wait-free
condition have to hold, everyA-i has to have a waiter action. Consequently, Theorem
4.6 contradicts the simulation specification and the assumption cannot hold.

Therefore any pair of processesA-1 andAworks on at least two synchronization
variables. [3

The next three theorems will show that more restrictive mechanisms can simulate
less restrictive mechanisms 0-weakly.

THEOREM 5.5. Let d, rn . Then

33Y1 d, rn <= 2 d, rn

Proof. Let P be an arbitrary element of 33r(d, m). Consequently, any syn-
chronization operation a AW,R has one of the following forms

a: V(y,,. , Yr), goto ; a: P(y,,. , yr), goto ; A t_J {to}.

We will denote the equivalence classes implied by pnp, by PNP1, , PNPl. Construct-
ing the system O32(d,m) can now be accomplished by the use of the sets
PNP1, ", PNP/. First, we consider the case IO (PNPi-AN)= 1. In this case every
action of PNPi-AN is already a "normal" PV-action. All actions of PNPi will not be
changed by the transformation to O.

Next, we treat IO (PNPi-AN)> 1. Therefore we are able to choose two
variables vii, vi2 from IO (PNPi-AN). These two variables will do all synchronization
in O, which corresponds to the synchronization expressed by PNPi in P. The variables
vii, vie will only be binary semaphores in O, i.e., d 1 is included. For every variable

yj of IO (PNPi-AN) we use a nonsynchronization variable Sj in Q, $ memorizes the
value of the original yj, and an additional waiter count waiti for all actions PNPi- AN.
Now, O is constructed by substituting every action a: V(yt," ", Yr), goto i PNPi by

(*) bl: P(vil);
b2: $, := $, + 1 $, := $, + 1, goto if waiti 0 then b3 else b4;

b3: V(Oil), goto ;
b4: V(vi2), goto ti;

and every action a’" P(y,..., y), goto PNPi by

(**) b: P(Vil);
b: goto if St > 0 ^" ^ $ > 0 then b o else b;
b: waiti := waiti / l"
b’4: V(Vil);
b." P(vi2);
b’6: waiti := wait-
b: goto if wait 0 then b else b;
b" V(Vil), goto b;
b" V(vi2), goto b;
b0" $ := $- 1 r 1-- r- 1;
blm V( vil), goto ;

The initialization is Zoo(j)=Zop(yj), Z0(Vi)--1 Z0(Vi2)=0 and wait=O for any
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PNPi. The representation for an action b Ao is

b if bAp,

a ifb=b3, b4,
rep (b) a’ ifb=bl,

e otherwise.

This is a somewhat informal definition since the unique association for any
a: V(yt,’", Yr), goto d; resp. a’: P(yt,’", Yr), goto d; to their substitutes (,) resp.
(**) has been omitted.

We will first prove that Q simulates P. Relating the variables of the two systems
we need a function f from a set of actions to Z"

{ ! ifblA,
f(A) if b4, b3 A,

otherwise.

(1) VyeO(zoo),]e[l: m],ie[l: n]

(z,%, rep (y)(yj)= Zoo* y($j)+f(F(zoo* y)) ^ z0* rep (y)(xi)= Zoo* y(xi);

The proof of (1) is established by induction on the length of 3’. The basis holds by the
initialization. For the induction step we consider all possible actions a Ao. Since the
transformation of P does not affect actions a e Av we only have to look at AR,, U Aw,,.

(2) Vr o(rep (tr) p).

Because the preconditions for the execution of a resp. a’ in P correspond to the tests
in b2 resp. b by (1) the statement (2) is easily proven by induction on the length of
the suffix for any computation r.

(3) Vr p(=ltr’ o(rep (tr’) tr)).

We construct tr’ replacing every a (resp. a’) in r by the corresponding blb2b3 (resp.
b’lb’2b’ob’l]. By induction, r’ is proven a transition sequence in Zoo. It is left to prove
that Q simulates P O-weakly:

rep respects the unity of the processes. Consequently, Definition 3.3(a) holds.
Discussing the deadlock-freeness of Q and P we do not consider actions a out
of Awe U AR, which have not been transformed, i.e., 4 IO (PNP-Av)= 1,
a e PNP.

Assume P is not deadlock-free, i.e., an execution r with a e F(zo* tr)-(z%,
For any tr’ with rep (r’)= tr the corresponding test in b must have failed by (1) and
Q has b’ser(zoo*O")-(Zoo*r’).

Assume O contains an execution r ending in a deadlock. If a

F(z0o * o-) (Zoo * o-) D exists there is an analogous deadlock in O by (1). Now,
assume b, b e D. Because no other action is ready in this state the last execution of
an action b must have been followed by an action b4. b4 could only happen, if waih > 0
and another process has b; available, b leads always to b. This is a contradiction to
b, b e D and Definition 3.3(b) holds.

A busy-wait can only occur in an infinite loop containing only nonvisible actions
in O. The additionally introduced loop starts with b and ends with b or b;.
Since the repetition of the loop has to be unbounded, an unbounded number
of actions b" P(via) are executed. This is only possible, if an unbounded number
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of actions b(" V(vsz) occurs (the action b4 cannot occur because this action is
visible). This implies that waits had an unbounded value. Since waits is not
greater than the number of the processes (k) such an infinite loop is not possible.
The Definition 3.3(c) holds with e 11. k.
The equivalence classes implied by pnp are the same for both systems apart
from the replacement of bl"’" b4 resp. b... bl instead of a resp. a’.
By rep (a) ARp=::>a ARo the last part of Definition 3.3 holds immediately.

Consequently Q simulates P 0-weakly.
THEOREM 5.6. Let d, m N. Then

33(d, m) =< 3(d, m).

After replacing the tests and the expressions in the proof of Theorem 5.5 by the
more general forms of the PV-general systems the proof of Theorem 5.6 is complete.
By the above two theorems and the trivial statements 3(d, m) <= 33(d, m) and
2(d, m)=<(d, m) the undirected arcs of Fig. 1 are valid. Theorem 3.1 allows
us to extend the hierarchy as shown in Fig. 1.

TEOREM 5.7. Let d, meN. Then

/P 32((d, rn)
(:10 3(1, 2), m’ [0: m- 1](O simulatesPm’-weakly)).

Proof. Since O is an element out of 3(1, 2) we may use two binary semaphore
variables--say vl, vz. For every synchronization variable yj(j[l: me]), we use a
nonsynchronization variable Sj. wait is the additional waiter count. O is constructed
by substituting every action a Anp resp. a Aw,, by (,) resp. (**) as in the proof
of Theorem 5.5. While the original transformation (see the proof of Theorem 5.5)
used separate synchronization variables vsl, vsz for every equivalence class, this transfor-
mation uses only two variables vl, v. for the union of all equivalence classes. All the
results of the proof of Theorem 5.5 are consequently valid with the exception of equal
number of equivalence classes implied by pnp, (resp. pnp). Since m different
equivalence classes could have collapsed to one the simulation is at least a (m 1)-weak
simulation. [3

This last theorem proves that two binary semaphores are capable of doing all
necessary synchronization but the loss of parallelism may be substantial.

6. Comparison with related work. Most related work is based on Lipton’s thesis
and notion of "simulation" [17]. Here we call his notion "strong simulation" as the
comparison between the results implies it. The following definition is due to Lipton
with a slight change in (a).

DEFINITION 6.1. Let SP V, W, z0, A) simulate SP’ V’, W’, z, A’) by rep.
Then SP simulates SP’ by rep strongly iff

(a) for every pair of visible actions a,bA pr(a)=pr(b)cpr(rep(a))=
pr (rep (b));

(b) there exists an e N so that for any transition sequence r/ in Zo lg (r/)-<_
(lg (rep (r/)) / 1). e;

(c) for any transition sequence rt in Zo pr ((z.rep (r/))) c__ pr ((Zo* r/)).
Condition (c) prohibits the replacement of an action a’ A’ by a sequence of actions
which may introduce additional waiting for a process of SP.

Example 3.1b. G simulates H by repl, but not strongly, because with 7 a
pr ((Zo, * e)) {2} pr ((Zo* a)) {1}.
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In Fig. 2 we give the main results of Lipton [17], [I 8], Lipton, Snyder and Zalcstein
[19], where a directed arc from 3 to (C) denotes the existence of a system P 3 such
that there is no system in (C) which simulates P strongly.

FIG. 2.

At a first glance one might suspect that for deadlock-free systems strong simulation
implies 0-weak simulation. In general, this is not true because Condition (c) of
Definition 6.1 is a "dynamic" property and Condition (d) of Definition 3.3 is a more
"static" property. To understand this difference let us suppose SP simulates SP’ with

ntwo equivalence classes implied by pnp, (resp. p Psr,,). Now we add an action V(yj)
(resp. P(yj)) to any process of SP (resp. SP) with yj a new synchronizer variable and
z(y) > for any reachable state z. This synchronization is useless but the simulation is
strong and 1-weak. For "useful-synchronized" systems strong simulation implies 0-weak
simulation.

Recently, Stark [25] worked on the relative power of semaphore primitives. The
notion of relative power is given by posing and answering questions of the form" Under
certain natural constraints, is it possible to implement starvation-free mutual exclusion
with a given kind of semaphore? Stark proved that weak general semaphores are more
powerful than weak binary semaphores for a certain subclass of solutions to the
starvation-free mutual exclusion problem. Since our definition of semaphores corre-
sponds to weak semaphores (see note after Table 1), this result seems to contradict
Theorem 5.7. The reason for this diverging result is Stark’s finite-delay property: If
an action remains continuously ready from a certain state on, the action has to be
executed eventually. This property corresponds to the definition o just [16]. With this
property in mind let us look at our simulation of the action a" P(Yt,’", Y,) in the
proof of Theorem 5.7. If we assume a to be continuously ready from a certain state
on, this action has to be executed once. Replacing a by the sequence, of actions as
given in the proof of Theorem 5.7, we cannot ensure that any action of the sequence--
especially bmis always ready in the corresponding state sequence. Consequently, b
and bl are not forced to happen after some finite delay. Interestingly, our simulation
fulfills the stronger fair property [16]: I[ an action is infinitely often ready, the action
is infinitely often executed.

7. 12onlusion. This paper introduced a refined method to analyze the power of
sets of systems of processes. A comparison with already known methods showed that
our approach produces more realistic results.

We have dealt only with semaphore-mechanisms in this paper. However, it is
possible to compare other synchronization mechanisms using the same ideas in
appropriate models.

Looking at the results of this paper it is evident that even using very few syn-
chronizer variables, every synchronization problem can be implemented. However,
our results show the difference in qualitymi.e, parallelism. As a consequence any

4 The rightmost arc in Fig. 2 is not part o[ the literature, but is easily added using [18, Thm. 7, 8] and

P with Ap={a: when ill._ 11 ^ Yl =0 do t :=09, a" V(y), goto to}, Zo(y) =0.
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solution for a synchronization problem should be checked for any restriction of
parallelism. Any restriction of parallelism introduced by a compiler for a language
incorporating parallelism is even more serious. Such a restriction is difficult to realize
for a user since a single run of a nondeterministic program is not a measure for the
quality. Consequently, any compiler should give information about the real parallelism
of the compiled code.

Usually the number of variables and the values they may assume determines to
some extent the complexity of programs. Our results illustrate that simple, elegant
solutions may imply a reduced parallelism.

Acknowledgment. Thanks are due to the referees for their suggestions which
improved the readability of this paper.

Appendix (list of symbols).

a

AN
AR
Aw
adr (a)
B

b
ea
E

r(z)

IN(a)
lg (/)
/’nsp

MPse
nsp
OUT(a)

pnp
pr(a)
(z)
XlgN,R,W
33(d, m)
rep
SP
sP
O(z)
V
W

action
set of actions
action of process
set of actions of process
function of a
set of nonsynchronizer actions
set of releaser actions
set of waiter actions
label of action a
domain of/3 (labels)
program-counter of process
ordered set of program-counters
predicate for an action a
empty sequence
available set in state z
restriction of F to AN resp. AR resp. Aw
input variable of a
length of r/
number of synchronizers in SP
elements of the sequence r/
number of equivalence classes implied by pnpp
number of nonsynchronizers in SP
output variable of a
set of reachable states of SP
stop-symbol for a program-counter
potentially not parallel relation
process of a
set of ready actions in state z
restriction of to An resp. AR resp. Aw
set of PV-systems with m variables out of a domain [0: d]
representation of a simulation
system of processes
set of executions of SP
set of transition sequences in z
variables of a system
domain of V
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X

Z

[m:n]
him:n]

nonsynchronizer variable
ordered set of nonsynchronizer variables
synchronizer variable
ordered set of synchronizer variables
a state
an initial state
set of states
cardinality of the set N
restriction of r/to N
the set of m, rn+l,. , n
subsequence of r/from the ruth element to the nth element
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n-RATIONAL ALGEBRAS I.
BASIC PROPERTIES AND FREE ALGEBRAS*

JEAN H. GALLIER"

Abstract. A (strict) hierarchy of algebras in which only certain "constructive" chains have a least upper
bound is studied. Such algebras, called n-rational, are "ideal" interpretations for finite recursion schemes
of higher types. Indeed, the constructive chains that have least upper bounds in these algebras are obtained
by unfolding rational recursion schemes of higher types. Part of this paper deals with basic properties of
these algebras, the existence of free algebras in particular. In Part II [SIAM J. Comput., 13 (1984),
pp. 776-794 ], varieties and a logic of inequalities are studied. A proof system with one infinitary inference
rule is shown to be complete.

Key words, algebraic semantics, recursion schemes of higher types, infinite trees, fixed-points, varieties
of algebras, logic of inequalities

1. Introduction. The main goal of this paper is to study further the semantics
and (inequational) logic of recursion schemes of finite types as defined by Damm [11],
[12], [13]. More specifically, this paper is concerned with defining the (strict) hierarchy
of what are called n-rational algebras, and with investigating certain of their mathemati-
cal properties.

The motivation for studying n-rational algebras comes from computer science.
Essentially, the n-rational algebras are those in which one can solve nth level recursion
schemes by means of least fixed-points.

In this paper, we follow the approach in which a program is defined as a pair
(scheme, interpretation), where an interpretation is an algebra with a certain order
structure (so that fixed-point equations induced by programs can be solved). The
meaning of a program is taken to be the function (derived operator) induced by an
infinite tree associated with the scheme (and obtained by "unfolding" the scheme).
Following Nivat [33], we will refer to such a semantics as an algebraic semantics. There
are two other equivalent definitions of the meaning of a program" one using a least
fixed-point approach, the other using an operational approach in terms of computation
sequences. The reader is referred to Guessarian [27] or Nivat [33] for further details.
Adopting the "algebraic semantics" has the advantage that semantic questions are
reduced to questions about certain infinite trees. Hence, techniques used in studying
such trees, such as formal language theory and algebra, can be used to answer semantic
questions.

Using program schemes, one can study the properties of a class of programs, such
as the family of all programs defined by a class of interpretations. Interesting properties
about programs include extension, equivalence and various forms of correctness. One
may also be interested in semantic-preserving program transformations, as in
Courcelle [7].

In most applications, a class of interpretations arises as the class of models of a
set of first-order axioms. In particular, equational classes of interpretations have been
studied by Guessarian [26], [27], Courcelle and Nivat [10], Courcelle and Guessarian
[8], Courcelle [73 and Nivat [33].

* Received by the editors June 24, 1981, and in final revised form June 21, 1983. This research was
partially supported by the National Science Foundation under grant MCS-8111726.

" Department of Computer and Information Sciences, Moore School of Electrical Engineering D2,
University of Pennsylvania, Philadelphia, Pennsylvania 19104.
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The main technical tool for studying classes of algebras is the notion of a Herbrand
(or universal) algebra. For example, two schemes are equivalent for all algebras in a
class, if and only if they are equivalent in the Herbrand algebra for that class.
Unfortunately, for arbitrary classes of algebras (even classes of models of a set of
axioms), the structure of the Herbrand algebra is intractable (see Courcelle and
Guessarian [8] and Guessarian [27]). It is only reasonably tractable for equational
classes (Courcelle and Nivat [10]), and, even in this case, requires a "completion
operation" (to imbed an ordered algebra into a continuous algebra).

The problem arises because in this approach, an interpretation is defined as an
to-continuous algebra. This means that carriers are partially ordered sets in which
every countable ascending chain has a least upper bound. This approach in which all
(countable) chains are considered is directly inspired by the seminal work of Scott
[37], [38], [39], [40]. The problem with to-completeness is that it is not preserved by
certain operations, images under homomorphisms and quotients, in particular. It is
therefore necessary to use completion constructions in order to regain to-continuity.
Thus, the theory of varieties of to-continuous algebras is rather complex. A detailed
study of such varieties can be found in Meseguer [31].

However, as first noted by Elgot [14] and then by Goguen, Thatcher, Wagner
and Wright [2], Tiuryn [44], [45] and Gallier [20], [21], to-continuity is a "luxury",
and weaker notions of completeness requiring that only certain "constructive" chains
have a least upper bound work just as well, if not better.

In this paper, this idea is exploited further, by defining a (strict) hierarchy of
classes n-R-ALG of algebras such that for each n => 0, algebras in the nth class contain
least upper bounds of certain constructive chains. These chains are obtained by
"unfolding" certain "rational" recursion schemes of level n (see Damm [11], [12],
[13], Engelfriedt and Schmidt [16]). Algebras in the nth class are called n-rational.
The n-rational algebras are well-behaved with respect to images under homomorphisms
and quotients and, in particular, to form quotient algebras one just takes the algebra
of equivalence classes. These algebras are ordered (Bloom [4]), ending for n 0 with
the ordered regular algebras of Tiuryn [44], [45], [46], [47], [48], and forming a (strict)
chain of inclusions

C-ALG c_ (n + 1)-R-ALG,-. c_ n-R-ALG,, c____
R-ALG 0-R-ALGa:,

where C-ALG denotes the class of to-continuous algebras. Using results from formal
language theory (Courcelle [7], Datum [11], [12], [13], Gallier [19]), it can be shown
that the hierarchy is strict for n 0, 1, 2. Using recent results of Damm [13], based
on complexity arguments (the notion of rational index), it is shown here that the entire
hierarchy is strict (see Theorem 3.11).

The technical device used for defining recursion schemes of higher types is the
notion of a derived alphabet which was first used by Maibaum [30]. The operators
used in derived alphabets are similar to typed combinators (Hindley, Lercher and
Seldin [28]). Indeed, there are composition, abstraction and projection operators.

In the first part of this paper, basic properties of n-rational algebras are established,
such as the existence of free algebras and the characterization of subalgebras generated
by a subset. Free n-rational algebras have a particularly nice structure: they consist
of infinite trees obtained by first "unfolding" a rational recursion scheme of "level
n", and then applying a mapping (usually called yield or betan) in order to perform
certain substitutions (Engelfriedt and Schmidt [16], Datum [11], [12], [13]).
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In Part II (this issue, pp. 776-794), varieties of n-rational algebras satisfying a set
o inequalities and the corresponding logic are studied. The varieties under consider-
ation are classes of n-rational algebras satisfying sets of inequalities of the form tl =< t2,
where tl and tz are (possibly infinite) n-rational trees in the free n-rational algebra
n-RTr.(X) over the countable set of variables X. We first show that there is a bijective
Galois connection between classes of inequational varieties and certain n-rational
(pre-)congruences, generalizing "fully invariant" congruences (Cohn [5]). Then, we
characterize the least n-rational precongruence induced by a set o (infinite)
inequalities, using a proof system with one infinitary inference rule (the "lub" rule).
We then prove the completeness of this (infinitary) proof system. If we consider sets
of inequalities between finite trees, we obtain a simpler infinitary inference rule, which
looks very much like an induction rule. In that case, we can also prove that the preorder
induced by the inequalities is "algebraic" (or inductive) in the sense of Courcelle and
Nivat [10]. The Herbrand algebra of an inequational variety is obtained as a quotient
of a free n-rational algebra, and does not require a completion operation.

The logic that we are investigating is a logic in which certain constructive infinite
terms (really trees) are allowed. We have only considered a simple [ragment, namely
the logic of inequalities. Unfortunately, even for n 1, the set of valid inequalities is
not even recursively enumerable. This has been shown by Courcelle [7] and follows
from the undecidability o the inclusion problem or simple languages proved by
Friedman [18]. Hence there is no hope for a recursive axiomatization. However, we
have found a complete axiomatization involving one infinitary inference rule. We leave
to interested logicians the study of the ordinals measuring the size of the (countable)
well founded proof trees arising in such proofs. There might well be connections with
studies of recursive functionals of finite types arising in proof theory (Schutte [35],
Feferman [17], Schwichtenberg [36]).

The full paper being rather long, it has been divided into two parts.
We now outline the contents of Part I. In 2, we review a number of concepts,

derived alphabets and rational schemes of level n in particular. The classes of n-rational
algebras are defined in 3. The existence of free algebras is shown, and it is proved
that the hierarchy (n-R-ALGa),__-0 is strict. In 4, we give a characterization of the
least n-rational subalgebra generated by a subset. We also characterize morphisms of
n-rational algebras, in the manner of Tiuryn [44], [45]. Section 5 is devoted to a study
of n-rational derived operators. We show that they orm a (n-1)-rational derived
algebra. This has the interesting consequence that the nth derived algebra is
0-rational. In other words, rational schemes over (derived) level n functionals have
least fixed-points. In 6, we mention problems which to the author’s knowledge are
still open.

Many ideas in algebraic semantics, parameterized schemes in particular, are due
to Wagner [49], [50], [51]. The papers by Engelfriedt and Schmidt [16], Damm [12],
[13] and especially Tiuryn [44], [45], [46], [47] were also sources of inspiration for
this work. We have chosen to use standard universal algebra as presented in Cohn [5]
or Gratzer [25] instead of a more categorical approach as in Meseguer [31 or Lehmann
[29]. A categorical treatment using algebraic theories is probably possible. We leave
this as a topic for further research, hoping that our research will contribute to such a
treatment.

2. Preliminaries: infinite trees, algebras, derived alphabets. First, we review some
definitions, especially those of derived alphabets and derived algebras, which are basic
tools in our study of hierarchies of rational algebras.
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DEFINITION 2.1. Sons (or types). By a set of sorts we understand any nonempty
set S. Sorts are usually intended to be primitive data types.

DEFINITION 2.2. S-ranked alphabet. An S-ranked alphabet or signature , is a
family (E(u,s))(u,s)s.s of disjoint sets Eu, indexed by the pairs (u, s) in S*x S (S*
denotes the set of all strings over S, the empty string being denoted by e). Intuitively,
if u U un, each symbol f in E,s represents an operation taking n arguments, the
ith argument of sort u, and yielding an element of sort s. We say that f has type (u, s),
arity u and sort s. Symbols of arity e are called constants. In the rest of this paper, we
will assume that a special symbol (the bottom symbol) denoted a_ is adjoined to every
alphabet Ee,. For readability, we drop subscripts whenever possible.

DEFINITION 2.3. Tree domain. A tree domain D is a nonempty subset of strings
over N+ (the set of positive integers) satisfying the following conditions:

(1) For all u, v in N*+, if uv is in D, then u is also in D.
(2) For all u in N+*, for all in N+, if ui is in D, then, for every j, 1 <-j <-i, uj is

also in D.
DEFINITION 2.4. E-tree. Given an S-ranked alphabet E, a .-tree (for short, a tree)

is a function t" D-> E such that the following conditions hold"
(1) D is a tree domain.
(2) For all w in D, let n =card ({wi]wi D}):

(i) if n =0 then t(w) belongs to some
(ii) if n > 0 and if each t(wi) is of sort u, then t(w) is in Eu, for some sort

s, where u Ul
D is called the domain of the tree and is denoted by dom (t). The elements of

the domain are called nodes or tree addresses. A node satisfying condition 2(i) is called
a leaf. The node corresponding to the empty string is the root of the tree. The sort of
the symbol labeling the root of the tree is also called the sort of the tree. The definition
of a tree using the notion of a tree domain goes back to Gorn [24] (see also Rosen [34]).

The set of all trees of sort s is denoted by CT. and the set of all trees by CT,..
A tree is total if no tree address is labeled with one of the symbols -t-s, and otherwise
we say that the tree is a partial tree. A tree is finite if its domain is finite. The set of
total finite trees is denoted by T,. and the set of partial and total finite trees is denoted
by FT..

Remark. In order to avoid pathological cases, it will be assumed from now on
that for every ranked alphabet , for every sort s, FT contains some tree distinct
from _l_s. We say that such ranked alphabets are nontrivial.

Each set CT (and FT) is partially ordered. Intuitively speaking, tl-<-ta if tl is
obtained from t by replacing any number of subtrees of t with the symbol _1_. Formally,
for every pair of trees tl, tz, the relation tl -< t2 holds if and only if

(1) dom (tx) -- dom (t2); and
(2) for all w in dom (tl), tl(W) .1_ implies that t2(w)= tl(W).

The tree -ks is the least element of CT.
DEFINITION 2.5. Tree composition. The composition (or substitution) of trees is

defined as follows. For each u in S*, let X {x’,..., x,} be a set of variables, with
each x’ of sort u (n [u[ is the length of the string u, and Xe ). Let X={xlu s,
u e S*} and let X U Xs. Adjoining each set of variables X to the constants in
we obtain the set CT,.(X) of trees with variables in X (with CT{:(X)= CTux).
Similarly, viewing X,. as an S-indexed family, we obtain the set of trees with variables
in Xu, CT(X). The variables are used as markers to indicate where the substitution
takes place. Given a tree t’ in CT.(Xo) with Iv[= n, given an n-tuple (tl,"" ", t,) of
trees in CT(X,), with each t of sort v for i= 1,..., n, the composition of (tl," , t,)
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and t’ is denoted by (tl,. tn) t’ and is defined by the function whose graph is the
set of pairs

{(wz, ti(z))lw dom (t’), t’(w) x, z dom (ti) and ti is a tree of sort vi, 1 <= <= n}
U{(w, t’(w))lwedom (t’) and t’(w)C:Xo}.

In the special case where the tree t’ is given by the graph
{(e,f),(1, x),...,(n,x)} (where f has arity v and n---Ivl), the composition
(tx,’’’, tn) t’ is also denoted by f(tl,.’’, t,) or even by ftl"’" tn. The tree t’ is also
denoted by f(x,..., XVn) or even by f. Similarly, the tree whose graph is {(e, a)} is
denoted by a. Composition is extended to tuples as follows: if t= (tl,’", t,,,) and
t’= (t,..., t’), where each t is a tree of sort v in CT(X,), 1 < < m, and each tj
is a tree in CT(Xv), l<=j<=n, Iv[= m, the composition of and t’ is defined as

t’= (to t’l,’’’, to t’).
Given a finite tree t, the depth of the tree is defined as depth (t)=

max {]u] ]u s dom (t)}.
DEFINITION 2.6. Partially ordered sets. A partially ordered set, for short, a poset

is a pair (D, <=) where <= is a reflexive, transitive and antisymmetric relation on D.
If -< is only reflexive and transitive, it is called a preorder.

A poset is w-complete if every countable ascending chain has a least upper bound.
The least upper bound of a chain C is denoted by II C. Note that an to-complete poset
always has a least element denoted by _t. (the bottom symbol).

Let (D, =<) and (D’, =<’) be two posets. A function h:D D’ is monotonic if for
all a, b in D, a =< b implies h(a)=<’h(b). A poset having a least element _t_ is called a
strict poset. If D and D’ are strict posets, a function h:D D’ is strict if h(_t_)= _1_’.

A function h is to-continuous if it preserves least upper bounds of nonempty
(countable) chains, that is, for every nonempty (countable) chain C in D, if II C exists
then II h(C) exists and h(ll C)= II h(C). (Note that this definition does not require
D or D’ to be chain complete.)

It is well known that each CT(X) is an to-complete poset [3]. The following
result is also fundamental.

PROPOSITION 2.7. For every countable chain {tili N} offinite trees, for any finite
tree t, if <-II {tli N} then there is some such that <-_ t. The proposition also holds
for a countable chain of not necessarily finite trees.

DEFINITION 2.8. Ordered algebras. In this paper, we will be dealing with algebras
whose carriers are posets with a least element. We refer the reader to Goguen, Thatcher,
Wagner and Wright [1], [2], [3], Thatcher, Wagner and Wright [41], [42], [43] and
Engelfriedt and Schmidt [16] for more details. Let A (A)s be an S-indexed family
of sets. For any u in S*, let

A" A"I x x A"- where u Ul Un with Ae { e}.

An ordered. E-algebra is a pair ((As)ss, {flf Eu, (u, s) S* x S}) where
each carrier As is a poset with least element _l_s and each f" A" As is a monotonic
function (called an operation). If u e, f is a constant, that is, an element of

An to-continuous E-algebra is an ordered E-algebra such that each carrier is
to-complete and the operations are to-continuous.

Given two S-indexed families A and B, an S-indexed family h =(hs)ss of
functions hs" As Bs, and a string u Ul un in $*, we also denote by h" the function
h "" A - B" such that

h"(al, an) (h,l(ax), h,.(a,)).
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DEFINITION 2.9. A E-homomorphism (for short a morphism) of ordered E-
algebras h:M is an S-indexed family of strict monotonic functions h:A- B.such
that for every function symbol f of type (u, s), f. hs h ". f, (we are denoting the
composition of two functions g:A- B and h:B- C by g. h or gh). Note that for

u e, we have hs (fa) f. A function h which is strict and satisfies the above commuta-
tive diagram but is not necessarily monotonic, is called a weak morphism of ordered
algebras.

DEFINITION 2.10. A E-morphism of to-continuous E-algebras is a morphism of
ordered E-algebras which is also to-continuous, i.e., each hs is to-continuous.

Ordered E-algebras and their (monotonic) morphisms form a category P-ALGa.;
ordered E-algebras and their weak morphisms form a category P*-ALG.; to-

continuous E-algebras and their morphisms form a category C-ALGx.
FTv.(X) can be made into a E-algebra by defining the operations as follows: for

every f in E,,s, for every (/1,""", tn) in (FT,(X)) u, fFT.(X)(tl,’’’, tn)=f(tl,""", tn).
Similarly, CT(X) is made into a E-algebra by replacing FT,(X) by CTv.(X). The.
following facts are well known. Details can be found in Goguen, Thatcher, Wagner
and Wright [3].

PROPOSITION 2.11. For any S-indexed family X, FT,(X) is the free ordered
Z-algebra over X. Similarly, CTv(X) is the free to-continuous E-algebra over X. Recall
that this means thatfor everyfunction h X AfromX to the carrier ofany to-continuous
E-algebra g, there is a unique to-continuous E-morphism h * CT(X) extending h.

x = CT(X)

h

DEFINITION 2.12. Given an ordered Z-algebra M, for each u S*, to each tree
in FT.(X,) there corresponds a monotonic function t’AAs called a derived
operator defined as follows: t(al,’", an)=a*(t) where, for any (al,’", an) in
A (with n lul), a*" is the unique morphism extending the function
a’X A, such that a (x’) ai for 1 -<_ -< n.

A continuous derived operator is defined in the same way for any tree in CT(Xu)
and any to-continuous E-algebra .

Remark. Since a * is a homomorphism, the following holds: For every tree of
the form fh’"t,,,,

t(al,’", an)= f((tl)(al, an),’", (t,,,)(a, an)).
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If t= (tl,""", tn) is a v-tuple of trees in CTx(Xu) with each ti of sort vi ([vl n),
defines a function t A A. Proposition 2.13 stated below shows that the mapping

which associates a derived operator with a tree (or a tuple of trees) is a homomorphism.
We refer the reader to Goguen, Thatcher, Wagner and Wright [3] for details.

In order to reduce the number of subscripts and superscripts, we will denote
(CTx(X,)) by CTx(u, v) and similarly for FTx.

PROPOSITION 2.13. Given any two tuples of trees in CTx(u, v) and t’ in CTx( v, w),
for any to-continuous E-algebra , (to t’). t. t’.

The above proposition suggests that derived operators form an algebra. This is
indeed the case, but it is an algebra not sorted by S but instead by S*x S. It is also
an algebra on a ranked alphabet containing other function symbols besides those in
E, in particular, function symbols for composition. These ideas can be formulated
rigorously as follows. We refer the reader to Damm [11], [12], [13], Engelfriedt and
Schmidt [16] and Courcelle and Franchi-Zannettacci [9] for further details.

DEFINITION 2.14. Given a set of sorts S, the derived set of sorts D(S) is defined
as D(S) S* x S. Given an S-ranked alphabet E, the derived alphabet D(E) is defined
as follows:

D(E) (.J abstu,
where u S*, v S+, s S,
where u S*, s S,
where u S+.

D(E) is sorted by D(S). Each C,,v,s is a composition operator of type
((u, (u, v=)(v, s), (u, s)), (Ivl n), each abst,,s is an abstraction operator of type
((e, s), (u, s)), each 7r’ is a projection operator of type (e, (u, ui)) and each f in Eu,
is an operator of type (e, (u, s)).

Note that symbols in E are now treated as constants, as are the. projections. We
mention the similarity between the above operators and the comlzfinators of typed
combinatory logic, as presented in Hindley, Lercher and Seldin [28]:

Given a set of sorts S and an S-ranked alphabet X, we define inductively D"(S)
and D"(X) as follows:

D(S)=S, D"+I(S)=D(D"(S)), D(E)=E and D"+’(X)=D(Dn(X)).

For simplicity, we often omit parentheses and denote D"(S) by D"S and D"(X) by
DEFINITION 2.15. Given an ordered X-algebra M, the DE-algebra of monotonic

functions over s denoted as 9s, is defined as follows: The carrier s,,s) of sort
(u, s) is the set of all monotonic functions h :A" As; each f in Xu, is interpreted as
the function fa, each r’ is interpreted as the projection from A to A,,, each C,,v,s is
interpreted as the composition operation taking n functions fi" A" A, and a function
g:A --> As (with n Ivl) and yielding the function (f,. , f,,). g: A" As; each abstu,
is interpreted as the "abstraction operation" taking a constant in As into the correspond-
ing constant function of u arguments.

DEFINITION 2.16. Similarly, given an to-continuous X-algebra sO, we can define
the DE-algebra of to-continuous functions over sO. This algebra is denoted by
and its carrier of sort (u, s) is the set [A" --> As] of all to-continuous functions from A
to As with the pointwise ordering.

It is well known that each poset [A" --> As] is to-complete, and it is easily verified
that cs is an to-continuous algebra (see Goguen, Thatcher, Wagner and Wright [3]
or Engelfriedt and Sehmidt [16]).
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DEFINITION 2.17. Trees with variables can also be made into a DE-algebra as
follows. The tree-substitution algebra denoted by DFT is the ordered DE-algebra
whose carrier of sort (u, s) is the set of trees FTx(u, s); Each f in Eu, is interpreted
as the tree f(x,..., x) (where n lul); each zr’ is interpreted as x’; each abstu, is
interpreted as the inclusion function from FTx(e, s) to FT,(u, s); Each Cu,v, is inter-
preted as a composition of trees such that, C,,v,(tl,’", t,,, t)--(tl,’", tn)ot, for
(h," ", tn) in FT,(u, v) and t in FT.(v, s).

A similar definition can be given by replacing FT. by CT, thus obtaining the
continuous tree-substitution algebra DCT.

The mapping which assigns a derived operator to a tree is in fact a morphism of
ordered algebras (the unique morphism mapping x’ to

deropa DFT- ;s

such that for any tree in FT,(u, s), deropa (t)= ta. We frequently omit subscripts
when the algebra is understood.

DEFINITION 2.18. The subalgebra derop (DFT) of ff is an ordered algebra,
and it is precisely the algebra of all monotonic derived operators. This algebra will be
denoted as der-.

DEFINITION 2.19. Similarly, if 1 is an to-continuous E-algebra, there is a con-
tinuous morphism

derop DCT M.

However, in this case, the ordered algebra derop (DCT) of derived operators is not
necessarily chain-complete.

DEFINITION 2.20. Since FTo is the initial ordered DE-algebra, there is a unique
monotonic morphism

beta:FTDx - DFTx.

This morphism is of fundamental importance for our development. It behaves very
much like beta-conversion in the lambda-calculus, whence the name (borrowed from
Courcelle and Franchi-Zannettacci [9]). This morphism can be described explicitly by
(primitive) recursion as follows:

beta,,(f) f(x, x,) if f is in E,,
betau,s(Tr’) x’ if ui s,

beta,,(abstu,(t)) =beta,(t) if is in FTD(e, (e, s))

beta,,(C,,v,(tl,’.., t,, t))= (beta,,o,(t),..., beta u,,(t,)) beta,(t).
The morphism beta has a left inverse which "lifts" a tree into its "functional

form," in which composition operators appear explicitly. The family of functions
lift (lift,)(,sDS is defined recursively as follows:

lift ,(x’) 7r’ if ui s,

lift,,s(f) abstu,s(f) if f is in Xe,
lift,(f(tl, , t)) Cu,,s(liftu,,(tl),’", lift,v.(t), f)

if f is in Eo, and t/in FTx(u, vi), (n

Note that lift. beta id, but beta is not injective in general. A similar treatment
applies to DCTv..
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Example 2.1. A tree in "functional form" is shown in Fig. 1.

a

beta lift

FIG. 1. Tree with variables.

We have the following useful lemma (see Engelfriedt and Schmidt [16]).
LEMMA 2.4. For any o-continuous E-algebra eg, we have beta. deropa eval.,

where eval.s is the unique o-continuous morphism from CTo.

beta

CTD DCT

eva,
The lemma holds, because since CTo is initial there is a unique morphism

eval from CTo to , and all functions involved are continuous morphisms. A
similar lemma also holds for ordered E-algebras.

A rational scheme of higher type will be defined as a scheme over some derived
alphabet DnE;. To provide its semantics, such a scheme will be unfolded into an infinite
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tree in CTon., which will then be mapped into DCT by a function beta (obtained
by iterating beta). However, not all trees in CTon can be mapped into DCT, as we
now explain. For every n => 0, since CTo./I is the initial Dn/l E-algebra, there is a
unique morphism

beta + CTD.+r. DCTD...
It is tempting to define beta"+1 as the function beta+l" beta, beta obtained
by composing the morphisms betas+l, betan,..., beta, but this composite function is
not well defined. This is because the sources and targets of these functions do not
match up. In particular, DCTD.r. 7 CTD.r.. Indeed, for each (a, g) in D"+IE, by Defini-
tion 2.17, the carrier (DCTD.)(a,) of sort (ti, g)e D"+IE of the algebra DCTD.,. is
CTD.,.(, g), and for a # e, this set contains trees with variables. However, for all g in
Dny, (DCTD.r.)(e.g)=(CTD.r.) (the carrier of sort g of the algebra CTD.). As a
consequence, the g-component of beta, is well defined on the carrier of sort (e, g) of
the algebra DCTD., and can be composed with the (e, g) component of beta,/1.
Hence, we will define a restricted class of sorts (bs.,(u, s)) such that trees in CTD. of
this sort can be mapped into DCT,..

DEFINITION 2.22. Given (u, s) in DS, define bs,,,(u, s) as follows: bs,o(U, s)= s,
bs,l(U, S) (u, s) and bs,,+l(U,S)=(e, bs,.(u,s)). We will often omit the subscript S
for simplicity.

We obtain, by induction, the family of functions beta"=(beta,"
CTo.r.(e, b,,(u, s)) (DCTr.)(,,)I(u, s) DS) defined as follows:

beta id, beta beta: CTor. - DCTr.,

(since (DCT.)(,s)= CTr.(u, s)) and for n >- 1,

beta n+l betab.+(,) beta"U,S U,S

where beta./,) is the component (on the carrier of sort b.+(u, s)) of the unique
morphism

beta+ CTo/l- DCTDn.
Note that beta is not a morphism from CTD,. to DCT since it is only partially

defined.
DEFINITION 2.23. Given an ordered E-algebra /, we define the algebras n

as follows: rl r, and r-+ (-). A similar definition applies to con-
tinuous E-algebras with instead of r. The following fact can also be shown by
induction using Lemma 2.4.

LEMMA 2.24. For every in CTur.(e, bn(u, s)),

eval,-(t) deropa (beta" (t)).

We now define another fundamental tool, the concept of a rational scheme.
DEFINITION 2.25. We will be considering schemes with parameters. Note that we

are assuming that and the S-indexed family of variables X are mutually disjoint. A
rational scheme with parameters of type v, s), for short, a rational scheme, is a pair
(a, ), where a is a function a:Xu FT. with each a =a(x’) a tree in FT.(vu, u).
for some u in S/, v in S*, and is a tree in FT(vu, s) called the main definition.

If u ul u,, and v va v,, a can be viewed as a set of recursive definitions
for the functions x,+a, , x,+,,, the variables xa,. , xn being treated as parameters
and can be viewed as a main program with calls to the functions x,+, , x,/, and
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with Xl, Xn as parameters"

Xn+ Zl(Xl, Xn, Xn+l, Xn+m),

Xn+ 7m(X1, Xn, Xn+l, Xn+m).

DEFINITION 2.26. Given an to-continuous E-algebra and a rational scheme
with parameters (, ) of type (v, s), the sequence of functions e"A -A is defined
inductively as follows:

.A Awhere &, is the "bottom function’ and I A A is the identity, and

+1) a)
u. Awhere o A is the projection on the v components. (Given two functions

f" A B and g" A C, (f, g)" A B x C denotes the function obtained by "target
tupling," that is, the function such that (f, g)(x)= (f(x), g(x)) for all x in A.) The
function e is the least upper bound of the chain {%1i N}. It is easily seen that
e (I, e), where the function " A A is the least upper bound of the chain
{%. li N}. Furthermore, is the least fixed-point of the functional equation

h=(I,h).a,

where h ranges over functions in [AA] (see Goguen, Thatcher, Wagner and
Wright [2], Thatcher, Wagner and Wright [42], [43] and Gallier [20], [21] for further
details).

DEFINITION 2.27. The meaning of (e,) in the interpretation M is then the
function e a"A A, which is also denoted by (e, g)a (where ga is the function
deropa()).

From the Mezei-Wright theorem [32], the meaning of the scheme (, g) can also
be obtained by first "unfolding" the scheme e in the free interpretation CTx(v, vu)
thus obtaining the tuple of trees * (in CTx(v, vu)), then composing it with obtaining
e* , and finally interpreting the resulting tree as the derived operator (e* g)a.

DEFINITION 2.28. The unfoldment* of is the least upper bound of the sequence
(i) defined inductively as follows:

0= (Io, &o,) where xX) (n

)(i+1) (i) (v

where is tree composition and (x, x, ). Again, we define as the last
m [u[ components of *, and we have *= (Iv, +). Note that -+= e* when v e,
that is when there are no parameters. For simplicity of notation, we often identify
with I.

The fact that the meaning of the scheme (, ) in the interpretation is equal
to the derived operator (e* ) is crucial to our further investigations. Indeed, calling
trees of the form e*o rational trees, the above condition can be restated by saying
that rational trees induce well defined derived operators. The key idea behind the
definition of a n-rational algebra is to generalize the concept of a rational tree, by
creating a hierarchy of families of trees, the n-rational trees. Such trees are obtained
by unfolding rational schemes (of a certain sort) over derived alphabets of the form
D"E and applying the mapping beta". Roughly speaking, an n-rational algebra is then
an algebra such that n-rational trees induce well defined derived operators.
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It should be emphasized that we are going to consider a restricted family of
schemes. We could define a more general class of schemes with higher type parameters,
but the unwinding process via the beta’s would not work. Only schemes for which the
unwinding process works all the way down are considered.

DEFINITION 2.29. An n-rational scheme of type bn+l(l), s), for short an n-rational
scheme, is a rational scheme (with parameters) over the derived alphabet D". Note
that an n-rational scheme actually has parameters only for n =0. Given an
continuous E-algebra M, the meaning of an n-rational scheme of type bn+l(V, s), when
interpreted in c"M, is a function in [A A].

Furthermore, for n _-> 1, from the Mezei-Wright theorem [32], the meaning of the
scheme (a, ) is the derived operator (a* ) -a, which is also equal to eval-(zr* ),
since ,z* is a "constant" tree in CTo.(e, b,(v, s)). Using Lemma 2.5, we then have

eval-a(,z* d)= (beta" (a* d))a.

Hence the meaning of a level n-rational scheme of type bn+l(O, $) is also a derived
operator induced by a (generally infinite) tree. Furthermore, this tree betan(a* ) is
obtained by unfolding the n-rational scheme (at level n) into the tree * over D"5:,
and then "bringing down" this tree to CTr.(v, s) by applying the mapping beta" which
performs recursively all the substitutions specified by the substitution operators in that
tree.

Example 2.2. To avoid excessive subscripting, let us define the following symbols:

K1 C(1,1),(ll,1)(1,1)(1,1),(1,1), Lx abst(1,1),(11,1),

K2 C(1,1),(1,1)(1,1),(1,1), L2 abst(1,1),(1,1),
K3 C(1,1),(1,1),(1,1), L3 abst e,(1,1),

K4 Ce,(1,1),(1,1), L4 abst e,(e,1),

Ks Ce,(e,1),(e,1), P ff(11’1 )"

Also, F is a variable of sort (( 1, 1), 1, 1)) in D:E, G is a variable of sort (e, (1, 1))
in D2E and H is a variable of sort (e, (e, 1)). Z contains a binary symbol +, a unary
symbol f and a constant a (we assume that the set of sorts is S {1}). We then have
the rational scheme of level 2 (shown in Fig. 2).

It can be verified that beta of the definition for F is the tree shown in Fig. 3, and
that beta: of the component of the unoldment for H is the tree of Fig. 4.

3. n-rational algebras, basic properties. In this section we define the class of
n-rational E-algebras for every n-> 0. Such algebras are defined so that all n-rational
schemes of type b+l(v, s) have a well-defined meaning when interpreted in them.
Technically, this means that every derived operator induced by a (possibly infinite)
tree of the form beta(*o #) for some n-rational scheme (, #) is well defined. This
requires the existence of least upper bounds of certain "constructive" chains arising
from unfolding n-rational schemes. Such a condition is referred to as n-rational
completeness. Another condition is also necessary to guarantee that such least tpper
bounds are indeed fixed-points: certain derived operators must preserve these least
upper bounds. This second condition is referred to as n-rational continuity. An ordered
algebra is n-rational if it is n-rationally complete and operators are n-rationally
continuous.

We now proceed with the formal definitions. We first define the set of n-rational
trees, and n-iterations which are the "constructive" chains of interest. Then, we show
that free n-rational algebras consist of n-rational trees.
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abste.

CI,I I,i

F Cl,l.I

C, .I.! P P

FIG. 2

Recall that X denotes the S-indexed family of countable sets of variables.
DEFINITION 3.1. The set of n-rational trees of type v, s), denoted by n-RT( v, s),

is the set of all trees of the form betan(*o ), for some n-rational scheme (,) of
type bn/l(V, s). The set of all n-rational trees is denoted by n-RT(X). Given an
arbitrary S-indexed family Y, we define n-RT(Y) as n-RTvy(e, s) and n-RT(Y)
as the S-indexed family (n-RT( Y)ls S).

We will prove shortly that n-RTv(Y) is the free n-rational algebra over Y.
DEFINITION 3.2. Given an ordered E-algebra , an n-iteration is a sequence

E {(beta’((i) ))(c)li
_
0, for some n-rational scheme (, ) of type b./l(V, s)

and some c in Av.
Since is an ordered E-algebra, beta" is monotonic and since the trees

beta-((i) ) are finite, it is easily shown that an n-iteration is an ascending chain.
DEFINITION 3.3. An ordered E-algebra is n-rationally complete if every n-

iteration E has a least upper bound in .
DEFINITION 3.4. Given an n-rationally complete E-algebra , a function h" A

As is n-rationally continuous if, for every m-tuple (m=lu I) of n-iterations
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C1.11,1

’
/

1 F r G
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FIG. 3

+

+

FIG. 4. Note that the paths in this tree are encoded by a language which is not context-free.

(El,’’’, F-.m) with E {a{li e N} a subset of Au,, we have:
(1) {h(a1..i, ., a’)[i N} is a subset of some n-iteration E in As;
(2) h(I lai,..., laT’)= Ih(a,,...,a’).
Note that for n =0, 0-rational completeness is equivalent to Tiuryn’s "algebraic

completeness" and 0-rational continuity is equivalent to Tiuryn’s "algebraic continuity"
[44], [45], [46], [47].

DZFINITION 3.5. An ordered E-algebra s4 is n-rational if:
(1) it is n-rationally complete;
(2) for every function symbol f in Eu.s, f :A --> As is n-rationally continuous.
For every n => 0, the class of n-rational E-algebras is denoted as n-R-ALGa. It

is immediately verified that every w-continuous algebra is n-rational (for every n). It
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is also easy to show that an n-rational algebra is /-rational for every i< n (n > 0).
Hence we have a hierarchy ending with 0-rational algebras and starting with
continuous algebras. It is shown in Theorem 3.11 that this hierarchy is strict.

LEMMa 3.6. Given an n-rational E-algebra , for every finite tree in FT(uv, s),
for every c in A, the function g:A --> As such that g(x) t.(x, c) for all x in A is
n-rationally continuous.

Proof. First, observe that for every n >-0, n-rational completeness implies that
every c in As is the least upper bound of an n-iteration {cili N} such that Co
and ci c for all => 1. Hence, it is obvious that it suffices to prove that finite derived
operators are n-rationally continuous. We proceed by induction on the depth of trees.
The property clearly holds for trees of depth zero since a tree of depth zero is either
a variable or a constant. If t=ftl"’’tk, then for any m-tuple of n-iterations
(El,’’’, Er) with E {ali N},

t(l lai,’’ ",l laT’)

=f((tl)(l lai,. laT’),. (tk)([__Jai," laT’))

(by the remark following Definition 2.10)

fa(I I(tl)a(a li, a’), I(tk)a(a li, a’))

(by the inductive hypothesis)

fa((tl)(ai, a’f), (tk)(ai,

(since fu is n-rationally continuous, Definition 3.4)

ftl tk)a(a li, a’f) (by the remark following Definition 2.10)

-I lt(a,..., a7) (by the definition of t).

DEFINITION 3.7. An n-rational morphism h:-> is an S-indexed family of
functions hs "As -> Bs such that"

(1) h is a morphism of ordered E-algebras;
(2) for every n-iteration E in As, h(llE)= IIh(E).
We have a similar definition if h is only a weak morphism of ordered E-algebras.

In both cases, since h is strict and a homomorphism, it is easy to verify that h(E) is
an n-iteration in .

We shall now prove that n-RT(Y) is the free n-rational algebra on Y. First, we
show that it is an n-rational algebra. This is proved using two lemmas. Note that
Lemma 3.8 states a result which goes beyond what is actually needed to prove that
n-RT(Y) is an n-rational algebra.

LEMMA 3.8. For every m-tuple h, ", t,,) of trees with each t a tree of sort v in
n-RT( Y) and every tree in n-RT.( v, s) (with m Ivl), (tl,.. ", tin) is in n-RT( Y).

Proof. First, the following claim is shown by induction on n >= 1.
CLAIM. For all n >= 1, for every m-tuple (T1,..., T,) of trees with each T, in

O-RTDn(e, bn(u, 13i)) for i= 1,..., m, for every tree Tin O-RTDn(e, b,(v, s))(m-- Ivl),
a tree COMPn in FTD..(U, b,(u, s)) with U= b,(u, Vl)" b(u, v,,)b(v, s) can be
defined inductively, such that:

(i) COMP is of the form C(X1," X,,+I, R,..., Rn-1);
(ii) (beta"(T), , beta(T,)) beta"(T) beta"((T, , T,,, T) COMP,)

(where C is a composition combinator in DnE, and Xx,. X,,, X,,/I are variables
of sorts b,(u, v), b,(u, v,,), b,(v, s), respectively). The trees R1, ", R-I are also
defined during the course of the induction.



n-RATIONAL ALGEBRAS 765

Proof of claim. For n 1, we have (beta (T1),"’, beta (T,.)) beta (T)
beta (C.,v,s(T1,’" ", T,., T)), by Definition 2.20. Defining COMP =C,,,v,s(X,’",
X,., X,./I), the claim holds.

For n > 1, since beta"= beta., betan-1 (by Definition 2.22), we have

(beta"(T1), , beta" (T,.)) beta" (T)

(beta"-1 (beta. (T1)),"’’, betan- (beta. (T,.)))o beta"-1 (beta. (T))

(by Definition 2.22)

beta"- ((beta. (T), , beta. (T,), beta. (T)) COMP._)

(by the inductive hypothesis),

where COMP._x is of the form C._(Y,..., Y,., Y.,/I, R,... ,R.-a) for some
composition combinator C._1 in D"-IE. Then,

(beta. (T1),. ", beta. (T,.), beta.(T)) COMP._I

C._(beta. (T), , beta.(T.), beta.(T), R,..., R.-2).

Using the fact that lift., beta. id, and that beta. (C.-1)=
C.-I(Y1," ", Y., Y.,+I), we have

C._l(betan (T1), ", beta. (T.), beta. (T), R,..., R.-2)

(beta. (T1), , beta. (T.,), beta. (T),

beta. (lift. (R)),..., beta. (lift. (R.-2)))o beta. (Cn-1)

=beta. (Cn(T1," , T.. T, lift. (R1),’’’ ,lift. (R.-2), C.-1))

(by definition of betas, Definition 2.22)

for some appropriate composition combinator C. in DnE. Defining COMB.=
C.(X1,’", X,.,, X./I, lift. (R1),’’’, lift. (R.-a), C.-1), the inductive step is estab-
lished, and the claim is proved.

Assume that is defined by the scheme (, ) of type b./l(V, s) and that each tj
is defined by the scheme (j, j) of type b./l(U, v)). Then

(fi,’’ ", t,,) t= (ll beta" (a)o),..., I1 beta" (z) t,,)) (11 beta" (a( t)).

Let T= (a)o ) for j= 1,..., rn and T= (a(g)o ). By continuity of composi-
tion of trees,

(11 beta" (T),..., II beta" (T))o (11 beta" (T))
II (beta" (T), , beta" T))o beta" (T).

From the above proved claim, there exists a tree COMP, in FTo.r. of the form
C,(Xa, , X,,+a, Ra, , R,-1), and such that

(beta" T),. , beta" T))o beta" T)
beta" ((T, T, T)o COMP,).

It only remains to show that we can construct a scheme (, d) such that, for all _-> 0,

(i) g (Z:bi) 1,’" ", Tb(m/) tm Z:b
(i) ) COMP,.

However, this is known from Goguen, Thatcher, Wagner and Wright [2] and
Tiuryn [44], [45]. To avoid an abundance of variables, only the schemes a and will
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be written as sets of equations. To avoid ambiguity, the ith component of the scheme
z will be denoted by ,z and not by ,z i, which denotes another scheme. The scheme #,

consists of the following definitions"

Xo :: C.(X, , X.,, X,.+, R, , R._)

a,

Yq+l <== zl(y1, Yq, Yq+l,""", Yq+p)

Xm+,

Let d be the projection picking out the first component of . By continuity of
(tree) composition, we have

II beta"((’) d)= (t,, , t,) t.

LEMMA 3.9. n-RTx( Y) is an n-rational X-algebra.
Proof. Letting t=f(xl, ,Xn) in Lemma 3.8 shows that f(tl,’", tn) is in n-

RTx(Y). Next, observe that in M n-RTx(Y), for every finite tree in FTx(v, s),
ts(tl,... ’tm (tl,... ’tm t. To show that n-RTx(Y) is n-rationally complete, we
have to show that every n-iteration {(tl, , t,) beta (,z(0 d)} (for some n-rational
scheme (z, d) of type b/l(V, s) and some (tl,’’’, 6,) in (n-RTx(Y)) v, with each ti of
sort v), has a least upper bound in n-RTx(Y). Letting t= II beta" ((0 d), we
conclude using Lemma 3.8 and the continuity of (tree) composition.

Finally, to prove that n-RTx(Y) is an n-rational X-algebra, we also have to check
condition (2) of Definition 3.5. Since f is to-continuous in CTx(Y), f is indeed
n-rationally continuous.

We now show n-RTx(Y) is in fact a free X-algebra on Y.
THEOREM 3.10. n-RTx( Y) is the free n-rational X-algebra on Y, that is, for every

S-indexed family offunctions h Y --> A from Y to the carrier ofany n-rational X-algebra
M, there is a unique n-rational morphism h *" n-RTx( Y)- M extending h. Furthermore,
h is to-continuous. _

n-RT(Y)

h#

Proof. Since M is an ordered X-algebra, there is a unique monotonic morphism
ho" FTx(Y)- M extending h. Since every element in n-RTx(Y) is a tree of the form
t= l{beta" (e(0o d)l for some scheme (,z, ) over D"(EUY) of sort bn/,(e, s)} and
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since each tree beta" ((i)o ) is finite, if we want h to be an n-rational morphism,
it is uniquely defined by

h*(t) I{h0(beta" ((0o ))1i N}.

We have to show that the definition of h*(t) is independent of the choice ot the
n-iteration defining t, and that it is w-continuous. Let E {ali N} and E’ {ali N}
be two n-iterations defining t. From Proposition 2.7, E and E’ are mutually cofinal,

’< aj. Since h0 is monotonic, ho(E)that is, fi:l] such that a =< aj and /i :! such that a=
and ho(E’) are also mutually cofinal, which implies II h(E)= II h(E’). To show that
h* is monotonic, one simply observes that given any two trees tl liE, t2 liE’ in
n-RT(Y), tl <= t2 implies that E’ is cofinal in E, and by monotonicity of ho, ho(E’)
is cofinal in ho(E), which implies h*(tl) II h(E) <= I1 h(E’) h(t2).

Let L={tliN} be any chain in n-RT(Y) having least upper bound t. Let
E {sl] N} be an n-iteration such that liE. Since lie IlL, by Proposition
2.7, for every s there is some ti such that s =< t. Since h * is monotonic, for every
there is some ] such that h (s) <= h (t) <- h (t). Hence, h * (t) is a least upper bound
for h(E) and h*(L) is cofinal with h(E). Let c be any upper bound for h(L)=
{h*(ti)liN}. Since h*(L) is cofinal with h*(E), c is also an upper bound for h(E)
and we have h*(t)=h(llE)=llh(E)<=c. Hence, h*(t) is the least upper bound
of h*(L), and we have h(t)= h(llL)= IIh*(L), establishing the continuity of h.

Finally, we have to check that h * is a homomorphism. This follows because finite
trees are .n-rationally continuous. Let tl,’", t, be in n-RT.(Y) and assume that
tj II ti. Let f be a symbol in Eu.s with m lul. Then, we have:

h*(f(tl, t,,))= h*(f(I ItS, ItT’))

h(llf(t, t’f)) (since f is n-rationally continuous)

II ho(f(t,’" ,tT’)) (by definition of h *)
II f(ho(t)," ", ho(tT’)) (since h0 is a homomorphism)

=fa(I ho(t),’", II ho(t’f)) (since fa is n-rationally continuous)

fa(h*(tl), h(t,,)) (by definition of h).

This concludes the proof that n-RT(Y) is the free n-rational E-algebra on Y.
We are now in a position to prove that the hierarchy (n-R-ALG),0 of classes

of n-rational E-algebras is strict. This result is obtained as a consequence of Damm’s
"hierarchy theorem" [13] for level-n OI-tree languages.

THEOREM 3.11. For every n >-O, the initial n-rational Y-algebra n-RT is not
n + 1) -rational.

Proof. Recall that n-RT, consists of the n-rational trees without variables (Defini-
tion 3.1). It is shown in Damm [13, Cor. 4.11, Thm. 9.8] that n-RT, is properly
contained in (n+I)-RT. We proceed by contradiction. Assume that n-RT is
(n+l)-rational. By the initiality of (n+I)-RT, there is an unique morphism
h’(n + 1)-RT. n-RT., and composing h with the inclusion from n-RT to (n +
1)-R T., there are morphisms h. i" (n + 1)-RT (n + 1)-RT. and i. h" n-RT
n-RT. Since n-RT is initial in n-R-ALG and (n+I)-RT is initial in (n+
1)-R-ALGa, both i. h and h. are identity functions, and h is an isomorphism. But
since n-RT is a subset of (n + 1)-RT, the restriction of h. to n-RT, is the identity,
and since is the inclusion from n-RT, to (n + 1)-RT, the restriction of h to n-RT
is the identity. Since h is surjective (because it is an isomorphism), the restriction of
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h to n-RT is the identity, and n-RT is properly contained in (n + 1)-RT, h cannot
be injective, contradicting the fact that it is an isomorphism.

4. Generation of n-rational subalgebras. In this section, we consider the gener-
ation of the least subalgebra generated by a subset of an n-rational algebra. We obtain
a characterization similar to that given by Tiuryn [44], [45] for 0-rational algebras.
We also obtain a convenient characterization of n-rational morphisms which is a direct
extension of Tiuryn’s condition [44], [45].

First, we show that the homomorphic images of n-rational algebras under an
n-rational morphism (even a weak morphism) are also n-rational. This is a major
difference from continuous algebras, which are not closed under images of continuous
morphisms. The reason is that we are only considering certain "constructive" chains.

LEMMA 4.1. Given a morphism of n-rational ,-algebras, h sg , h(s) is also
n-rationaL The lemma is also true for a weak n-rational morphism.

Proof. First, observe that the following property can easily be established: for any
finite tree in F.Tz(v, s), for any (weak) morphism h: of ordered algebras, for
any c in A, we have

h(t(c))= t(hV(c)).

Since h is strict and a homomorphism, h() is an ordered algebra. Using the
property stated above, given any iteration F ={(beta
there is an iteration E {(beta (,(0 ))(c)li N} in such that h(E)=F, where
h(c) d. Since h is n-rational, h(LAE)= h(E)= IIF. Hence, h(s) is n-rationally
complete. Using the same technique, we can also show that operators are n-rationally
continuous. This shows that h() is n-rational.

Given an ordered E-algebra and any S-indexed family X of subsets of the
carriers of , the ordered subalgebra of generated by X is denoted by IX].

DEFINITION 4.2. Given an n-rational E-algebra 4 and any S-indexed family X
of subsets of the carriers of 4, for every sort s, let

E(X) {I l{(beta" ((Oo ))(x)[i e NIl(, ) is a

n-rational scheme of type bn+l(V, s), x is in XV}.

Let E(X) be the S-indexed family {E(X)s[s S}.
THEOREM 4.3. For sg and X as in Definition 4.2, E (IX]) is the least n-rational

subalgebra of generated by X.
Proof. Let Y be a set disjoint from E and in bijection with X. Let f" Y-A be

a family of injections such that fs(Y) Xs.
Let f * n-RT(Y) sg be the unique n-rational morphism extending f.
CLAIM 1. f*(n-RT(Y)) is the n-rational subalgebra generated by X.
For this, we shall need:
CLAIM 2. The carrier Zs of sort s of f*(n-RT(Y)) is equal to E([X]).
Assuming that Claim 2 has been proved, Claim 1 is proved as follows. Since

is an n-rational morphism, by Lemma 4.1, f*(n-RT(Y)) is an n-rational algebra,
and because f*(n-RT(Y))=E([X]) by Claim 2, f*(n-RT(Y)) is the least
n-rational algebra containing X.

It remains to prove Claim 2. First, we prove that E([X])s is a subset of Z. Given
an n-iteration L {(beta ((0o d))(x)li N}, where x is in IX]v, one can construct
as in the proof of Lemma 4.1 an n-iteration L’ {beta (,(0 )(y)[i N} in n-RT(Y)
such that f*(L’) L. Let ILL’, so that is in n-RT(Y). Then, f*(t) =f*(I IL’)
f*(L’) IlL. Hence, IlL is in Z, so E([X]) is a subset of Zs.



n-RATIONAL ALGEBRAS 769

Conversely, we prove that Zs is a subset of E([X])s. If c is in Z, then c =f*(t)
for some t in n-RT(Y). As above, there is an n-iteration L such that IlL and
clearly, f*(L) is an n-iteration in E([X]). Moreover, c =f*(t)=f*(I IL) L.df*(L).
Hence, c is in E(IX]), and Z is a subset of E (IX])s. Combining the two inclusions,
we have Z E([X]),.

The following characterization of n-rational (weak) morphisms will be very useful.
This extends the characterization given by Tiuryn from 0 to any n->_ 0 [44], [45].

THEOREM 4.4. Let and 3 be n-rational ,-algebras. An S-indexed family of
functions h" g is a weak n-rational morphism if and only if, ]’or every n-rational
tree in n-RT( v, s), for every c in Av, h(t(c) t(hV( c)). It is a monotonic n-rational
morphism if h is also monotonic.

Proof. First, assume h" $3 is a (weak) n-rational morphism. Let be in
n-RT(v,s) and let c be in A. Define d’Xo+ by d(xi)=h(ci), 1-<i_-<lv[ (c in A
is also interpreted as a function c" Xo ). Then, h(t(c)) h(c* (t)) c* h(t). Since
the restriction of the n-rational morphism c* h to Xv is equal to d, we have d* c* h
and so

h(t.(c)) c h(t) d(t) t(hO(c)).

Next, assume that the condition of the theorem holds. Since it holds in particular
for finite trees, h is a homomorphism. Also, substituting .1_ for t, h is strict. We show
that for every n-iteration E {(beta (0 ))(c)li N}, h(llE) II h(E).

Let f:Xosg be the function such that f(xi)=ci (l<=i-<_[vl) and let x=
(xl, O,Xlol). It is clear that E’ ={beta (iot)(x)liN} is an n-iteration in n-
RT(Xo) and that f(E’)=E. Define g:Xv 3 by g(xi)=h(c). Note that f*. h is
a strict homomorphism and that the restrictions of f* h and g to Xv are equal, and
therefore their restrictions to FT(Xo) are equal. Hence, g(E’)= h(f(E’))= h(E).
Let t=l IE’ in n-RT(Xv). We have, h(I IE)=h(t_.Jf*(E’))=h(f*(I IE’))
h(f*(t)) h(t(c))= t(hO(c))= g(t)= g(l lE’)= Ig*(E ’) II h(E).

This concludes the proof that h is n-rationally continuous. Note also that the
monotonicity of h was not used, and that if h is monotonic, h is a monotonic n-rational
morphism.

The category n-R-ALG has all n-rational ;-algebras for objects, and all
monotonic n-rational morphisms as morphisms.

5. n-rational derived operators. If is an n-rational :-algebra, we can define
the ordered DE-algebra of "n-rational derived operators", denoted as r,. Then, it
can. be shown that this algebra is (n-1)-rational and that these operators are n-
rationally continuous. Continuing in this fashion, we obtain an ordered algebra of
level-n functionals rlr2"" r,_r, denoted for simplicity as d,, which is 0-rational.
In the terminology of Tiuryn, dns is a regular algebra [44], [45].

This is a significant result, since this implies that every 0-rational scheme over
D"E has a fixed-point semantics when interpreted in d. In particular, schemes of
type b,+(v, s) have a well defined meaning in dn.

DEFINITION 5.1. Every tree in n-RT(v, s) defines a function ta" A -> As such
that for every c in A, t(c) c(t), where c" n-RT.(X)--> is the unique n-rational
morphism extending the function c’Xv-> g. Functions of the form t are called
n-rational derived operators.

Note that if t= I{beta" (()o)liN}, t(c)=c(t) Ic(beta (()o))=
I(beta (()o))a(c), by the definition of derived operators and since c * is n-

rationally continuous.
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THEOREM 5.2. For every n-rational ,-algebra sg, every n-rational derived operator
t is monotonic and n-rationally continuous.

Proof. From the above remark, for every c in A, t(c) l(beta" (<i) o.#))(c).
Since each ti =beta" (<i)o#) is a finite tree, each (t)a is monotonic, and thus t is
also monotonic.

For any m-tuple of n-iterations (El," ", E,), with Ej {ali N}, we have (with

H _,ts(llai laT’)=l I(beta (,z<k) d))s(I la
k

-tAll(beta" (a<) ))(ai,"" ,a’)
k

(because each derived operator induced by a finite
tree is n-rationally continuous by Lemma 3.6)

=11L_3 (beta"
k

(because least upper bounds of chains commute)

a’).=l lt(ai,..

We now define the algebra r, of n-rational derived operators.
Dzvywoy 5.3. Given an n-rational Z-algebra , let r,, be the set of all

n-rational derived operators t" A A, for in n-RT(v, s). Let r, be the family
{r.o,sl(v, s) s* x s}.

We shall show that r, is in fact a DE-algebra under functional composition,
and that it is (n-1)-rational. This means that every (n-1)-rational scheme of type
bos,,(, g) (where (, g) is in D2S) has a least fixed-point when interpreted in r,.
Such schemes allow variables ranging over functionals (of type 1). First, we prove that
r,(n-RT) is the subalgebra of the tree-substitution algebra DCT consisting of the
n-rational trees with variables (see Definition 2.17), and that it is (n-1)-rational.

LZMMA 5.4. r,(n-RT) is isomorphic to the tree-substitution DE-algebra of n-
rational trees with variables, and it is an n- 1)-rational DE-algebra.

Proof. First, we show that r,(n-RT) is isomorphic to the tree-substitution DE-
algebra of n-rational trees with variables. For this, we show that there is a bijection
D, between n-RT(v, s) and r,(n-RT)<o,). Each derived operator h of type (v, s)
in r,(n-RT) is defined by a tree T in n-RT(v, s), and for every t=(tl," , t) with
each t in n-RT(u, v), h(tl,’", t)= t*(T), where t* is the n-rational extension of
viewed as a function t: X n-RT. But t*(T) is equal to (fi,..., t) T, the result

of composing and T. Hence, we-have a surjective function

Do," n-RT(v, s) r, (n-RT)<o,),

where Do,(T) is the derived operator such that

Do,(T)(tl, , t) (tl, , t) T.

CI 1. e function Do, is also injective.
Proof. First, the following notation is introduced for subtrees. Given a tree T and

a node u in dom (T), the subtree T/u rooted at u in T is the tree defined by the
function whose graph is

{(v, T(uv))luvdom (T)}.
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Next, assume that for two trees T and T’, T T’ but Do,s(T)= Dv,s(T’). Since
(tl,’", tin) T=(tl,’’’, tin) T’ for all tl,’", t, (with each tj in n-RTz(e, vj)),
T T’ implies that there is some tree address u both in dom (T) and dom (T’) such
that either T(u) or T’(u) is a variable, say xi, and T/uS T’/u. Without loss of
generality, we can assume that T(u) xi. Since we are assuming that ranked alphabets
are nontrivial (remark after Definition 2.4) there exists a finite tree distinct from
in FTY’. Three cases arise.

1. T’(u) x with j. Then, letting tk _1_ for k and t t, (tl,. , tn,) T
(tl," ", t,) T’, a contradiction.

2. T’(u) _t.. As in case 1, a contradiction is reached using the tuple (tl," , tin)
defined there.

3. T’(u)x and T’(u)_l_. Then, letting tk=-l- for all k, l=<k=<m,
(tl,"’, t,,)o T (tl,..., t,,)o T’, a contradiction. Hence, the family of functions
D (Do,s) is a family of bijections.

Note that ((n-RTr.)(u,s)(u,sos is an ordered DE-algebra, interpreting each
as tree composition, each r’ as x’ and absto, as the inclusion function from n-RT(e, s)
to n-RT(v, s). Also observe that

Dv,s((T,’", T’)o T)(t,..., t,)

=(h,"" ,tm)((T1, T’)o T) (by definition of Do,s)

((h," ", t,) (T1,. ", T’)) T (by associativity of tree composition)

=((tl,""", tin)o TI," ", (tl,""", tin)o Tn) T (by Definition 2.5)

=((Do,w,(T),’" ,Do,,,(T’))" D,,s(T))(t,... ,t,) (by definition of the Do,s).

This proves that (Do,s)(o,s)os is a homomorphism, and since it is bijective, it is an
isomorphism between the tree-substitution algebra of n-rational trees and r’(n-RT.).

Since tree composition is to-continuous, tree-substitution is (n-1)-rationally
continuous.

It remains to show that r,(n-RTz) is (n- 1)-rationally complete. As in 2 (Defini-
tion 2.22), for n => 1, we define BETA"-1 as the family of functions

BETA"-1 (BETA,,s’-I’ CTon(e, b(u, s))-> (D2CTr.)(e,(u,s)l(u, s) DS)

Then, we have beta"= BETA"-1. beta.
CLAIM 2. For all n >= 1, for every tree in O-RTonz of sort b, (v, s),

(BETA’-(t)),(’_Rr) beta" (t).

Proof. Let T BETA"- (t). It is sufficient to show that for every tree T in
(n-1)-RTo.(e, (v,s)), T,,(’_Rr)=beta (T). By the definition of a derived operator
(Definition 2.12) and since T has no variables, T,(’_R,)=h(T), where
h" (n 1)-RTo.--> r" (n-RT.) is the unique homomorphism given by initiality of
(n-1)-RTov.. But (n-1)-RToz is the subalgebra of CToz consisting of the (n-
1)-rational DE-trees, and r’(n-RT) is the subalgebra of DCT consisting of the
n-rational E-trees. Hence, by Definition 2.20, h* is the restriction of beta to (n-
1)-RTo., and h (T) beta (T).

Given a scheme (, ) over D’E of type bos,’(O, g) with 0 (Vl, Sl)’’" (v,,, s,,),
and g (w, s), we have to show that for every tuple (tl," ", t,,) of trees with each t
in n-RT(v, s), the (n- 1)-iteration {(BETA’-I(a(i) t))rn(n_Rrr.)(tl, t.,)li e N}
has a least upper bound in n-RT(w, s). Assume that each tree t is defined by an
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n-rational scheme (,j, j). Then,

(BETA’-1 ((i) ))rn("-RT")(h,’’’, t,,)

(BETA"- (0o )) rn’_RT-(beta" (e(1io Cx),..., beta" (o ,,))

(by definition of the

(beta" (zi) 1)," , beta" ( Cr)) beta" ((i )

(by Claim 2 and the fact that r’(n-RT) is a tree-substitution algebra). We conclude
exactly as in the proof of Lemma 3.8 using the claim established there, and by
constructing a scheme (, /), such that

(BETA’-1 (#(0 d))r.(’-7-.)= beta" (#() d)

(beta" (ei) #1), ", beta" (e) ,,)) beta" (,z() #).

By continuity of tree composition, the result is established. This concludes the proof
of Lemma 5.4.

Given an n-rational E-algebra 4, we define the function r’:r"(n-RT) r,,4 such
that for every in n-RT.(v, s), r’(t)= ta, the n-rational derived operator defined by
t. The function r" is clearly surjective. Using standard techniques (see Goguen,
Thatcher, Wagner and Wright [3]), we can show that for all in n-RT(v, s) and
t’=(t’l,’" ,t’) with each t in n-RTr(u, vj), m-lvl, (t’o t)=t’" ta. Hence, r’.d is
an ordered DE-algebra, and r" is in fact a homomorphism. We show that r" is
to-continuous.

LEMMA 5.5. The function r,: r"(n-RTx) r’4 is an to-continuous, strict, surjective
homomorphism of DE-algebras.

Proof. Let { t[] N} be a chain in n-RTx(u, s) with least upper bound t. For every
c:X s,

r.(t)(c) t(c) c(t) c*(t__l ti)

L.lc*(ti) (since c* is to-continuous by Theorem 3.10)

2(t,)(c).

Hence, since least upper bounds are obtained pointwise, r’(t) is an upper bound for
{r(t)li N} in r’4,. If g is any other upper bound, for every c as above, we have
r(ti)(c) <- g(c) for all i->0. Since r’(t)(c)= IIr’(t)(c), we have r’(t)(c)<= g(c) for all
c, and this shows that r’(t)<= g and the to-continuity of r’.

The other conditions of the lemma are easily verified.
LEMMA 5.6. If is an n-rational E-algebra, is an ordered ,-algebra and there

is a surjective strict to-continuous homomorphism h" g 9, then is also n-rational.
Proof. The proof parallels that of Lemma 4.1 and is left to the reader.
Hence, we have the following result.
THEOREM 5.7. For any n-rational ,-algebra , the DE-algebra of n-rational

derived operators r’g is an (n-1)-rational DE-algebra.
Proof. By Lemma 5.5 and 5.6.
Starting with an n-rational algebra and applying the above theorem n times,

we obtain the algebra rlr2" r,-lr’g denoted for simplicity as d’, which is 0-rational.
For every 0-rational algebra, using 0-rationality and 0-continuity of parameterized
derived operators given by Lemma 3.6, one can easily establish the following lemma.
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LEMMA 5.8. Given a O-rational X-algebra g, for every (O-rational) parameterized
scheme (,z, ) of type (v, s), ,z is the least fixed-point of the functional equation
h (I, h) ,za, where ,z=(Ila+()) r,

Then, since d, is 0-rational, every parameterized scheme of type
has a least fixed-point in d,. In particular, if the type of the scheme is b,+l(V, s) with
(v, s) in DS, this least fixed-point is in fact a function from A to A.

Note that d, consists of level n functionals, and that d,, is closed under
fixed-points of parameterized rational schemes. We also mention that r, and d,
are clones satisfying closure conditions related to those satisfied by the "mu-clones"
of Wand [54], [55].

6. Comments and questions on part I. A number of questions whose answer is
unknown to the author are listed below and a number of comments regarding the
above developments are made.

(i) Tiuryn developed a theory of regular algebras [44], [45] using a notion more
general than that of an ordered algebra, namely the notion of a strict algebra. Can
this be generalized to n-rational algebras?

(ii) The author has studied in [19] infinite trees arising from unfolding recursion
schemes, by encoding their paths using "address languages." Given an infinite tree
using only finitely many different function symbols, for every such symbol f, define
the address language L(f)={uludom (t), t(u)=f} as the set of all tree addresses
labeled with an occurrence of f in t. Then, is completely determined by the finite
collection of languages of the form L(f). Ginali [22], [23] proved that these languages
are regular for infinite trees arising from 0-rational schemes. Gallier [19] proved that
these languages are deterministic context-free for trees arising from recursion
schemes 1-rational schemes.

Is there a characterization of these languages for n _-> 2?
Conjecture. These languages are deterministic OI indexed languages for n 2.
(iii) The author also conjectures that for all n _-> 0, these languages are primitive

recursive. Combined with the hierarchy result of Theorem 3.11, this last conjecture
opens the possibility of extending the definition of derived alphabets to countably
infinite ordinals. The author believes that this is possible, and that the hierarchy is
strict. This would mean that there is a least ordinal such that the trees obtained by
unfolding schemes of transfinite (countable) types and applying beta (where a is a
countable ordinal) are not recursively enumerable. What would this ordinal be7 In
such an extension, it appears that a certain form of type polymorphism is naturally
introduced.

(iv) Address languages also suggest another way of defining classes of infinite
trees. For example, a deterministic context-free tree can be defined by requiring each
L(f) to be deterministic context-free. For regular trees, Ginali [22], [23] proved that
these trees are in fact unfoldings of 0-rational schemes (see also Elgot, Bloom and
Tindell [15]). However, the author does not know of a similar proof for the context-free
case.

One can also investigate the infinite primitive recursive, recursive or recursively
enumerable trees, by requiring each L(f) to be primitive recursive, recursive or
recursively enumerable. Such investigations remain to be done.

(v) What kinds of algebraic theories yield n-rational algebras as their algebras?
Is there a relationship with the I-adic theories of Wagner [53] and Wagner, Wright
and Thatcher [52] and the M(T) construction?

Other problems related to the logic of inequalities are deferred to Part 2.
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Abstract. This work is a continuation of the study of n-rational algebras initiated in the first part of
this paper [SIAM J. Comput., 13 (1984), pp. 750-775]. In this second part, varieties of n-rational algebras
satisfying a set of inequalities and the corresponding logic are investigated. It is shown that there is a bijective
Galois connection between such varieties, called semi-varieties, and "fully invariant" n-rational precongruen-
ces. A deductive system for proving inequalities in which a proof is represented as a well-founded tree is
shown to be sound and complete. This proof system uses one infinitary inference rule, the "lub rule". A
"Birkhoff variety theorem" is also proved for semi-varieties. The relationship between this approach in
which classes of interpretations are semi-varieties of n-rational algebras, and the approach in which
w-continuous algebras are used (Courcelle, Nivat, Guessarian) is also briefly explored.
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trees, well-founded proof trees, classes of interpretations

7. Introduction. This is a continuation of the study of n-rational algebras started
in Part I of this paper (this issue, pp. 750-755). In Part I, basic properties of n-rational
algebras were investigated. In particular, the existence of free algebras was proved.
In Part II, varieties of n-rational algebras satisfying a set of inequalities and the
associated logic are investigated.

The main reason for restricting our attention to inequalities is that inequalities
are the simplest kind of axioms having reasonably simple and yet interesting mathemati-
cal properties. In particular, properties of programs such as extension or equivalence
can be expressed as inequalities between infinite trees. This is because infinite trees in
the free n-rational algebra n-RT,(Xo) (where X0 denotes a family of countable sets
of variables) represent the result of unfolding recursion schemes. Hence, the validity
o the inequality tl <= t2 in the variety defined by the set of inequalities E expresses
the property "t,. extends tl," for the class of programs defined by t and t2 in this variety.

Unfortunately, even for n 1, the set of inequalities valid in 1-RTr,(Xo) is not
recursively enumerable. This follows from two facts. First, it is partially decidable
whether t t2 for two trees tl and t2 in 1-RTr.(Xo). Second, as was shown in Courcelle
[7], it is undecidable whether t =< t2 for recursion schemes. This follows from the
undecidability of the inclusion problem for simple languages, see Friedman [18]. Hence,
there is no hope for a recursive axiomatization. However, it is shown in Theorem
10.19 that there is a complete proof system with one infinitary inference rule. In this
system, a proof is represented as a well-founded tree. The main results of this paper are:

(1) The characterization of inequational varieties in terms of the bijective Galois
connection with "fully invariant" precongruences (Theorem 10.14).

(2) The completeness theorem for the logic of inequalities (Theorem 10.19).
(3) The Birkhoff variety theorem for inequational varieties (Theorem 11.2).
(4) The "algebraicity" of inequational varieties when the inequalities are between

finite trees (Theorem 12.2).
In order to help the reader understand the motivation behind the study of n-rational

algebras, some of the advantages of n-rational algebras over w-continuous algebras

* Received by the editors June 24, 1981, and in final revised form June 21, 1983. This research was
partially supported by the National Science Foundation under grant MCS-8111726.

" Department of Computer and Information Sciences, Moore School of Electrical Engineering D2,
University of Pennsylvania, Philadelphia, Pennsylvania 19104.
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(mentioned in Part I) are repeated below. The main advantage is that no completion
operation is necessary. The constructions used in dealing with n-rational algebras are
quite similar to those used with ordinary (unordered and ordered) algebras (e.g.,
constructions and proofs can be done with congruences and orderings), while in the
o-continuous case, these constructions do not work and one must use completions to
get the corresponding (or nearest corresponding) result. In particular, two important
properties which fail or o-continuous algebras but hold for n-rational algebras are
the following:

(1) The image of an n-rational algebra under an n-rational morphism is an
n-rational algebra.

(2) Given a set E of inequalities and the least congruence induced by E, the
Herbrand n-rational algebra of the variety defined by E is the quotient n-RTz(Xo)/.

An outline of Part II follows. Section 8 is devoted to precongruences and quotients
of n-rational algebras. In 9, presentations of n-rational algebras are defined and
studied. The least precongruence containing a set of inequalities is characterized in
terms of a deductive system using well-founded proof trees. Section 10 is devoted to
a study of inequational varieties, called semi-varieties. The main results are the bij-ective
Galois connection between semi-varieties and fully invariant precongruences, .the
completeness theorem, and the characterization of universal algebras. In 11, the
Birkhoff variety theorem for semi-varieties is proved" A class of n-rational algebras
is a semi-variety if and only if it is closed under subalgebras, direct products and images
under (monotonic) n-rational morphisms. Section 12 covers the case where the
inequalities consist of finite trees. It is shown that every valid inequality has a proof
of height at most o. A brief comparison is made with the approach using o-continuous
algebras (Courcelle [7], Courcelle and Guessarian [8], Courcelle and Nivat [10] and
Guessarian [26] and [27]).

8. Precongruences and quotients. In this section the concept of an n-rational
precongruence is introduced. A precongruence is a preorder satisfying additional
properties, so that the quotient of an n-rational E-algebra by the equivalence induced
by the precongruence is also n-rational.

Recall from 2 of Part I that a preorder is a reflexive and transitive relation.
In order to avoid notational ambiguities, the partial ordering on each carrier of

an algebra or on trees will be denoted by r-.
DEFINITION 8.1. Given an ordered X-algebra and an S-indexed family -5 of

relations =< on each carrier A, < is an n-rational precongruence, for short a precon-
gruence, if the following conditions hold"

(1) Each =< is a preorder.
(2) For all x, y in A, xr-y implies x<= y.
(3) For every operation f:A - A, for all (x,..., Xm) and (Yl," ", Y,,) in A"

(with m lul), if x =< y for 1-5 5- m, then f(x,..., x,) <= fa(y,..., Ym).
(4) For every n-iteration E (ali N} in A, for every b in A, if a =< b for all

iN, then lai -< b.
A preorder satisfying condition (2) is called admissible. Condition (4) is referred

to as the n-rational continuity of the preorder. Condition (3) is the congruentialproperty.
A relation satisfying only conditions (1) and (3) and (4) is called a quasi n-rational
precongruence.

Given a (quasi) precongruence _<-, the (quasi) congruence associated with <=,
denoted as , is the largest equivalence relation contained in =< and is defined as’

x- y if and only if x < y and y=< x. Given a (quasi) ccongruence , the equivalence
class of x modulo is denoted by .
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DEFINITION 8.2. Given a morphism h" s--> 9 of n-rational E-algebras, the S-
indexed family ----<h such that(_--<h), {(X, Y)I(x, Y) A x A, h(x) r- h(y)} is a preorder
called the precongruence associated with h. The associated equivalence Ker (h), where
Ker (h) ={(x, y)lh(x)= h(y)} is the kernel of h.

Recall from Part I, Definitions 2.9 and 3.7, that a weak n-rational morphism is a
not necessarily monotonic homomorphism of ordered E-algebras which preserves
n-iterations.

LEMMA 8.3. Given a morphism h" I-> of n-rational E-algebras, the preorder
is an n-rational precongruence. If h is a weak n-rational morphism, <-h is a quasi

n-rational precongruence.
Proof. It is obvious that =<h is a preorder and is congruential since h is a

homomorphism. If h is monotonic, then x m y implies h(x) r- h(y) and so ----<h is
admissible. Let E {a, li N} be an n-iteration in A, and assume that a ----<h b for all
e N, for some b in A. This means that h(a,) - h(b) for all N. Since h is n-rationally

continuous, h(ll a,) L_J h(a). Hence, h(ll a) = h(b), that is L_J a <----h b, showing that
<
=h is n-rationally continuous.

DEFINITION 8.4. Given a morphism of n-rational E-algebras h" --> , the quotient
algebra /Ker (h) is defined as usual as the E-algebra whose carrier of sort s is the
set. A/Ker (h)s of equivalence classes modulo Ker (h). For every function symbol f
of type (u, s), f is interpreted in /Ker (h) as the operation such that, for all Oh," , tT,
in /Ker (h),

fa/Ker(h)(tl,’’’, C-m) =f(Cl,’’’, Cm).

Each carrier A/Ker (h) is given the partial ordering (--<h) such that, for any
two equivalence classes ti and b a (_-< h)sG if and only if a (_-< h) b. By definition of
Ker (h), this partial ordering is well defined. For simplicity, we often omit the subscript
s, or even h.

LEMMA 8.5. s/Ker h) is an n-rationalE-algebra and the natural mapping or" sg ->

/Ker (h) is an n-rational morphism. Furthermore, s/Ker (h) is isomorphic to h().
Proof. It is clear that /Ker (h) is a (strict) ordered E-algebra. Let us show that

it is n-rationally complete. First, observe that the following can easily be shown by
induction on the depth of trees: For every finite tree t, for all Cl,’", Cm in
.9, ts(C1, ", era) t/Ker(h)(l, ", m). Let L bean n-iteration in ,d/Ker (h). Hence,
L {(betan(<o ))/gr<h)()[i s N}. Using the above remark, L =/ for the n-iter-
ation E --{(beta"(o d))(c)li N}. But E has a least upper bound E in , and
by Lemma 8.3, the least upper bound of L E is equal to t_dE. Hence, /Ker (h)
is n-rationally complete. Similarly, using Lemma 8.3, it is easily shown that the
operations in /Ker (h) are n-rationally continuous. Now, if is an n-rational tree,
=[_J t for an n-iteration of finite trees and, by the above remark, for all c in A,

t"(C)=[-J(ti)(c)=ll’(ti)()=ll(ti)/Ker(h)(.)=t/Ker(h)(P.). TO show that r is n-
rationally continuous, we use the characterization of Theorem 4.4. Let be any
n-rational tree in n-RTx(u,s) and let c=(c,..., Cm) be in A. Then, we have
"/r(tt(Cl, Cm))= tt(l,""", Cm)= t,g/Ker(h)(el, m)= tsg/Ker(h)(’rr(Cl),
r(c,,)). Hence r is n-rationally continuous. Also, if h is monotonic, ----<h is admissible
and r is clearly monotonic. Finally, define f" M/Ker (h)--> h(M) by f(e)= h(c). Then,
we have f(tsa/Ker(h)(el, Pro))=f(t(Cl,’’’, Cm)) h(ts(Cl, Cm))
t(h(c),’", h(c)) t(f(l), ’, f(,)). This shows that f is an n-rational morph-
ism. Since f is clearly a bijection, it is an isomorphism between //Ker (h) and h().

We also have the following theorem.
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THEOREM 8.6. Given an n-rational ,-algebra .d and a precongruence <-_ on
with associated congruence -, we have the following:

(1) The quotient ,-algebra .d/= is n-rational and the natural mapping r: ->
/ is an n-rational morphism which is monotonic if <- is admissible.

(2) For every n-rational morphism h: M-> , if the precongruence <-_ is contained
in <-h, then there is a unique n-rational morphism h*’M/--> such that h r. h*.

Proof. The proof of (1) is similar to that of Lemma 8.5. For the second part of
the theorem, define h* by h*() h(c). The function h* is well-defined because by
hypothesis, a =< b implies a <_-h b. If h is monotonic, h* is clearly monotonic. It remains
to show that h* is n-rationally continuous. For any tree in n-RT(u, s), for any
(’,..., ’) in (A/=)u, we have:

Hence, by Theorem 4.4, h* is n-rationally continuous.

9. Presentations of n-rational algebras. In this section, presentations of n-rational
E-algebras are discussed. We will be dealing with n-rational E-algebras satisfying a
set of inequalities. Our goal is to generalize standard results valid for presentations of
(unordered) algebras, as presented in Cohn [5], to the class of n-rational algebras.

The main technical tool in dealing with presentations, is the least congruence
containing a set of equations. Therefore, it is first necessary to provide a characterization
of the least n-rational precongruence containing a set of inequalities. Two equivalent
characterizations will be given. The first one is an inductive definition, and the second
is a proof system containing one infinitary inference rule.

DEFINITION 9.1. Given an S-indexed family X and an n-rational :-algebra M, a
function g’X-> is a generating function for M, if the unique morphism
g*" n-RTv(X) -> extending g is surjective. The family X is called a generatingfamily.

From a syntactical point of view, there is no difference between an equation and
an inequality: both are a pair of trees (h, t2), with tl, t2 in n-RT(X). The difference
between an equation and an inequality is in the interpretation that they receive.

DEFINITION 9.2. An equation (t, t2) holds in an n-rational E-algebra .M with
generating function g X -> M, if g*(t) g* (t2). An inequality (tl, t2) holds in M if
g*(t)r- g*(t2).
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Frequently, in order to indicate the intended meaning of the pair (tl, ta), we denote
an equation as tl ta, and an inequality as

Given a relation E (n-RTr.(X))a to be interpreted as a set of inequalities, we
first characterize the least n-rational precongruence containing E using an inductive
definition.

DEFINITION 9.3. Given a relation E
_
(n-RTr.(X))a, we define by transfinite

induction up to (ol (the least uncountable ordinal) the sequence of relations - (or -%,
for simplicity) for every ordinal a <

(1) _.>o E t.J = (where - is the partial ordering on trees).
(2) For every ordinal a <

a+l
> =- I.J {(tl)/’2)1:::1/’3)(tl)t3) -’ and (t3)t2) "}

U {(ill t,,, ft.., t)[(ti, t) e .L> for 1 <_- _<- m, where

f and tl," tin, t," tm have compatible arity and sorts}

t (( s, t)l for an n-iteration (sli N} and (si, t) 2.> for N}.

(3) For a limit ordinal a < to1,---> t.J <
Finally, (also denoted _L>) is defined as the union
LEMMA 9.4 The relation - is the least n-rational precongruence containing E.E

Proof. Since no countable ordinal is cofinal to to1, it is easily seen that for every
countable subset Z of -->, there is a countable ordinal a < to1 such that Z is a subset
of --%. This fact together with the clauses of the inductive definition imply that
contains E, is reflexive, transitive, congruential and n-rationally continuous. Hence, it
is a precongruence containing E. Conversely, it is easily shown by transfinite induction,
that every n-rational precongruence containing E contains each --%. Therefore, - is
the least n-rational precongruence containing E.

Note that the least quasi n-rational precongruence containing E is obtained by
replacing r,- by the identity relation on n-RT.(X) in clause (1) of the inductive
definition.

The least precongruence - containing E is now characterized using a proof
system. In this proof system, a proof is a possibly countably infinite tree. However,
even though these.trees can have infinite breadth or height, they are well-founded, in
the sense that they have no infinite paths. A rigorous definition can be given using the
notion of a tree domain defined in Part I, 2 (see Gorn [24]).

Recall that a tree domain D is a nonempty set of strings over N/ (the positive
integers) such that:

(1) For each u in D, every prefix of u is also in D.
(2) For each u in D, for every positive integer i, if ui is in D, then, for every j,

1 <-_ j <-i, uj is also in D.
We can define a partial ordering -< on D as follows: for u, v in D, u---v if and

only if u is a prefix of v. The relation u < v holds if u _-< v and u v.
DEFINITION 9.5. A tree domain D is well founded if the relation < on D is well

founded. Equivalently, there are no infinite strictly increasing sequences Ul < u2 <" <
u, < U,+l <" ". A (countable) tree is well founded if its tree domain is.

Note that a tree is well founded if and only if it has no infinite paths. However,
a well-founded tree is not necessarily finite branching.
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The importance of well4ounded trees lies in the fact that properties about them
can be proved by complete induction. Also, given a well-founded tree domain, a rank
function assigning an ordinal to each tree address can be defined. The rank of a node
(or tree address) is the "height" of the subtree rooted at that node, and since
well-founded trees can be infinite branching, it can be an infinite ordinal..The rank
function is defined as follows. Given a (coutable) well4ounded tree domain D:

For every leaf u in D, rank (u)=0 (recall that a leaf is a tree address such that
{i[ui D} ). For every other tree address u, rank (u) I1 {rank (ui) + llui D}.

The rank or height of the tree (domain) itself is the rank of its root, rank (e).
Note the "bottom-up" character of the recursive definition of rank, which is possible
because the tree domain is well-founded. As pointed out by Saul Gorn, the concept
of rank of a node is a generalization of the height of a node (the supremum of the
lengths of all paths from the node to the leaves). If a well-founded tree domain is
finite branching, by Koenig’s lemma it is finite, and then the rank of node coincides
with the usual concept of height.

Since we are only considering countable well-founded tree domains, the rank of
any such tree domain is an ordinal strictly less than Wl (the least uncountable ordinal).
Proof trees are trees whose domain is a countable well-founded domain, and whose
labels are certain formulae. In the present case, formulae are inequalities between
(possibly infinite) trees in n-RT.(X). However, these infinite trees are constructively
specified by finite n-rational recursion schemes. Note also that the trees occurring in
inequalities are not to be confused with proof trees. Proof trees are "meta-trees"
belonging to the "meta-language", whereas trees occurring in inequalities belong to
the "object-language". If an infinite proof tree has a finite constructive (recursive)
specification, then it really corresponds to a constructive proof. In any case, the rank
of a proof tree gives a certain "measure of complexity" of the proof. This is an
important topic in proof theory, but this will not be investigated here.

We are now ready to present the axioms and inference rules of the .proof system
equivalent to the inductive definition of the least n-rational precongruence containing
a given set E of inequalities.

DEFINITION 9.6. Let E c__ (n-RT.(X))2 be a set of inequalities.
(1) The axioms of the proof system are:
all inequalities in E,
all inequalities tic t2, where v- is the partial ordering on n-RT.(X).
(2) The rules of inference of the proof system are:

Transitivity" tl =< t2, t2 -< t3

Substitution" tl <= t’l" t,. <= t’m
ftl"’’ < ft’’" t’

provided that the arity of f and the sorts of the 6, t for 1 =< _-< m are compatible.

Lub rule:
{Si <- t}iN
l_]s<--_ t

for every n-iteration {sli N}.
The lub rule takes to premises.
A proof tree is a countable well-founded tree domain whose nodes are labeled

with inequalities in such a way that:
(i) Every leaf is labeled with an axiom.
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(ii) Every interior node is labeled with an inequality which is the conclusion of
applying one o the above inference rules, the immediate descendants of that node
being labeled with the inequalities occurring as premises.

It should be emphasized that when dealing with presentations, the set X is a set
of generators, which are therefore treated as constants and not as variables. Hence,
inequalities have no variables. The set X will be treated as a set o variables in the
next section when we deal with varieties.

DErINn:OI 9.7. Given a set of inequalities E, if there is a proof tree T for an
inequality tl =< t2, we say that tl <= t2 is provable from E, and this is denoted by E-tl <= t2.

THEOREM9.8. Given a set ofinequalities E, we haveEtl <= t2 ifand only iftl t2.
Proof. The theorem is shown by proving the following two claims.
CLAIM 1. For every ordinal a < to1, if tl --% t2, then there is a proof tree Tfor tl <= t2

of rank rank (T) =/3 .for some ordinal < a.
CLAIM 2. For every ordinal t < to1, i" there is a proof tree T for t <= t2, of rank

rank (T) c, then there is some ordinal < t + such that t t2.
Both claims are proved by transfinite induction up to to, using the one-to-one

correspondence between the clauses o the inductive definition and the inference rules.
The details are straightforward and left to the reader.

We can now define the notion of a presentation.
DEFINITION 9.9. Let g:X be a generating function for an n-rational algebra

and let E
_
(n-RT(X))2 be a set of inequalities. The pair (g, E) is a presentation

for the E-algebra if:
(1) Every inequality tx -<_ t2 in E holds in , that is, g* (tl) r- g* (t2).
(2) For any arbitrary pair (t, t2) in (n-RTr.(X))2, if t-<_ t2 holds in , that is,

g*(h)r’-g*(t2), then tl--< t2 is provable from E, that is E-tl <= t2.
THEOREM 9.10. Let g X s be a generating function for an n-rational ,-algebra

sg and let E be a set of inequalities. The following conditions are equivalent:
(1) (g, E) is a presentati.on of .
(2) The precongruence generated by E is equal to the precongruence <-_. induced

by
Proof. If (g, E) is a presentation for , every inequality t _-< t2 in E holds in ,

that is, g*(tl)r-g(t2). Hence tl--<g*t2 and E is a subset of _-<s*. Since- is the least
precongruence containing E and <_-* is a precongruence by Lemma 8.3 - is a subset

E
of --<g*. Conversely, for any arbitrary inequality t<-_t2, g*(t)r-g*(t2) implies that
E-tl <- t2 since (g, E) is a presentation of . Hence, _-<* is a subset of -, showing
that _-<s*, as desired.

It is obvious that (2) implies (1).
COROLLARY. EVery n-rational E-algebra admitting a presentation (g, E) is

isomorphic to the quotient E-algebra n-RT(X)/, which is itself presented by (i, E),
where i" X n-RTv.(X)/ g- is the restriction of the natural quotient morphism to X andEg-. is the congruence associated with -.

Note that the second condition of the definition, of a presentation, referred to as
the completeness condition, implies that whenever tl r- t2 (where r- is the partial ordering
on n,RT(X)), g*(tl)= g*(t2), since g* is monotonic (see Theorem 3.10). Hence, the
completeness condition forces the precongruence -<_g* to be admissible, and this is why
we are using the least admissible precongruence containing E. However, note that we
could define a purely equational version of a prese.ntation, this time taking the least
quasi pre.congruence containing E, denoted by - and its associated quasicon-
gruence k-, and changing _-< to everywhere. We leave the details to the reader.
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We also have the following version of "Dyck’s lemma" (see Cohn [5, Thm. 8.3]).
LEPTA 9.11. Let E (n-RTs.(X))) be a set of inequalities and let -- be the

least precongruence containing E. Let zr" n-RT.(X)--> n-RTs.(X)/ be the natural
quotient morphism: For any n-rational morphism h n-RT(X)--> d to an n-rational
,-algebra d, if h( tl) - h( t)_) for all t <= t2 in E, there exists a unique n-rational morphism
f" n-RT(X)/ <--> , such that h r.f.

Proof. Since tl < t implies h(tl)= h(t2), E is a subset of =.< Since is the least
precongruence containing E, and ----<h is a precongruence, -> is a subset of --<h. We
conclude by applying Theorem 8.6.

10. Inequational varieties. Before discussing varieties, the following result about
substitution will be needed.

Let X and Y be two S-indexed families of sets. A function f:X--> n-RT.(Y) is
called a substitution. The function f extends to an (unique) n-rational morphism

f" n-RT(X) -> n-RT.(Y)

also called a substitution.
LEMMA 10.1. Let <= be a precongruence on n-RT( Y) with associated congruence
Given any function h" X-> n-RT( Y)/ let f" X-> n-R( Y) be a substitution

picking some arbitrary representative in every equivalence class, so that h(x)=f(x).
Then, for every n-rational tree in n-RT(X), we have h(t)=f"().

Proof. First, the lemma is proved for finite trees by induction on the depth of trees.
(i) If is a constant a, f and h being homomorphisms, h(a)= a =f(a).
(ii) If t= x for x in X, since f extends f and h extends h, and since h(x) f(x),

we have h(x)=f(x).
(iii) If t=gtl"’’ tm, then h(t) h(gtl tm)=gh (tl)’’’ h*(tm).

By the induction hypothesis, h (t) f (t), so we have"

h (gtl tin) gf tl) f# tm) gf# tl) f tm) f(gtl tin) =f(t).
For an infinite n-rational tree t, since II t for an n-iteration {t[i N}, we have

h (t) II h (ti) II f (ti) II f(ti) f (t). Hence, the lemma is proved.
In the sequel, we will denote by X0 a fixed S-indexed family of countable sets of

variables.
DEFINITION 10.2. An inequality of sort s is a pair of trees tl =< t2 with tl, t2 in

n-RT.(Xo). Let {Xl,’’ ", Xm} be the set of variables occurring in tl or t2. If x is of
sort s, we write this as x’s. We also use the notation (Xl" Sl, , Xm "Sm --> S) tl <= t2
for the inequality tl 5-t2. We use a similar notation for equations, with in place
of -<.

DEFINITION 10.3. Given an n-rational X-algebra M, an inequality
(Xl" s,. , x "s-> s) t _-< t2 is valid in d, denoted as Mt -< t2, if for every c in
A (where u s s), c*(t) c*(ta) (c is the unique n-rational morphism extend-
ing c viewed as a function c’{x,. , x}--> ).

A similar definition can be given for equations by replacing inequalities by
equalities. Note that since we are dealing with strictly ordered X-algebras, every carrier
contains a least element and is therefore nonempty. Hence, the definition of validity
given above is correct since carriers cannot be empty.

DEFINITION 10.4. Given a set E
_
(n-RTx(Xo))2 of inequalities, the semi-variety

=(E, E) is the class of all n-rational algebras such that every inequality -< 2 in
E is valid in .
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If every inequality in E is valid in M, we say that is a model of E. Hence, the
semi-variety c is the class of all models of E. We shall also denote the semi-variety
(E, E) by E s. A similar definition can be given for equations. In this case, we obtain
an equational variety, for short, a variety, denoted by E v.

Note that semi-varieties of continuous E-algebras have been defined and studied
by Guessarian [27], where they are called relational classes of interpretations. Results
similar to ours hold for continuous precongruences and semi-varieties of continuous
E-algebras.

Conversely, given a nonempty class of E-algebras c, let be the set of all
inequalities valid in all E-algebras in % and let (l be the set of all equations valid in. Hence, we have two correspondences between sets of inequalities and classes of
E-algebras, and sets of equations and classes of E-algebras:

Sets of inequalities Classes of algebras

E E

Sets ofequations Classes ofalgebras
E E
(e (..

The following properties can easily be shown. Given any two sets of inequalities
El, E2 and two classes of E-algebras 1, c2, we have:

(1) E1
___
E implies E __. E;

(2) 1 2 implies ;
(3) E1 c_ E il and c1 c_ .
Similar inclusions hold for equations, changing s to v and to e. It is a routine

exercise to check that the following identities are consequences of the above identities
(see Cohn [5]).:

(4) E is=E1 and c1=,1,
and e c_eve(4’) E1 E1 tl

Therefore, the mappings si" E --> E s, is" c _> c, ve" E -> E and ev" c ev are
closure operations (that is, are idempotent; a mapping f is indempotent if f. f-f).
The pairs of mappings (i, s) and (v, e) define Galois connections between sets of
inequalities and classes of n-rational algebras (over ), and between sets of equations
and classes of X-algebras (see Cohn [5]). Note that c, is the least semi-variety
containing c, and ccev is the least variety containing

Our next goal is to characterize the sets of inequalities for which the mapping
s" E- E is a bijection. The importance of this characterization lies in the fact that
the study of semi-varieties is reduced to the study of certain kinds of congruences.
Unfortunately, the author was unable to find such a characterization for equations,
but a characterization for inequalities will be given. Such sets of inequalities turn out
to be "fully invariant" precongruences. Note that equations can actually be handled
as inequalities as follows: given a set of equations E, let E’ be the set of inequalities
E’ {h <- t2, t2<= tilt1 t2 E E}. One can easily check that the semi-variety E is equal
to the equational variety E. Hence, there is no "loss" in treating only inequalities.

First, a number of definitions and lemmas about classes of algebras are needed.
The following lemma will be needed in the proo of Theorem 10.14.

LEMA 10.5. Let Y; be a free n-rational E-algebra generated by X, let , be
n-rational ,-algebras, and let f: ;- and g: - Yd be n-rational morphisms, with g
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surjective. There is a function h: X-> . such that f h g. (Note that h need not be
unique.)

Proof. It is standard and is omitted. We refer the reader to Cohn [5, Prop. 5.7].
DEFINITION 10.6. A class of n-rational -algebras is abstract, if it is closed

under n-rational isomorphisms. That is, for every n-rational isomorphism h:--> ,
if is in % then is also in <.

In the rest of this paper, only nonempty abstract classes will be considered.
DEFINITION 10.7. A class o n-rational E-algebras is nontrivial i, or every

sort s in S, there is a -algebra in whose carrier of sort s has at least two elements.
DEFINITION 10.8. Given a class of n-rational -algebras and an S-indexed

family X, an n-rational 5:-algebra is universal over X in < if and only i there exists
a unction :X-> rom X to the carrier o , and the ollowing properties hold:

(i) The ,-algebra is in .
(ii) For every -algebra in <, for every function h :X-> , there is an unique

n-rational (monotonic) morphism h:-> such that h =. h.

If h is not monotonic, r/:X- is called a weakly universal algebra. For the
sake of briefness, we often say that r/’X is an universal algebra over X in ’.

The next two lemmas only depend on the universal property of and are stated
without proof. We refer the reader to Cohn [5] or Gratzer [25] for details.

LEMMA 10.9. Let be a (abstract) class of n-rational E-algebras. For any S-
indexed family X, let rl X be a universal E-algebra over X in . If the n-rational
subalgebra E([r/(X)]) of ; generated by rl (X) is in % then E ([r/(X)]), that is,
(X) generates

Note that Theorem 4.3 is used in the proof.
LEMMA 10.10. Let c be a nontrivial class of n-rational E-algebras. If rl X is

an universal E-algebra over X in % then q is a family of inections.
When r/ is a family of injections, is called a free algebra over X in . It is

easily verified that semi-varieties (and varieties) are closed under subalgebras. Hence
Lemma 10.9 applies to semi-varieties. If, in addition, a semi-variety is nontrivial, X
can be identified with r/(X) and generates . This is the case when the class of all
n-rational E-algebras is considered. Therefore, there is agreement between the notion
of a free E-algebra for a class of E-algebras and the previous notion of a free E-algebra
given in Theorem 3.10.

DEFINITION 10.11. Given an n-rational E-algebra
is fully invariant if it is preserved under endomorphisms. That is, for every n-rational
morphism h:, for all x, y in , xmy implies h(x)=h(y). Similarly, a fully
invariant congruence is defined by replacing inequality by equality.

Note that fully invariant precongruences on n-RT(X) are those preserved under
substitutions, since endomorphisms in n-RT(X) are substitutions.

Two more lemmas are needed before stating and proving the theorem characteriz-
ing semi-varieties in terms of fully invariant precongruences.
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LEMMA 10.12. Let < be a fully invariant precongruence on n-RT(Xo) with
associated congruence -. An inequality tl <- t2 is valid in n-RTv(Xo)/ if and only if
tl <t2.

Proof. First, assume t < t2, and let (x" Sl, , x" Sm - S)" tl t2 be its expanded
notation. For any function h’{Xl," , x} n-RT.(Xo)/, by Lemma 10.1, there is
a substitution f" Xo - n-RT(Xo) such that h (t) f* (t) for every tree in n-RT(Xo).
Since < is fully invariant, t
f(t2) h

Conversely, if tl =< t2 is valid in n-RT(Xo)/, let h’Xo- n-RT(Xo)/- be such
that h(x) $. We can take the identity function as the substitution f,.and so h*(t) {..
Hence, t- h (tl) < h (t2) 2 and tl < t2, as desired.

The next lemma shows the crucial role played by universal algebras in classes of
algebras.

LEMMA 10.13. Given a class c of n-rational E-algebras closed under subalgebras,
for any S-indexedfamily X, if rl X - ; is an universal algebra overX in c, an inequality
x s, x s s) t <- ta holds in , that is l t) - rl t2), if and only if tl <-- t2

is valid in
Proof. Assume that r/(t)- r/#(t2) holds in 9. Since {x,. , x,,} is a subset of

X, any assignment c" {Xl,""", x}- can be extended to a function h" X . Let
h" X- 1 be any function to any E-algebra in . Since is universal on X, there is
an unique morphism g such that h r/. g. But n-RT(X) is also free on X and so,
there are unique morphisms ? and h such that i.r/=r/ and i. h= h, where
i’X- n-RT(X) is the inclusion map.

X

But then, i. h * i. r/* g h, and so h * r/ g. Hence, h*(tl) g(r/*(tl)) r-

g(rt* (t2)) (since g is monotonic) h* (t2). Therefore, ta =< t2 is valid in .
Conversely, if tl -< t2 is valid in c, since is in c, tx <- t2 is valid in . Choosing

h" X- equal to rt, we have rt*(tl) - r/*(t2), that is, t =< t2 holds in .
Note that the monotonicity of g was crucial to the proof. A similar lemma holds

for a weakly universal ;-algebra and an equation tl t2 because the monotonicity of
g is not needed in this case.

The following theorem relating semi-varieties and fully invariant precongruences
can now be proved. This theorem is important in the sense that it reduces the study
of semi-varieties to the study of fully invariant precongruences. A similar theorem was
proved by Guessarian [27, Prop. 5.25] for relational classes of continuous algebras
and continuous substitution-closed preorders. The techniques used in our proofs are
quite different from those used in Guessarian [27], and more "constructive". An
important consequence of Theorem 10.14 is that, if -<_ is a fully invariant admissible
n-rational precongruence on n-RT.(X), then the n-rational algebra n-RT.(X)/ is
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universal on X in the variety =< . This last result is used to prove the soundness of our
proof system in Theorem 10.19.

THEOREM 10.14. The mapping s" E --> E is a bijective Galois connection between
fully invariant precongruences over n-RTr.(Xo) and semi-varieties.

Proof. First, let c be any (abstract) class of n-rational E-algebras. We prove that
the set c of inequalities valid in : is a fully invariant precongruence. It is straightfor-
ward to check that : is an admissible congruential preorder, by the definition of
validity. Given an inequality (Xl :Sl," , x, :Sm "-> S) tl <= t2, for any assignment
c’{xl,’",Xm}-->s, where is any E-algebra in qg, for any substitution
f:n-RT(Xo)--> n-RT(Xo), f" c:n-RTv.(Xo)--> d is a (monotonic) morphism, and if
q<-t2 is valid in ’, then c*(f(q))=c*(f(t2)). Hence, f(q)<=f(t2) is valid in , and
so c is fully invariant. It remains to show that it is n-rationally continuous. Given an
n-iteration {tli N} with least upper bound t, let t’ be arbitrary in n-RT(Xo) and
assume that t-< t’ is valid in c for all N. Let {x,..., Xm} be the set of variables
occurring in or t’. For every assignment c’{xl," , x,,}--> sg, since c is n-rationally
continuous, c* II t) I1 c (t), and since tl <= t’ is valid, we have c* (tl) c* (t’), which
implies c(I Its) IIc*(t)r--c(t’). But this means that IIt =< t’ is valid, as desired.

Next, assume that -< is a fully invariant precongruence on n-RT.(Xo). First,
observe that the mapping s’=< --> =< is surjective. Indeed, for any semi-variety : E,
since c E E % : being a fully invariant precongruence, we have c (:).

We shall show that the mapping s is injective by showing that <_-= 5-. Since we
know from the Galois connection that -< is a subset of _<-, it suffices to prove the
converse. This will follow from the following claim.

CLAIM. For any S-indexed family X(not necessarily equal to Xo), let <= be a fully
invariant precongruence on n-RT.(X). Then, rl :X--> n-RT(X)/= is an universal
,-algebra overXin the semi-variety <= , where rl is the restriction ofthe quotient morphism
toX.

Proof of claim. First, we check that every inequality in =< is valid in
n-RT(X)/ =. This will show that n-RT.(X)/ is in _-<. Let (xa s, , x,, s,, -->

s). t -< t2be any inequality in -5. Every assignment c {x,.. , x,,}--> n-RT(X)/=
extends to a (monotonic) n-rational morphism c*. Let r:n-RT(X)--> n-RT(X)/
be the quotient morphism. Since r is surjective, by Lemma 10.5, there is a function
g:X--> n-RTv.(X) such that c* g*. r. But since 5- is fully invariant, tl =< t2 implies
g*(tl) 5-- g*(t2) and so, c*(tl) "tr(g*(tl)) =< "tr(g(t2)) c*(t2) since r is monotonic.
Hence, tl--< t2 is valid in n-RT(X)/=.

For every assignment c: {X1,’’’, X,}-> to any n-rational algebra d in -<_,
consider

n-RT(X)

X

/" > n-RT(X)/=

Since d is in <_-, whenever ta _-< t2 is valid in d we have c*(q)-c*(/2). Hence,
_-< is a subset of --<c*. By Theorem 8.6, there is an unique n-rational morphism g such
that c * r. g. Then, it is clear that rl" X n-RT(X)/= is universal over X in the
semi-variety _-< .

To conclude the proof of Theorem 10.14, assume that tl <- t2 is in -<_. Since
n-RTz(X)/= is in <-, t 5-t2 is valid in n-RT.(X)/=. But since n-RT(X)/= is
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universal, by Lemma 10.12, tl t2 belongs to _<-. Hence, <_-si is a subset of -<_. But
then, _-< si= -,< concluding the proof.

COROLLARY. For any S-induced family X, if <- is a fully invariant admissible
n-rational precongruence on n-RTz(X), then the n-rational algebra n-RTv.(X)/- is
universal on X in the variety <-.

DEFINITION 10.15. Let X be any arbitrary S-indexed family and let E_
(n-RTr.(Xo))2 be a set o inequalities. The set o substitution instances of E in
n-RTz(X) is defined as follows" E(X) ={c*(tl) <-c*(tE)l(xl" sl, Xm" S,,,’-> S)"
tl <- tE E L} r- and c’{xl,""", x,,}--> n-RT.(X)}.

((Note that r- denotes the partial ordering on n-RTz(Xo).)
LEMMA 10.16. Let X be any S-indexed family and let E be any set of inequalities

on n-RTz(Xo). Then ...> is the least fully invariant n-rational (admissible) pre-
congruence containing

Proof. Recall that x); is the least n-rational precongruence containing E(X).
Hence, it suffices to show that (x) is fully invariant. This is easily shown by transfinite
induction up to t01 using the fact that substitutions are n-rationally continuous.

Note that for X X0, it is not necessary to include substitution instances of
inequalities tl r. t2" Hence, we have the following corollary.

* > is the least fully invariant n-rational precon-COROLLARY. The relation
(Xo)

gruence containing E.
The above corollary shows that an equivalent proo system is obtained if the

axioms are replaced by all substitution instances of the axioms. Instead of replacing
the axioms by their substitution instances, we can add the instantiation rule to the
proof system of Definition 9.6.

Instantiation rule; i.e., If {XI’SI,’’" X "Sin} is the set of variables occurring in
tl or rE, for every substitution f" {Xl,’’’, x,}-> n-RTv.(X),

tl
(t,) --<_

The following lemma shows the equivalence of the two proof systems. The proof
proceeds by (transfinite) induction on the rank of proof trees and presents no difficulty.
Details arc left to the reader.

LMMA 10.17. For any inequality tl <--t, t <- 2 in a proof possibly using the
instantiation rule if and only if (X)-tl <-_ t without using the instantiation rule.

LMMA 10.18. Let be a set of inequalities over n-RT(Xo). Then, E and E(Xo)
define the same semi-variety .

Proof. Since is a subset of E(Xo), from the Galois connection, E(Xo)" is a subset
of E. Conversely, for every inequality (x’s,. , x "s, --> s) t <= t in E, for any
substitution f" {x, ., x}--> n-RT(Xo) and any assignment c" {x, ., x,}-> to
any n-rational algebra in , we then have

n- RT(Xo)

Xo f n-RT(Xo) .
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Since both n-rational morphisms (f. c*) * and f* c* extend f. c*, they must be
equal. Then, we have, c*(f*(h)) (f c*)*(h)r-(f c*)*(tz)) c*(f*(tz)) since h --< tz
is valid in M. But every inequality f* q) <= f* t2) in E(Xo) is valid in M, and so, M
belongs to E(Xo). Hence, E is a subset of E(Xo) and E= E(Xo).

COROLLARY. Let E be a set of inequalities. Then E and
Xo)

both define the
semi-variety E .

Proof. From the corollary to Lemma 10.16, x.; is the least fully invariant
n-rational precongruence containing E. But E is also a fully invariant precongruence
containing E. Hence,

xo)
is a subset of E. Using the Galois connection, this implies

* isasubsetBut E is a subset of Xo)" so
eXo)

that E E is a subset of
xo)

,,,,*,, >,=Eof E Therefore,
(Xo)

The soundness and completeness theorem will now be proved.
THEOREM 10.19. Given a set E of inequalities over n-RTx(Xo), an inequality

(Xl: S1," Xm: S "-> S) <-- t2 is valid in the semi-variety E ifand only ifE(Xo)-ta <-- tz.
Proof. First, we prove soundness. Assume that E(Xo)F-tl < t2, that is, ta Z(Xoi> t2.

is the least fully invariant n-rational precongruence containing E, andSince
E(Xo)

since both E and
<Xo)

define the same semi-variety E s, by the corollary to Theorem
,10.14, letting denote the equivalence associated with <Xo)>, n-RTx(Xo)/- is

universal over Xo in E. By Lemma 10.12, h -<- t2 is valid in n-RTx(Xo)/= if and only
if

.Eix,0), t2. By Lemma 10.13, since tl < t2 is valid in n-RTx(Xo)/=, it is valid in
ES, estaonsnlng soundness.

Completeness. Assume tl<=t2 is valid in E. By the above reasoning,
n-RTx(Xo)/ is universal over Xo in E and so, ta _-< t2 is valid in n-RTx(Xo)/-. By

*Lemma 10.12, tl <x0) t2, that is E(Xo)t-tl <= t2, establishing completeness.
The following theorem shows that universal algebras in semi-varieties are given

by presentations.
THEOREM 10.20. Given any set E of inequalities over n-RTx(Xo), for any

S-indexed family X, n :X--> n-RTz(X) is the universal X-algebra over X in the
semi-variety Es, where is the equivalence associated with

x)
In particular, if E

is nontrivial, n-RTz(X)/= is the free E-algebra over X in E.
Proof (1) First, we show that n-RTv.(X)/is in E. Let (x:s,..., x:Sm->

S)’tl <- t2 be any inequality in E. For any assignment c: {Xl," , x,}-> n-RT.(X)/-,
by Lemma 10.1, there is a substitution f: {Xl,’’", x,,}-* n-RT.(X) such that c(t)=
f*(t). But then, since tl<-t2 is in E, f*(tl)<-f*(t2) is in E(X), and since (x)> is
a precongruence containing E(X), we have

C
# (tl) f (tl) --<f (t2) c (t2).

Hence, tl <- t2 is valid in n-RTx(X)/=.
(2) It is easy to show that the semi-variety E is contained in the variety E(X).
(3) From Lemma 10.16,

(x)
is the least fully invariant precongruence contain-

ing E(X) and, from the corollary to Theorem lb.14, n-RTx(X)/ is a universal
algebra over X in E(X). Hence, from (1), (2), (3) above, it follows that n-RTx(X)/
is universal over X in E.

Note that the universal X-algebra n-RTx(X)/- is presented by the set of gen-
erators X and by the set of inequalities E(X).

11. A "Birkhoff variety theorem" for classes of n-rational algebras. In this
section, semi-varieties of n-rational X-algebras are characterized in terms of closure
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operations. First, we need the following theorem which shows the existence of universal
E-algebras in abstract classes of n-rational E-algebras closed under subalgebras and
direct products.

LEMMA 11.1. Let c be any (abstract) class of n-rational E-algebras closed under
subalgebras and directproducts. Then, for every S-indexedfamilyX, universal E-algebras
over X exist in

Proof. Let n-RT(X) be the free n-rational E-algebra on X, with injection j: X-->
n-RT(X). Let (<-i)i be the family of all n-rational precongruences on n-RT(X)
such that n-RT.(X)/- is isomorphic to an algebra in %). Let ui =]" q be the composi-
tion of ui and the natural quotient morphism qi" n-RTz(X) -> n-RT(X)/=. The family
(ui)i defines a function u:X->I-I(n-RTz(X)/-i) to the direct product of the n-
RT:(X)/-i. Let F be the n-rational subalgebras of I-[(n-RTv.(X)/-i) generated by
u(X), Since %) is closed under direct products and subalgebras, : is in (. Let
ri" 1-I(n-RTz(X)/-i)--> n-RTz(X)/- be the ith projection. Observe that, the q being
surjective, ui(X) generates n-RTz(X)/-i and so, the restriction of ri to : is surjective.
This shows that : is a subdirect product of the n-RT.(X)/-i. Let <- be the intersection
.of the family (<-i)i. It is clear that _<- is an n-rational precongruence. Furthermore,
9 is isomorphic to n-RTz(X)/, where is the equivalence associated with _-<.
Indeed, the function u: X--> (n-RT(X)/-) extends to a unique morphism u, and
it is immediately verified that the precongruence =<* induced by u is equal to -<.
Hence, by Lemma 8.5, n-RT.(X)/- and u(n-RT(X)) ; are isomorphic. Let
,l=j.q,

CLAIM. "tl X---> i; is universal over X in
Let be any Z-algebra in and let h:X --> be any function. There is an unique

n-rational morphism g: n-RT(X)--> extending h. Since is closed under subalge-
bras, g(n-RT.(X)) is in (note, Lemma 4.1 is used here). But g(n-RTv(X)) is
isomorphic to n-RT.(X)/Ker(g) and so, Ker(g)=- for some eI. Let
n-RT(X)/ -i.

X n-RT,(X) > n-RT(X)/-

Since _-< is the intersection of the i and n-RT(X)/i, is a subset of _-<g.
By Theorem 8.6, there is an unique morphism h such that g =q. h. Hence, 7:X->
n-RT(X)/- is universal over X in .

Note that r/(X) generates and that : is a subdirect product of E-algebras in .
The following theorem gives a purely algebraic (model-theoretic) characterization

of n-rational semi-varieties of n-rational E-algebras.
THEOREM 11.2. A nonempty abstract) class of n-rational E-algebras is a semi-

variety if and only if it is closed under direct products, subalgebras and images under
(monotonic) n-rational morphisms.

Proof. We leave it to the reader to verify that semi-varieties are closed under
direct products, subalgebras and images under n-rational morphisms.
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Conversely, let qg be a class of n-rational E-algebras closed under these operations.
Let d be any E-algebra in qg*. Let X be an S-indexed family of generators for s (X
can be taken to be itself). Let g" n-RTr.(X) d be the surjective n-rational
morphism extending the inclusion X d. By Theorem 11.1, there is a universal
E-algebra r/" X over X in qg. Consider the diagram:

g

X n-RTr.(Xo) ’

Let r * be the unique extension of . Note that (X) generates since is
closed under subalgebras. We consider as being presented by and the precon-
gruence < Every inequality t < t holding in , that is ’7" (t) r-- r* (t) is valid in

by Lemma 10.13. Hence, whenever t <-_n t, t <-_ t is valid in sg, which implies
g(t)-g(t) since g is monotonic. Hence, _-,< is a subset of -<--r By Theorem 8.6,
there is a unique n-rational morphism h:s since is isomorphic to
n-RT.(X)/Ker (r*). Furthermore, g being surective, h is also surjective and h()
s. Since ’ is closed under images of n-rational morphisms and is in % s is also
in ’. Hence, we have shown that ’ is contained in . From the Galois connection,

is a subset of , and therefore, . Hence, the semi-variety is defined by
the set of inequalities .

12. Semi-varieties and "algebraic classes." This section points out connections
between the algebraic classes of interpretations studied in [7], [8], [10], [26], [27] and
semi-varieties. This topic should be investigated in more detail and is left for further
research.

It is [requently the case that the set E of inequalities is a set of inequalities between
finite trees. In particular, this is the case when inequational axioms are used to
axiomatize classes of interpretations for recursion schemes as in Courcelle [7]. One
might expect that in this case, proofs of inequalities among infinite trees representing
the result of unfolding recursion schemes, are simpler than in the case where the
axioms in E are infinite too. This is indeed the case. It is shown below that every
inequality valid in the semi-variety generated by a set of finite inequalities has a proof
tree of rank at most w. The lub rule can be simplified, and every proof tree is equivalent
to another tree in which this new rule occurs at the root of the tree, if it occurs at all.
In this case, the preorder is "algebraic" in the sense of Courcelle and Nivat [10].
The part of a proof which does not involve the new lub rule can be carried out using
E purely as a rewriting system, the lub rule being used only when passing to the limit.
Hence, it may be expected that ideas and results in Courcelle [7] may be used to study
semi-varieties generated by finite inequalities. This is left for further research.

DEFINITION 12.1. The inductive lub rule is defined as the following inference rule.

i=l jt <= t
It<--I ItS2

for any two n-iterations {tliN} and {t’lY N} in n-RT(Xo).
In the theorem below, it is assumed that only inequalities t r-t2 between finite

trees are included in the axioms, besides inequalities in E.
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THEOREM 12.2. Given a set E of inequalities between finite trees, if any inequality
tl <- t2 has a proof tree T, then it has a proof tree T’ of rank at most to, and the inductive
lub rule appears at the root, if it appears at all.

Proof. The proof proceeds by complete induction on the rank of proof trees.
(i) First, we have to show that every substitution instance of an inequality in E

has a proof tree satisfying the condition of the theorem. Let (xl" ul,..., Xm" U,,-*
U) tl ----< t2 be any inequality in E. Let f: {Xl," , xm}-* n-RT(Xo) be any substitution.
Let us denote f(x) by s. For each s, there is an n-iteration {siljN} such that
s= Ilsi. Using the instantiation rule, one can easily show that tl(S,’’" SJm) -<

t2(Sl, s) has a (finite) proof tree, for each j N. Then, by application of the
inductive lub rule, we obtain the desired proof tree for

tl(S1,""", Sin)= tl(S,""", SJm) [_] t2(sa, s)= t2(Sl,""", s,).

Note also that the partial ordering on trees being algebraic, it is easily shown that
every inequality tl = t2 has a proof.

The rest of the proof proceeds by cases. Only some of them are treated, the others
being similar and so left to the reader.

(ii) The root of the proof tree T is an application of the transitivity rule. Then,
T has two subtrees T1 and T2, and the inductive hypothesis applies to them. Hence,
there are two proof trees Ta for ta =< t3 and T2 for t3 -< tz, such that rank (T), rank (T2) -<
to and if present, the inductive lub rule labels the root of T1 and T2. But then, for
every i, for some j, we must have a subproof of t =< t and for every j, for some k,
there is a subproof of t_-< t2k. Furthermore, these proof trees are finite. Using the

< t2k. Applyingtransitivity rule, for every i, for some k, there is a finite proof tree for
the inductive lub rule, the desired proof tree T’ is obtained.

(iii) The root of the proof tree T is an application of the substitution rule. This
case is similar to (i) and is omitted.

(iv) The lub rule labels the root of the proof tree T. In this case, the premises
are inequalities t -<_ t2 for finite trees t. By the inductive hypothesis, each such inequality
has a proof tree in which, if the inductive lub rule is used, it is used at the root. But
the trees being finite, for each i, there is a ] such that tl < t is provable. Hence, an
equivalent proof tree with a single application of the inductive lub rule at the root is
obtained. This concludes the proof.

Note that alternatively, instead of including as axioms all inequalities between
finite trees given by the partial ordering on trees, we could have used the instantiation
rule and the reflexivity rule both restricted to finite trees.

We now briefly compare the approach using n-rational E-algebras with the more
standard approach using continuous E-algebras. In order to simplify the notation, let
us denote the preorder - defined by the set of inequalities E as -<. Then, note that
Theorem 12.2 shows that _-< is algebraic in the sense of Courcelle and Nivat [10]. As
in Courcelle [7], the set E of finite inequalities induces a rewriting system which defines
the rewrite relation -k. One can easily prove that for finite trees, E-tl =< t2 if and only
if tl(-- Ur-)*t2 Hence, < is the "algebraic closure" of (--, t_J=)* It is shown in

E
Courcelle [7] that the universal E-algebra over X0 in the semi-variety E is obtained
as the to-completion of the quotient FT(Xo)/(- kJ=)*, and that the quotient
CT.(Xo)/-, where , the equivalence associated with <=, is not always to-continuous.
However, -<_ being an n-rational precongruence, the quotient n-RT.(Xo)/- is n-
rational. Hence, not considering all chains but only n-iterations pays off, since no
completion operation is needed.
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There is however a negative counterpart. Courcelle [7] has shown that it is fruitful
to investigate the notion of normal form of an infinite tree, under a rewrite relation.
If {till N} is an n-iteration, assuming that each t reduces to a normal form t2 under
(-- t_J r-)*, and assuming that {tli N} is also a chain, it is tempting to take IIt as a
normal form for I1 t. However, although {tli N} may be a chain, it may not be an
n-iteration, and II t/ may not be in n-RTz(Xo). The following example due to Courcelle
[7] illustrates this behavior for recursion schemes (1-RTz(Xo)).

Example 12.1. The n-iteration {t[i N} is obtained by unfolding the scheme

and the inequalities are

F(x)= h(x, F(f(g(x))))

f(g(x)) <= g(f(x)) and f(.I.) _-< .l..

Figure 1 shows the tree t, and Fig. 2 shows the tree t. The tree IIt is not
context-free.

h

f
/ \, h

g
f

x

FIG.
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FIG. 2

This example shows a weakness of the approach using n-rational ;-algebras. These
investigations are left for further research.
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THE INFORMATION-THEORETIC BOUND IS GOOD FOR MERGING*

NATHAN LINIAL"

Abstract. Let A=(al > > a,) and B=(bl > > b,) be given ordered lists: also let there be
given some order relations between ai’s and bj’s. Suppose that an unknown total order exists on A tAB
which is consistent with all these relations (= a linear extension of the partial order) and we wish to find
out this total order by comparing pairs of elements at:bs. If the partial order has N linear extensions, then
the Information Theoretic Bound says that log2 N steps will be required in the worst case from any such
algorithm. In this paper we show that there exists an algorithm which will take no more than C log2 N
comparisons where C (log2 ((x/+ 1)/2))-1. The computation required to determine the pair at:bs to be
compared has length polynomial in (m + n). The constant C is best possible. Many related results are
reviewed.

Key words, theoretic bound, partially ordered sets, order ideals, lattice paths, convex polygons

1. Introduction and review. This paper is a part of an effort to answer the question
"How good is the Information Theoretic Lower Bound." This question had already
received considerable attention, e.g., [Fr][GYY1]. For many algorithmic problems,
the quest of an answer is equivalent to searching a certain space whose elements are
referred to as "compatible solutions" in the sense that they do not contradict the
presently available information concerning the solution. Let us assume that our queries
concerning the solution are such that they permit exactly two answers (the generaliz-
ation to other cases is obvious). Thus the space of compatible solutions is split into
two parts according to the answer. Assuming answers are given by an adversary, we
may assume that the actual answers are always such that we are left with the majority
of the compatible solutions after each query. The best one can do is to make such a
query for which the space of compatible solutions is split into two equal parts. For
this optimal strategy the number of steps will thus be log2 No where No is the initial
number of compatible solutions. The problem is of course that in many situations such
an efficient query which splits the compatible solutions into two sets of equal size does
not exist. The purpose of this paper is to investigate the quality of the ITB under such
circumstances.

This general model of a problem encompasses a great variety of search-sort
problems and the situation varies from one problem to another. In many interesting
families of problems which are included in this model the following situation occurs:
although in general one cannot always find an optimal query which splits the space of
compatible solutions into two equal parts, one can find a constant 1/2_-> a > 0 such that
a query can always be found for which the smaller subspace has size at least a times
the size of whole compatible solution space. (So the size of the large subspace is at
most (1- a) times the size of the whole space.) In this case it is clear that the solution
can be found in log N0/log (1-a) steps (No again being the initial size of the space
of compatible solutions). In such cases the ITB gives the right order of magnitude for
the optimal number of steps. Sometimes a somewhat more complicated result can be
stated: there is an integer k and a constant 0 </3 < 1 so that one can always find k
queries with the property that no matter what answers one receives the size of the
remaining subspace is at most/3 times the size of the space before these queries were
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made. Clearly the ITB gives here, too, the correct order of magnitude for the optimal
number of steps.

Let us review some previous work in which this situation has been shown to occur;
(1) [LS] Let T, r) be a tree rooted at r. The space of compatible solutions consists

of all subtrees of T rooted at r. The queries are: a node x in T is picked and one asks
whether x belongs to the chosen subtree. One proves here:

a) There is always a node which belongs to a fraction c of the compatible trees
wh re -<_ ,, -<_

b) One can always find k-< 3 vertices (=queries) so that after these queries are
answered, the size of the compatible solution space drops to at most A k Of its initial
size where A 5-1/3. The constant A is best possible and the cases of equality are
completely characterized.

2) Let (P,->_) be a finite poset and consider the space of its nonempty ideals
(= down sets; A c_ p is an ideal if x A, y < x implies y A). A query is made here
by asking whether an element x of P belongs to the chosen ideal or not. This space
is related to a large variety of search problems (see [LS]). Sands [Sa] has shown that
if one restricts the attention to posets of height _-< k, then there is a constant 1k 1/2 SO
that one can always find an x P(= a query) such that the fraction of those order
ideals containing x is between Ok and 1- Ck. A major open problem in this field is
the following:

Problem 1 [Sa]. [LS]. Prove that there is a universal constant 0 < a < 1/2 so that in
any finite poset P there is an element x for which

no. of ideals in P containing x
l-a> >a.

no. of ideals in P

3) [KLS] Let G =(V, E, r) be a connected graph roots at r. Let the space of
compatible solutions be the collection of all connected subgraphs containing r. A query
is made by picking a vertex x e V and asking if it belongs to the connected subgraph.
I no further assumption is made on the graph G, then the ITB may totally fail. If for
example one chooses G to be Cn---the circuit on n vertices---and r to be any designated
vertex, then No O(n2) is the number o connected subgraphs of G containing r.
However for certain connected subgraphs, like the whole graph minus one vertex, the
search will require n- 1 queries.

However, if one assumes that all vertices in G have degree at least three, then it
can be shown [KLS] that No >-2n/4 and so the ITB must be good (for example, make
all n possible queries). Not much is known, though, about how to find the most efficient
queries and how efficient they are.

2. The problem and the main theorem. In the standard sorting problem [Kn], as
everyone knows, one is given n elements Xl,"" ", xn and one has to find a total order
on them by comparing pairs xi: xj. The ITB implies that at least log2 No log2 n! steps
are required and that this bound can be more-or-less achieved. Consider now the
following more general problem:

The general sorting problem. The input consists of n elements Xl," ", x together
with some order relations between them. One is to discover their total order which is
known to be compatible with the input order relations.

Formal restatement of the problem. Let (P, ->) be a finite poset. There is a linear
order on P compatible with ->_ (an extension of ->_) which is unknown to us. This
extension is to be discovered by querying the order relations between pairs of elements
x, y P where x, y are unrelated by =>.
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The ITB implies that any algorithm which solves this problem requires at least
log2 No steps where No is the number of extensions of ->. We conjecture that the ITB
gives the right order of magnitude. Namely, we make the following

CONJECTURE 1. There is a universal constant c > 1 such that the general sorting
problem can be solved in c log2 No steps where No is the number of extensions of (P, >-).

We want to make an even sharper conjecture asserting that one can always find
an efficient query. To this end we make the following

DEFINITION. Let (P, ->) be a poset, x, y P.

Pr(x> y)’=
no. of extensions of (P, _->) in which x > y

no. of extensions of (P, _->)

The quantities Pr (x > y) received much attention recently [Gr], [Sh], [GYY2], [KS].
We want to make:

CONJECTURE 2. There is a universal constant 1/2 > a > 0 such that if (P, >=) is a

finite poset in which the order >= is not total, then there exists x, y P such that

1-’a >-_Pr (x > y) >= a.

In fact we know of no counterexample even for a 1/2.
Now we can state and prove our main results. We can show the validity of

conjectures 1 and 2 in the case where (P, ->) can be covered by two chains. This special
case is well known as the merging problem, see [Kn]. One is given two linearly ordered
lists A (al > > am) and B (bl > > bn) and some order relations between
elements of A and elements of B. We want to merge A and B into one ordered list
where the linear order on A t.J B is an extension of the partial order just described.
So we have:

THEOREM 1. Any algorithm which can merge A and B will require log2 No steps
in the worst case where No is the number of extensions of the partial order on A t_J B.
An algorithm exists which merges A and B in no more than C1 log2 No where CI
(log2 ((1 +x/)/2))-1. This bound is best possible. The computation needed ]:or finding
the appropriate queries can be done in time polynomial in IA t_J BI.

THEOREM 2. With A, B as above one can always find x A, y B for which

_->Pr (x> y)_->1/2.
The constants 1/2, are best possible. The elements x, y can be found in time polynomial

Let us start with
Proof of Theorem 2.rLet us show first why 1/2, are best possible. Consider the

case where A=(al >... > a,,), B=(bl> > b2m), ai>b2i+l (m-l>--j>--l) and
bj_> aj (m _-> ] -> 2). It is easily verified that

k2j-2,-, k=2j-1,
Pr (a bk)

k 2j,
(m - j- 1, 2m - k - 1).

1, k2j+l,

Now let us turn to the proof of the existence of x A, y B for which
Pr (x y)-1/2. We may assume w.l.o.g, that al and bl are incomparable. If a bl,
say, then a is the unique maximal element in A 3 B and so it remains the maximal
element in any extension of the partial order. Therefore, nothing will change if a is
deleted from the poset. We prove our claim by contradiction and we assume again
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w.l.o.g, that

Pr (al > bl) < 1/2.
Define now the following quantities

ql Pr (al > bl),

qi Pr (bi_l > al > b)(n _-> >- 2),

qn/l Pr (bn > al).

We prove the following"
LEMMA. The real numbers qi( n + 1 >= >= 1) satisfy"
1 01) =ql=
n+l2) r-- qi 1.

Proof. Since ql,..., qn/l is a probability distribution, all we have to show is that
ql -> -> qn/l. To show this we exhibit a 1" 1 mapping from the event whose probabil-
ity is qi+l into the event with probability q(1 >_-i>_-n). Notice that in an extension for
which b-i > al > b not only does al come after bi-1 but it must immediately follow
it" Of course none of the aj can precede a and none of the bj can come between
and bi. The mapping from those extensions in which a immedihtely follows b to those
where b_ > a > bi is obtained by permuting a and b-l. This mapping clearly is well
defined and 1"1.

The theorem can be proved now: let r be defined by

., qi<--1/2 < qi.
i=1 i=1

r-1
Since Y;1 q Pr (al > br-1) <1/2, it follows that -I .i=l qi < Similarly i=l qi

Pr (al > br) must be >. Therefore qr>, but this contradicts -> ql >=q,
Complexity. The last claim of the theorem reduces now to proving that the index

r of the above proof can be found in time which is polynomial in IA t_J BI. The reader
should be aware that two separate complexity measures are being considered: the
main one is a count of the number of queries that have to be asked in order to solve
the merging problem, and the other one, which we address now, is the time complexity
of the computations which are required to design the queries. Given a partially ordered
set on n elements (P, => which can be covered by two chains, there is a determinant
formula giving the number of extensions of =>, see [Mo, p. 32]. Since these determinants
are computable in polynomial time and we need to compute polynomially many such
determinants to implement our algorithm, this proves our assertion. For completeness,
let us recite the determinant counting formula: Let P=AUB, where A=
(a>...>a,,), B=(bl>’">b), and assume m>=n. Define integers
a,..., a,,,/3,...,/3,, as follows: /3=min {tla<b,}, a=max {tlbr> a} and where
the minimum and maximum of an empty set are taken to be n + 1 and zero respectively.
The number of extensions of (P, >=) is given by

det[(/3i- aJ+ 1)]j- + 1 m>_i.j>__l

see [Mo] for the details.
The following theorem is equivalent with Theorem 1 but states the result in a

more convenient way. We remind the reader about the definition of Fibonacci numbers"
This is the sequence defined by: Fo 1, F 2, Fn+ =F, +F,_(n >= 1). The following
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explicit formula also exists for these integers

F,,=AA"+B.(-A)-",
where

/+ 1 5 +3/ 5 3/= A= B=
2 10 10

THEOREM 1.1. A merging problem which cannot be solved by less than n queries
must have at least F, compatible solutions. For each n >= 1 there exists a unique merging
problem which requires n queries and has exactly Fn compatible solutions The appropriate
queries can be found in time polynomial in the size of the poset.

Proof. Let us start by exhibiting the extreme cases. We describe the merging
problems which are referred to as the special merging problems. For n 2m-1, let
A (al > > am), B (bl > > b,,) and the relations aj > bj+l(m 1 >= j >- 1),
bk>ak+2(m-2>=k>=l). For n=2m let A=(a>... > a,+), B=(b> >bin)
and a> b/(m- 1 >= j>= 1), bk > a/2(m- 1 >= k >= 1). In either case a is incomparable
with only b_l and bj. Whenever a’b are compared, the answer is a> b and the
answer on aj" b_ is b_l > a. These answers supply no further information on incompar-
able pairs: therefore all n queries have to be made to solve these merging problems.
To show that the number of compatible solutions in these merging problems are given
by Fibonacci numbers, let us consider the case n 2m. We split the compatible solutions
into two parts according to whether a > b or b > a. If al > bl, then a is the unique
maximal element and so can be deleted altogether. For the rest of the elements we

bi (i 1 m) which showsmake the following renaming bi a/(i 1,.. , m)a
that the remaining problem is the special problem for n 2m- 1. If a < b, then al, b
are the maximal elements of the poset so they can be deleted. The remaining problem
is again the special one for n 2m- 2. We have thus shown that Fn Fn_ + F,-2 for
even n->_ 2. The rest of the details can be easily filled in by the reader.

Now we turn to the actual proof of the theorem and of the uniqueness of the
special problems: We’ll show that if a merging problem is given with No =< F, compatible
solution and n steps are needed to solve it, then the problem is special. For n-< 3 the
cases are few and can be checked each in itself. The general case is done by induction
on n. Without loss of generality we assume that q Pr (a > b) =< 1/2. As in the lemma
we define q to be Pr (b-i > a > bi)(m + 1 >= i>= 1). Consider the index r for which

Pr (al> b_) q_<-1/2< q-Pr(a> b).
i=1 i=1

If Pr (a > b) < Fn_/F,, then comparing a" b we remain with a problem which has
less than F,_ compatible solutions and so can be solved in n- 2 steps, contradiction.
Similarly if Pr(a > b_l)> F_2/F,, then on comparing a" b_ we remain with a
problem with less than Fn-F_a- F,_I compatible solutions and the same argument
applies. If follows, therefore, that q >-_ Fn_/F,- Fn_/Fn F_/F. This implies now
that r - 2, because otherwise

Fn-2 r-1 2F._3
--> qi >--- ql + q2 > 2qr >

a contradiction if n=>4. On the other hand r# 1 because, by assumption q
Pr (a> b) =<1/2.

So r 2, ql <= F,_2/F,, ql + q2 >= F,_I/F,. Make the comparison a" b2, to which we
may assume the answer is a > b2. This is followed by the comparison a" bl to which
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we may assume a reply a > bl. The remaining problem has at most Fn_2 compatible
solutions and so can either be solved in n- 3 queries making up a total of n- 1 queries
for the original problem, or else it is the special problem with Fn-2 compatible solutions.
One has to verify now that the problem we started with is special. This is an easy fact
to verify and the details are omitted. The complexity argument is the same as in
Theorem 2.

3. Open problems. The major problem is, of course, to show that Theorems 1
and 2 hold for general sorting problems. These problems were stated above in conjec-
tures 1, 2. To state other problems let us make the following definition" An extension
of a partial order (P, =>) can be described as 1" 1 order-preserving map tr’P
{1,’", IPI}. For x P we define h(x) to be the average of tr(x) over all extensions
of (P, >-). Let [PI n be the order of the poset, then YxP h(x) n(n + 1)/2. We define
the "second moment" of h as V(P) ,xP h2(x)" If p, q P are incomparable elements,
then denote by P(p, q) the poset which is obtained by adding the relation p > q to P
(and, of course, taking transitive closure of the new relation). We have:

THEOREM 3. Let P be a poset, p, q P incomparable elements. Then

V(P) <= max { V(P(p, q)), v(e(q, p))}.

Proof. The most convenient way to view this inequality is geometrically: To any
poset (P, =>) we canonically assign an n-dimensional convex polyhedron C(P) where
Ie[ n. The assignment is as follows" If P has no order relations, then C(P) is the unit
cube {(Xl, xn)ll->_ x >_-0}. Let us say that C(P) has been defined for posets with
k order relations or less (k _->0). Then on introducing the new relation p > pi the
convex polytope of the new poset P(p, p), namely C(P(p, p)), is obtained by taking
that part of C(P) which lies in the half-space x > x. Accordingly, for P which is totally
ordered, C(P) is a simplex X(l < x(2 < < x(,. Notice that these simplices have
volume 1/n! each, and that if (P,_>-) is any partial order on P={p,... ,p}, then
there is a 1"1 correspondence between the extensions of (P, _->) and the simplices that
make up C(P). In particular the volume of C(P) equals 1/n! times the number of
extensions of (P, >_-). Notice also that since all these simplices have equal volume,
h(P)= 1/(n+ 1)(h(pl),’’’, h(p,)) is the center of gravity of C(P). If follows that
V(P) is the square of the distance from the center of gravity of C(P) to the origin.
Now that we have established the geometric interpretation of V(P), the validity of
the theorem follows at once" C(P) is the disjoint union of C(P(p, p)) and C(P(p, p)).
Therefore the origin and the centers of gravity for C(P(p, p)) and C(P(p, p)) form
a triangle and the center of gravity of C(P) lies on the edge connecting the two centers
of gravity. The theorem now follows from obvious facts of plane geometry.

Now that we have established Theorem 3, we are ready to ask if a stronger
statement holds.

CONJECTURE 3. Let P be a poset and let p, q P be incomparable. Then

V(P(p, q)) >- V(P).

See the problem session of [OS, p. 806] for a related discussion.
Note added in proof. Problem 1 has been recently answered affirmatively by the

author and M. Saks. The constant that was found is a 1/4(3- log2 5).
An interesting prob!.em in computational complexity is to show that it is hard to

count the number of linear extensions of a finite poset. We conjecture that this problem
is 4 P-complete. This conjecture has apparently been made also by R. Karp and by
some other researchers. Using the construction made in the proof of Theorem 3, this
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conjecture could be a concrete statement to the effect that evaluating the volumes of
polyhedra is a hard computational problem.

Also, counting the number of order ideals in posets can be shown to be
4 P-complete. This was shown also by R. Karp (private communication, March 1983).

It has been brought to our attention that Conjecture 2 has been independently
made by a number of researchers, some time ago. In particular we know that M. Fred-
man and R. Stanley had thought about it.
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PARALLEL ALGORITHMS FOR ALGEBRAIC PROBLEMS*

JOACHIM YON zur GATHEN"

Abstract. Fast parallel algorithms are presented for the following problems in symbolic manipulation
of univariate polynomials: computing all entries of the extended Euclidean scheme of two polynomials over
an arbitrary field, gcd and lcm of many polynomials, factoring polynomials over finite fields, and the
squarefree decomposition of polynomials over fields of characteristic zero and over finite fields.

For the following estimates, assume that the input polynomials have degree at most n, and the finite
field has pd elements. The Euclidean algorithm is deterministic and runs in parallel time O(log n). All the
other algorithms are probabilistic (Las Vegas) in the general case, but when applicable to Q or R, they can
be implemented deterministically over these fields. The algorithms for gcd and lcm use parallel time O(log2 n).
The factoring algorithm runs in parallel time O(log2 n log (d + 1)log p). The algorithm for squarefree
decomposition runs in parallel time O(log n) for characteristic zero, and in parallel time O(log n+
(d-1) log p) for finite fields. All Las Vegas algorithms have failure probability less than 2-". For all
algorithms, the number of processors is polynomial in n.

Key words, parallel processing, algebraic computing, symbolic manipulation, Euclidean algorithm,
factorization of polynomials, squarefree decomposition

1. Introduction. In Borodin-von zur Gathen-Hopcroft [1982] the following pro-
gram is laid out" obtain a "theory package for parallel algebraic computations," i.e.
fast parallel computations for the widely used problems of symbolic manipulation in
an algebraic context. In that paper, two basic problems were considered: solving
systems of linear equations and computing the gcd of polynomials, both over arbitrary
ground fields.

The present paper continues this program, and fast parallel solutions to the
following algebraic problems are given" computing all entries of the extended Euclidean
scheme of two polynomials over an arbitrary field, computing the gcd and lcm of many
polynomials over an arbitrary field, factoring polynomials over finite fields, and the
squarefree decomposition of polynomials over fields of characteristic zero and over
finite fields.

As our model of parallel computation, we can take an algebraic PRAM (with
instructions +, -, *, /, constants) or the parallel algebraic computation (directed
acyclic) graphs, PACDAG for short, which we describe informally below. We will
describe the algorithms of this paper in "high-level language," and not give actual
implementations on a PACDAG. A more formal description would follow the lines
of the discussion in Strassen [1983] of (one-processor) algebraic computation trees
and the collections that they compute.

A PACDAG has two kinds of processors and (shared) variables, "arithmetic"
and "boolean" ones. At each node of the (rooted) directed acyclic computation graph,
each arithmetic processor can either perform an arithmetic operation (+, -, *,/) on
two arithmetic variables, or access an arithmetic input variable, or fetch a constant
from the ground field. Each boolean processor can either compute the negation or
conjunction of (one resp. two) boolean variables, or it can take an arithmetic variable
x and set a boolean variable to "true" if x 0, and to "false" otherwise. (One can in
fact simulate these boolean computations in the ground field if a conditional division
instruction of the form "if x0 then y= 1Ix" is allowed.) No write-conflicts are

* Received by the editors February 8, 1983, and in revised form August 12, 1984. An extended
abstract of this paper appeared in Proc. 15th ACM Symposium on Theory of Computing, Boston, 1983,
pp. 17-23.

t Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4.
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allowed. At each node of the graph, each of the branches of the graph emanating from
that node is labeled with a boolean variable; if on a given input the computation
reaches that node and exactly one of these boolean variables is true, then the corre-
sponding branch is chosen; otherwise the computation is not defined at that input.

At each leaf, the output is given by a sequence of arithmetic variables. Thus a
PACDAG computes a collection in the sense of Strassen [1983].

Any PACDAG can obviously be described by a string over a finite alphabet,
provided the field constants used can be described in this way. A family (Pn)nS of
PACDAGs is uniform if the description of Pn can be generated by a deterministic
Turing machine in space O(log n), given n in unary as input. (See Ruzzo [1981], Cook
[1983].) All algorithms of this paper are uniform.

We are concerned with two cost measures of a PACDAG" its parallel time (= depth
of the graph length of longest path from root to any leaf) and its size (= number of
processors). All the algorithms of this paper work in parallel time log(1) n (usually
O(log2 n)) and use n o(1) processors, where n is the input size. One additional feature
is needed for some algorithms: a random generator that produces elements of a finite
subset of the ground field at random, i.e. new "random variables" from which these
random elements can be read.

Among the problems for which we do not have a fast parallel algorithm are the
gcd of two integers and the factorization of a polynomial with rational coefficients.
We give a reduction from the first problem to a problem related to the second, namely
computing short vectors in integer lattices.

All our results belong to the "asymptotic approach" to parallel algorithms, where
one is interested in obtaining the fastest possible parallel algorithms, allowing an almost
arbitrary (say, polynomially bounded) number of processors. This contrasts with the
approach of getting a speed-up from sequential to parallel time close to the number
of processors: Tseq/Tpar is approximately the number of processors.

One interesting phenomenon occurs: all the problems eventually reduce to solving
systems of linear equations. Hence the paramount role of the latter problem. On the
theoretical level, this is expressed to a certain extent by Valiant’s [1980] universality
of the determinant (disallowing branching and division).

The algorithms for linear algebra in Borodin-von zur Gathen-Hopcroft [1982]
used a polynomial number of processors, but this number was impractically large.
Soon after, Berkowitz [1984] presented an algorithm for computing the determinant
with parallel time O(log2 n) and O(n3"5) processors.

2. The extended Euclidean scheme for polynomials. We start with an easy result
about division with remainder of polynomials.

LEMMA 2.1. One can compute the quotient and remainder of two polynomials of
degree at most n in parallel time O(log2 n).

Proof. Let f, gF[x] be given, where F is an arbitrary field, and k=
deg f-deg g + 1 <= n. Their quotient q Fix] is uniquely determined by the condition
deg (f-qg)< deg g, which can be expressed by a nonsingular system of k linear
equations in the k coefficients of q. This system can be solved in parallel time O(log2 k),
as in Borodin-von zur Gathen-Hopcroft [1982]. Computation of the remainder then
takes O(log n) parallel steps.

Actually, quotient and remainder can be computed in parallel time O(log n). This
was shown by Reif [1983] under the assumption that F supports a fast Fourier
transform, and by Eberly [1984] in general.
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Let f, g Fix] with 0-< deg g m-< n deg f, where F is an arbitrary field. We
set ao f, til =g and consider the extended Euclidean scheme for (f, g)"

ao qlal + a2, s2ao+ t2al a2,

a-2 q-la-i -I- a, s-lao "t- h-lal a-l,

al-1 qtal, stao + hat

where the following conditions are satisfied for 2 <- k<- l: ak, ql, qk, Sk, tk F[x],
deg ak <deg ak-1, SO 1, t0=0, S =0, 1, Sk Sk-E--qk-lSk-1 and tk
tk_2- qk_ltk_l Thus the q’s are the quotients and the a’s the remainders of Euclid’s
algorithm, gcd (f, g) is the unique monic scalar multiple of u, by convention, all gcd’s
of polynomials in F[x] are monic) and the s’s and t’s are the "cumula,ts", "conver-
gents" or "continuants". (The terminology is rather unsatisfactory. The last term,
proposed by a certain Muir, provoked an amusing controversy (see Muir [1878]).)
Sequential algorithms for computing these polynomials are important and well-studied;
see Knuth [1981, 4.6.1], for an overview. One interesting feature is that ql,’" ", qt
can be computed faster than can al,"" ", at (see Strassen [1983]).

The above conditions imply that ak has "small" degree and is a linear combination
of f and g with coefficients Sk and tk. Obviously one can multiply ak, Sk, tk by a
polynomial of small degree and conserve these properties. The following lemma shows
that this is the only way of obtaining these properties, and thus gives a characterization
of ak, Sk, tl. Our proof follows Kronecker [1881]; see Knuth [1981, Exercise 4.6.1-26],
for a different approach.

LEMMA 2.2. Let f, g, ak, Sk, tk FIx] be as above, and a, s, Fix] with a, O.
Then the following two conditions are equivalent:

(i) sf + tg a, and deg a + deg < n.
(ii) There exist k {1,..., l} and b Fix] such that

a bak, s bSk, btk,

deg ak <-deg a < (deg ak-l+deg ak)/2 <deg ak-1.

Furthermore, if the conditions are satisfied, then k and b in (ii) are uniquely determined.
Proof. By induction on k one proves that deg tk--El<_i<k deg qi and deg tk +

deg ak-1 n, and then (i) obviously follows from (ii).
For the other implication, we define k {1,..., l} by

deg ak <- deg a < deg ak-1.

This determines k uniquely, since

deg al < deg al-1 <’’" < deg ao,

deg at deg gcd (f, g) =< deg a < n deg ao.
Eliminating g from

Skf+ tkg ak, Sf + tg a,

we get

Skt Stk f tak tka,

deg (tak-tka)<-max {n- 1-deg a+deg ak, n-deg ak-l+deg a}<n.
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Since deg f n, we conclude that Skt--Stk 0. By induction on k one easily sees that

Sktk- tkSk- (-- 1) k

for 1 _-< k <_- l, hence in particular gcd (Sk, tk) 1. This together with Skt Stk 0 implies
that there exists b Fix] such that

btk.
Then also

S bSk, a bag, 0--< deg b,

n > deg a + deg 2 deg b + deg ak q" deg tk

2 deg b+deg ak d- n-deg ak-1,

2 deg a 2 deg b + 2 deg ak

< deg ak-i- deg ak + 2 deg ak deg ak-i + deg ak.

Remark. If a 0 then the statement of Lemma 2.2 becomes valid by introducing
the following (natural) notation: a/l =0, Sl+l St-l-qlst, tl+l "-tt-l-qltt. We have to
allow k= l+l in (ii), and interpret arithmetic expressions involving deg a=-c
"correctly."

The theory of subresultants (Collins [1967], Brown-Traub [1971]) provided an
important development for sequential algorithms computing gcd’s of polynomials (or,
more generally, for the entries of the extended Euclidean scheme). Euclid’s algorithm
for the gcd can suffer from exponential intermediate expression swell if the coefficients
of the polynomials are integers or polynomials themselves (Brown [1971]). The
subresultant algorithms avoid this difficultymwhich makes the algorithm decidedly
impracticalmby translating the problem into systems of linear equations. For parallel
algorithms, this strategy of employing linear equations was successfully exploited for
the gcd in Borodin-von zur Gathen-Hopcroft [1982], and here we use it to compute
all entries of the extended Euclidean scheme.

We first give a self-contained exposition of the relevant results about subresultants.
For this simplified version with Lemma 2.2 as the cornerstone we only have to introduce
the "principal subresultants" as follows.

We write f fnx +. +fo, g g,,x" +. + go with 0 =< m =< n and fng,n O. For
0-< _<- m we consider the (n + m 2i) x (n + m- 2i)-submatrix Pi of the Sylvester
matrix of (f, g) which consists of the first m-i columns of f’s and the first n-i
columns of gj’s:

fn--m+i+l

f2i--m+l

Thus P0 is the Sylvester matrix of (f, g), and det (P0) their resultant. One might call

Pi a "principal subresultant" since its rows are the highest among the matrices for
subresultants of the same size. We denote by Ck the leading coefficient of ak.
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THEOREM 2.3. Using the above notation, we have for all i, 1 <- <- m"
(i) =lk {1,. , l} deg ak : det (Pi) 0.
(ii) If deg ak and Y0," ", Y,,-i-1, Zo, zn-i-i F are such that

then

Ym-i-1 0

YO
Zn-i-

0

Zo 1

Sk Ck(Ym-i-1xm-i-1 /" / Yo),

k Ck(Zn_i_lxn-i-l/. ./ ZO).

Proof. Let ei- (0,. O, 1) E Fm+n-2i, and for any Yo," , Ym-i-1, ZO,"
zn-i-1 F let

S Ym_i_lXm-i-1 /" / YO,

Zn_i_lxn-i-1 /" / Z0,

where 1 =<i -< m. By abuse of notation, we write Pi(s, t)= ei for the system of linear
equations as in (ii). Obviously for any i, 1 -<_ -< m, we have

det (Pi) 0<::> Pi(s, t) ei has exactly one solution

<::> there exist unique s, Fix] such that deg s < m i, dog < n

and sf+ tg is a monic of degree i.

Using Lcmma 2.2, we will show that the latter condition is satisfied iff there exists
k { 1, , l} such that deg ak i. Note that for any with deg al <-.i <= m there exists
k s { 1,. , l} such that deg ak =< < deg ak-1. We distinguish four cases.

Case 1. :lk {1,. , l} such that deg ak i. Setting s c-lSk, c-ltk we see
that sf + tg is monic of degree i. It follows from Lemma 2.2 that s, arc uniquely
determined. This proves (i) in this case, and also the statement (ii).

Case 2. :lks{1,..., l} such that deg ak < i<(deg ak+deg ak-1)/2. For any be
Fix] of degree i-deg ak and with leading coefficient c1, set

s(b) bSk, t(b) btk, a(b) bak.
Then deg (s(b)) < m i, deg (t(b)) < n and a(b) s(b)f+ t(b)g is monic of degree
i. Since there exists more than one such b, (i) is proven in this case.

Case 3. :Ik{1,..., l} such that (deg ak+deg ak_l)/2<--i<deg ak-1. Assume
that deg s < m i, deg < n and a sf/ tg has degree i. From Lemma 2.2, we get
i< (deg ak +deg ak-1)/2. Hence no such s, exist, and (i) is proven in this case.

Case 4. i< deg al. No s, satisfy the condition, since no nonzero polynomial of
degree less than deg a- deg (gcd (f, g)) is a linear combination off and g. (This can
be interpreted as Case 3 with k + 1.) [3

We can now state the parallel algorithm that computes all entries of the extended
Euclidean scheme of two polynomials.

ALGORITHM EUCLID.
Input" The coefficients of f, g F[x] with deg g m -<_ n deg f.
Output: The coefficients of polynomials Ak, Qk, Sk, Tk for 1----< k _-< l, which are

the entries of the extended Euclidean scheme of (f, g).
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1. For all i, 0 -< =< m, compute Pi det (Pi), where P is the ith principal subresul-
tant as above.

2. Set

{nl," ", nl} {i: 0 -< =< m and p 0}

with m nl > n2 >" > nt. (nk will be deg ak.)
3. For all k, 1 <= k -< l, and nk compute Yo," ", Y,-i-1, Zo," , zn-i-1 F such

that -yms. i_ 01,

Pi"
Zn-. i-1

ZO

(This is a nonsingular system of linear equations and has a unique solution.) Set

Uk y,-i-lX
"--1 +" "+ Yo,

1)k Zn_i_l Xn-i-1 .- ZO
Wk Ukf + Vkg.

(Uk, Vk, Wk will be scalar multiples of Sk, tk, ak. In steps 4 and 5 we compute
these scalar factors.)

4. For all k, 2 _<-k <= l, compute dk, rk FIx] such that

Wk-: rk-1Wk-1 + dk,

deg dk < deg Wk-1.

(Dividing Wk-2 by Wk-1 with remainder. Use Wo f.)
5. For all k, 1 -< k =< l, compute the following.

k leading coefficient of dk,

2 if k is even,
ek=

kk-2" 81 if kisodd,

Ak ekWk,

Qk =(Ak---Ak+l)/Ak,

Sk ekUk,

Tk ekl)k

(with 1 leading coefficient of g, and AI+I "-0.)

THEOREM 2.4. Over any field,, algorithm EUCLID computes the entries of the
extended Euclidean scheme of (f, g). I[ deg g =< deg ] <= n, then it can be performed in
parallel time O(log2 n).

Proof. By Borodin-von zur Gathen-Hopcroft [1982] steps and 3 can be per-
formed in parallel time O(log2 n). Using Lemma 2.1 for step 4 and the division in step
5, the timing estimate is clear. The proof of correctness below shows that the division
in step 5 is exact.
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It follows from Theorem 2.3(i) that

# { i" 0 <_- <- m and Pi 0} length of Euclidean scheme,

(hi," ", nt) (deg al," ", deg al),

and from Theorem 2.3(ii) that

Sk CkUk, tk CkVk, ak CkWk,

for 1 =< k =< l, where ck is the leading coefficient of ak. From

Ck_2rk_l) Wk_ 4;- Ck_2dk Ck_2 Wk_2 ak-2

qk-lak-1 -b ak "-(Ck-lqk-1)Wk-1 d-CkWk,

deg (Ck-dk) < deg Wk-1,

deg CkWk < deg Wk-1,

and the uniqueness of division with remainder we conclude that

Ck-2dk CkWk.

Since Wk is monic, we obtain

Ck_2tk Ck"

By induction on k it follows that Ck ek and ak Ak. We also conclude that qk Qk,
s S, t T. rl

Remark 2.5. Let us describe in some more detail how the branching in step 2
can be implemented on a PACDAG. Given the sequence P0," , P,, we want to store
in variables qk (0 <--k <-_ l, j {1,’’", n}2) the matrices/3i, where/3i is Pi extended by
l’s on the diagonal to an n x n-matrix, such that Qk Pnk for 1 --< k _-< I.

Using a binary splitting (starting with all values 0 -< u v _-< m and ending with
u=0, v-m), we compute larger and larger intervals [fl,..., v] such that if s=
# { i" u <_- <_- v and p 0}- 1, then Q,,. , Q+ are the P with p 0 in the original
order, and Qu+s/l,’", Qo =0. Let qk be pi for the corresponding to k.

Given two such intervals [u,..., v] and [v+ 1,. , w], we first branch in depth
O(log n) according to the value of s, u _-< s -< v, such that q 0 and q+l 0 (or (s u 1
and q=0) or (s= v and q 0)), and similarly for t, v<t <- w. Then set

Qk k+v-s

if u _<- k _-< s,
if s< k<-_ s+t-v,
if s+t-v< k<-_ w.

Remark 2.6. As mentioned above, the entries of the Euclidean scheme of integer
polynomials may be very large. However, the Uk, Vk, Wk computed in the algorithm
will have reasonably small coefficients (with binary length polynomial in the input
length, by Edmonds [1967]). Hence, as long as one wants ak, qk, Sk, tk only up to a
scalar multiple, steps 1, 2, 3 provide a solution with small coefficients (using the scalar
multiple (wk_ 6k/ Wk+)/Wk of qk). This is quite satisfactory for all practical purposes.
Only if we want to compute the entries of the extended Euclidean scheme exactly,
then we have to perform steps 4 and 5 and may be faced with very large integers. A
similar observation applies to multivariate polynomials

Remark 2.7. Algorithm EUCLID can be considered as an "NCl-reduction (i.e.
one using only operations of parallel time O(log n)) from the problem of computing
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the extended Euclidean scheme to that of computing the determinant of matrices. In
fact, all the algorithms of this paper can be considered as (probabilistic) NCl-reductions
to the determinant problem. (We have to assume that the field is fixed; see 4 for a
discussion of finite fields described in the input.) In later sections, algorithms will make
use of the rank of matrices. The rank problem itself is NCl-reducible to the determinant
computationmprobabilistically in general, and deterministically over any real field, in
particular over Q or R. Thus over Q, all reductions are deterministic, but over an
arbitrary ground field they are probabilistic.

Remark 2.8. If F is Q or a finite field, then we can consider the input as represented
by bit strings, and ask for Boolean circuits, say, that compute the functions considered
here in small depth and polynomial size. A basic result is that the determinant function
is in Boolean NC2 (Csanky [1976], Borodin-Cook-Pippenger [1983]). It follows from
Remark 2.7 that all the computational problems considered in this paper are in NC2

(again, provided that the ground field is fixed).

3. Gcd and lcm ot many polynomials. In 5 below, we want to compute the
squarefree decomposition of polynomials. It turns out that we first have to present an
ancillary result, which may be of independent interest: how to compute the gcd of
many polynomials in parallel. Thanks go to Steve Cook for pointing out the algorithm
below. We also need the least common multiple lcm of many polynomials, and give
an algorithm for this problem.

Let F be an arbitrary field, fl,’", fn F[x] have degree at most n, and g
gcd (fl,""", fn). We want to compute g from fl,""", fn. It is easy to see that there
exist sl,’", Sn FIx] such that Y sifi g. We claim that in addition one can have
deg si < n. To prove this claim, reorder the polynomials such that deg fl--> deg f for
all i. For each => 2, divide si by fl with remainder: s qfl + g, and deg g < deg f <= n.
Set gl SI "’Ei2 qif. Then El<_i<_n gifi =g, and gfl g-i>=2 gi has degree less than
n +degfl. Hence deg gi < n for all i, and the claim is proven.

Now let

d min {deg f: ::is1,. ., sn Fix] deg si < n for all and f sf 0}.

Then d deg g, by the claim above. We can now set up systems Ak of linear equations
for 0 --< k =< n, where Ak expresses " sf is monic of degree k." We write

f E fijxj, Si E sijx,
O<=j<=n 0_--_.j<

and Ak consists of the linear equations

0 fork<l<2n,
l<=i-<nE sijfi,l-j [ 1 for k,

in the indeterminates si. (Write zero whenever a subscript is out of range.) Thus A
has 2n- k equations in at most n2 variables. From the above we know that Ak has a
solution if[ k-> d. In particular, A has a solution, and from a solution of A we can
easily compute g.

ALGORITHM GCD OF MANY POLYNOMIALS.
Input: a number n N, and fl,’", f F[x] with deg fi <- n for all i.
Output: either g =gcd (fl,""", fn) or "failure."
1. For all k, 0 -<_ k <- n, determine whether A has a solution, and if it has, compute

a solution (&j(k)) of A. (Using a Las Vegas algorithm in general, but a
deterministic algorithm if F is real.)
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2. Set d =min {k: Ak has a solution}.

3. Return g= E so(d)#fi.
<--_i<=n,
0j<n

THEOREM 3.1. Algorithm GCD OF MANY POLYNOMIALS either returns the
gcd g of the input polynomials, or it reports "failure." The latter happens with probability
less than 2-n. If F is real, then the algorithm can be performed deterministically. The
parallel time for the algorithm is O(log2 n).

Proof. From the discussion above it is clear that the algorithm correctly computes
the (monic) gcd of the input polynomials. Steps 2 and 3 can be performed (deterministi-
cally) in parallel time O(log n). In step 1 we apply the Las Vegas algorithm of
Borodin-von zur Gathen-Hopcroft [1982, Thm. 5(ii)]. This algorithm works in parallel
time O(log2 n). The coefficient matrix of Ak is considered to be of size hE n2, and
the failure probability for each k is at most 2-n2. Thus the total failure probability in
step 1 is not greater than (n + 1)2-"2 < 2-".

If F is real, then we can use the deterministic version of the parallel algorithm for
solving singular systems of linear equations. [3

We have used n as a separate input rather than read it off the input polynomials
in order to ensure failure probability less than 2 in applications where we do not
know the exact degree of the input polynomials. We remark that by computing gcd’s
of pairs of polynomials along a binary tree, and using the algorithm from Borodin-von
zur Gathen-Hopcroft [1982, Thm. 2], we get a deterministic algorithm for
gcd (f,’’’, f,) over an arbitrary field running in parallel time O(log3 n).

For two polynomials f,f2 F[x] the relation gcd (f, f2) lcm (f, f2) =ff2 holds,
and both the gcd and lcm can be computed in parallel time O(log2 n). For more than
two input polynomials, one does not have such a simple relationship between gcd and
lcm.

ALGORITHM LCM OF MANY POLYNOMIALS..
Input: A number n e N, and polynomials fl,’", fn F[x] of degree at most n.
Output: Either the monic least common multiple g lcm (fl," , f), or "failure."
1. Set d deg f, m maxl_ d, s 1=_ d, and replace each f by its monic

multiple f/(leading coefficient of f).
2. For all k, m _-< k _-< s, do the following. Let Bk be the system of (inhomogeneous)

linear equations that expresses

Ulfl- Uzf2 Uzf2-- U3f3 Un-lfn-1- Unfn O.

Here each u o--, ux is a monic polynomial of degree k- d, and hence
B consists of (n 1) k linear equations in the k d) nk s indeterminate
coefficients u (1 _-< _-< n, 0 _<- j < k d) of the u’s. (Note that (n 1) k ->_ nk
s.) Determine whether B has a solution, and compute a solution u(k), if it
exists. (This can be done deterministically over a real field, and probabilistically
in general.)

3. Set d- min { k: B has a solution}.
4. Set u-,o<u_u uj(d)x+xU-U, and return g- uf.

THEOREM 3.2. Algorithm LCM OF MANY POLYNOMIALS either returns the
lcm of the input polynomials, or it reports "failure." The latter happens with probability
less than 2-. If F is real, then the algorithm can be performed deterministically. The
algorithm runs in parallel time O(log2 n).
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We remark that over an arbitrary field the lcm can be computed deterministically
in parallel time O(log3 n) along a binary tree.

4. Factoring polynomials over finite fields. The parallel complexity of the factoriz-
ation of polynomials over finite fields was the original motivation for the work begun
in Borodin-von zur Gathen-Hopcroft [1982]. We present here the Cantor-Zassenhaus
[1981] probabilistic algorithm (some of whose ingredients go back to Berlekamp
[1970]; see also Knuth [1981, 4.6.2]) with the appropriate modifications for parallel
execution. So let F be a finite field with q elements, and f Fix] monic with degree
n->_ 2. We want to factor f.

In order to get a better timing estimate in case q is not prime, we let G c__ F be
another field with p elements, and g G[t] irreducible of degree d such that F
G[t]/(g) and q pa. (For any field F, one can of course choose G F and p q.) F
is a vector space over G with basis 1, t,..., -, and R Fix]/(f) is a vector space
over F with basis 1, x, x, x"-, and a dR-dimensional vector space over G with
basis {tx 0 <-_ < d, 0 <= < n}.

ALGORITHM FACTORIZATION OVER A FINITE FIELD.
Input: A polynomial f e F[x] of degree n.
Output" Either the complete factorization of f, or "failure."
1. Frobenius matrix. Replace f by its (unique) monic scalar multiple. Compute

the matrix O of the linear mapping R- R with u-- up. (This is called the
Frobenius mapping if p is prime.)

2. Nullspace. Compute the dimension r of the nullspace K of O-I, and
gl,""", gr e F[X] of degree less than n such that gl mod f,..., gr mod f form
a basis for K. If r= 1, set S {f} and go to step 5. (r is the number of distinct
irreducible monic factors of f.)

3. Random nullspace elements. Let m [5 log2 r ], choose vii e G for 1 =< =< m,
1 -< ] =< r independently at random, and let hi l<-j-<_ vigi Fix] for 1 -< -< m.

4. Primary factorization. For 1 =< =< m compute c.i =gcd (f, h}p-1)/9- 1) FIx]. If
p is even, say p 2k, use ci gcd (f, 0_<-<k h2’) Compute the common refine-
ment of these partial factorizations as follows. Let M={0, 1} x{1,..., m}.
For all I c__ M compute

sl=gCd({ci" (0, i)/}U {" (1, i) 1}).
Then compute the following set T of "minimal I’s:"

T={Ic__M: s# 1 and VJc__ M Ic__J=>sj=l or sj sx}.

(Note that ! c_ J:=> sjlsi.) T can be computed by comparing each pair (si, sj)
with ! c_c_ J and marking s1 as "irrelevant" if (sz 1 or (sj # 1 and sj # si)).
Then fan in to keep only those I for which s1 has never been marked
"irrelevant." Set S { si: I e T}. (This eliminates duplicate occurences of si sj

with I # J. We expect S to contain all "primary" factors of f, i.e. all g where
g is an irreducible factor of f and e its multiplicity in f.)

5. Complete factorization. If 4 $ r, then return "failure". Otherwise, for each
a e S do the following. Set b a. While b’= db/dx =0, replace b o<_--k bkxk

by its poth root ,o<-k bq’/p’k, where p0= char F is a prime number. If b’# 0,Po

compute g=b/gcd(b,b’). Now g is an irreducible factor of f, and e=
deg a/deg g its multiplicity.

6. Return the set of all (g, e) computed above as the complete factorizaton of f.
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THEOREM 4.1. Algorithm FACTORIZATIONOVERAFINITEFIELD, applied
to a polynomial of degree n over a finite field with q elements, either returns the complete
factorization of the polynomial or reports "failure." The probability of the second case
is at most 1/2. The parallel time is O(log2 n log q) operations in F. Iff is squarefree, G

_
F

a subfield with p elements and q =pd, then the cost is O(log2 n log2 (d + 1)log p)
operations in G. The number of processors is polynomial in n log q.

Proof. We start by proving the first estimate for the parallel time of the algorithm.
So we count operations in F, and consider the matrix Q as an n x n-matrix over F.
Step 1 takes O(log2 n log p) and step 20(log2 n) operations using Lemma 2.1 and
the fast parallel algorithm for nullspace from Borodin-von zur Gathen-Hopcroft
[1982]. The nullspace algorithm is probabilistic and has a probability of failure at most
2-"__<1/4.

The cost or step 3 is O(log r). (Note that r _-< n.) In step 4, each c can be computed
with O(log2 n log p) operations. For each s,, we apply GCD OF MANY POLY-
NOMIALS eight times in parallel, with the same number n and using parallel time
O(log2 n). Unless all these applications fail, we take any of the answers. (They will
all agree.) Note that card 2M <= 22m --< 212 lgzr r12 N n 12. Thus T and S can be computed
in parallel time O(log n). Finally, each g in step 5 can be computed in time
O(logpo n log q / log2 n log p). Thus the total parallel time is O(log2 n log q).

For the second estimate of the parallel time, simply note that one operation in F
can be simulated by operations in G in parallel time O(log2 (d + 1)). (We write d / 1
rather than d in order not to get 0 for d 1.) Since now all elements of R are
represented by coefficients from G, we consider Q as a dn x dn-matrix over G. The
computation of g in step 5 is unnecessary, since f is assumed to be squarefree. We
thus get the estimate O(log2 n log2 (d / 1) log p).

For the proof of correctness, let us recapitulate the overall strategy of the algorithm.
In steps 1, 2, 3 we compute hi,"’’, hm F[x] such that

f hf h, hp-1)/2-1)(hp+l)/2 / h)

(if p is odd). Thus each h provides a partial factorization f c.f/ci. In step 4 we
compute the common refinement of these partial factorizations, and then step 5
accounts for the possible presence of multiple factors. Unless all distinct irreducible
factors have been correctly separated in step 4, the procedure will report "failure."

We will show below that the number r from step 2 is the number of distinct
irreducible monic factors of f. Then it is clear that the algorithm either reports "failure"
at some stage or correctly computes the complete factorization of f. All that remains
to do is to estimate the probabilities of failure P2, P4, P5 in steps 2, 4 and 5. We have
P2 <- 2-n 1/4, and P4 -< n 122-8n _--< -18.

In order to estimate P5, let f f. f, be the complete factorization of f, where
fl," , f, are pairwise distinct irreducible monic polynomials and el," , e, >_- 1. Let

R’ F[x]/(f’) x F[x]/(fe),

K’= {(/’/1, Us) e R" u, u G}.

K’ is the linear space over G of "locally constant polynomials," i.e. those that are
constant ( G) modulo each f. We denote by a’R- R the isomorphism of the
Chinese remainder theorem, and by h the image of h F[x] in R. We first prove that
a(K)=K’. Let heF[x] with eK={geR’gP-g=O}, and a(/7)=(Ul,"’,us).
Since hp- h 0 in R, we have

f[ hp-h= H (h-w).
wG
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These factors are pairwise relatively prime, and it follows that

Vi<=slwiG fT’lh-w.
Then ui wi G. Hence a (h) K’. The reverse inclusion is clear, and a (K) K’
follows. In particular, r s, and f is a power of an irreducible polynomial iff r 1. For
the remainder of the proof we can assume that r >-2.

We first consider the case where p is odd. For 1 <= < j <= r and h Fix] with h K
we say that h separates j] and j itt exactly one of f, and f.ej divides h(p-1)/2-1 Writing
a(h) =(ul," "’, ur), this is equivalent to the condition that exactly one of ui and uj
satisfies u(p-)/e- 1 =0. The number of pairs (ui, uj) G2 satisfying this condition is

2P-1 p+l 1 p2
2 2 --(--1),

and thus the probability that a randomly chosen h K does not separate f and f is
1/2(1 + p-e)_<__. The probability that fi and 1) get separated by none of the randomly
chosen h,. , h, is =<(_)m, and the probability that some pair of factors does not get
separated is

(55,og r4 1 1--, ?.5 log (5/9) ?.4+5 log (5/9)
_

2\9] 8 8 -8"

Thus the total probability of failure is =<P2+P4 +p5 =<1/2, and Theorem 4.1 is proven
for odd characteristic.

If p 2k is even, the argument applies with the following modifications: h separates
2Jj] and f iff exactly, one of f, and f.ejj divides Yo<-i<k hi iff exactly one of ui and uj

2Jsatisfies 0_-<i< u =0. The latter polynomial has exactly 2g-1 zeros in G, and the
number of pairs (ui, u) that satisfy the above condition is 2e-l. The probability that
/ does not separate fi and ] is 1/2. As above, it follows that the probability of failure
is at most 1/2. lq

Of course, we can execute n instances (say) of the algorithm in parallel and obtain
failure probability at most 2-n, with the timing estimate of Theorem 4.1 remaining
true. In von zur Gathen-Kaltofen [1983], a fast parallel algorithm for factoring a
multivariate polynomial f F[x,. , xr] is presented, where F is finite and f is given
in a dense encoding.

In our model it would be natural to consider F as fixed, and then we have an
O(log2 n) algorithm. However, for the factoring problem it is important to consider
the field F not as fixed but as somehow described in the input. We might think of the
input as consisting of a prime number p, an irreducible polynomial g Zp[t] of degree
d such that q =pa and F=Zp[t]/(g), and fF[x], all represented by numbers in
binary notation. Then we want an algorithm whose parallel time is polynomial in
log (input size), i.e. polynomial in log log q and log n. Unfortunately, the version with
G F of our algorithm falls far short from this goal, with its running time depending
on log q rather than log log q. A corresponding unpleasant phenomenon occurs with
the sequential deterministic algorithms using time O(q) rather than O(log q), and the
sequential probabilistic methods avoiding this do not translate into a fast parallel
algorithm.

The stumbling block is the computation of powers of polynomials modulo f in
steps 1 and 4. A related problem which occurs in step 5 is the modular computation
of powers of numbers: given integers a, n, p compute a mod p. The "repeated
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squaring" method for computing a mod p does not make efficient use of parallelism.
In particular, even with arbitrarily many processors it is not clear how to obtain parallel
running time polynomial in log log n.

Open question 4.1. Is the above problem of computing powers in finite fields in NC?
For nonprime fields with # F =q pa the second version above goes a step in

the right direction, essentially replacing log q by log2 d log p. As an application, consider
the algebraic BCH codes, where one wants to factor polynomials over large finite fields
of characteristic 2; the parallel time of our algorithm is indeed polynomial in log (input
size) for this problem. In particular, if we want to factor polynomials of degree n over
GF(2n), then our Las Vegas algorithm provides an O(log4 n) solution.

It seems to be a fundamental question what one can say about factors of poly-
nomials over finite fields with the parallel time depending polynomially on log log (field
size). Obviously a composite polynomial has a certificate (namely, a factorization) that
can be verified in parallel time O(log n log log q). Also an irreducible polynomial f
has such a certificate: for each i< n =degf, give gF[x] with xp =-g mod f and
deg g < n. The first condition can be certified by a sequence of intermediate results in
a computation for xp mod f. From the coefficients of the g’s one can verify that the
rank of {fix points of the Frobenius mapping} is n- 1, thus proving irreducibility of f.
(This is a special case of the general observation that problems in the Boolean
class NP seem to be computable by log n-depth polynomial-size nondeterministic
circuits.)

Open question 4.2. Are the irreducible polynomials and the factoring problem,
both over finite fields, in NC?

In the sequential analogue of this situation, step 1 and a test "r 1 ?" in step 2
of the above algorithm provide a polynomial-time deterministic irreducibility test for
polynomials over finite fields, going back to Berlekamp [1967]. The parallel time for
this algorithm is O(log2 nd log p).

The recent breakthrough by Lenstra-Lenstra-Lovfisz [1982] provides a poly-
nomial-time factorization procedure for univariate integer polynomials; it has been
extended by Kaltofen [1982] to multivariate integer polynomials. A basic subroutine
is to compute short vectors in integer lattices. From the point of view of this paper,
it remains to adapt these algorithms to the parallel setting. In 7 we will see that they
give rise to reductions to the problem of finding short vectors; however, we do not
have a good parallel algorithm for the latter problem.

5. Squarefree decomposition. Let F be an arbitrary field and f Fix]. f is called
squarefree if there does not exist an h F[x]\F such that ha divides f. Let c be the
leading coefficient of f, and g (gl,"’", gt) be a sequence of monic squarefree poly-
nomials from Fix] with gt 1. We call g the monotone squarefree decomposition of
f if f cglg2" gt and gi+ divides gi for 1 -< < t. This decomposition is unique, and
gl is called the "squarefree part" of f. We call g the distinct power decomposition of
f if f cglgz" g and gcd (gi, gj) 1 for 1 <_- < j <_- t. This decomposition is unique,
too. The next two lemmas show that these two decompositions are closely related,
and how to compute the decomposition of a product from the decompositions of the
factors.

LEMMA 5.1. If (gl,’" ",gt) is the monotone squarefree decomposition and
(hl, , h) the distinct power decomposition off, then s t, h g/g+l (with g,+l 1)
and g hih/l"" ht for 1 <= <= t. In particular, one decomposition can be computed
from the other in parallel time O(log2 n).
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LEMMA 5.2. Let (fl,’’" ,fi) and (gl,"" ,gs) be the monotone squarefree
decompositions of ]’, g F[x]. For L k >- O, 1 <-_ <- r + s set

Ujk gcd (lcm ], gj), god fk, gk)),

h lcm ({u" 0 <- .h k and <- + k}),

=max{i: h 1}

withf 1 for > r, gk 1 for k > s, and fo go fg). Then (hi,. ", h,) is the monotone
squarefree decomposition of fg.

Proof. Each uk with (L k) (0, 0) is squarefree, hence also each hi. Also
Let a F[x] be irreducible, p, q the multiplicities of a in f, g, respectively. Thus, e.g.
alf iff j =< p. It is sufficient to show that a[ he+q and aXhp+q+. We can assume that p _-> q,
and then a[ lcm (fp, gp) and a[ gcd (f, gq). Hence a[ upq and a[ hp+q. If k > q, then aggcd
(fk, gk). Hence ifj+k>p+q, then aXujk. It follows that aXhp+q+.

Algorithms for computing the squarefree decomposition are of interest since they
may yield an (incomplete) factorization with little effort, and since most factorization
algorithms over Q and finite fields require squarefree polynomials as inputs (not,
however, the first version of the algorithm of the previous section). Recall that one
loop of the standard sequential squarefree factoring algorithms computes the squarefree
part f/gcd (f, f’) of f and passes god (f, f’) to the next loop (see Knuth [1981, 4.6.2]).
For a parallel algorithm over a field of characteristic zero, we use the following
approach.

ALGORITHM SQUAREFREE.
Input: A number n N, and a polynomial f F[x] of degree at most n, where F

is a field of characteristic zero.
Output: either the monotone squarefree decomposition g (gl,""", g,) of f, or

"failure."
1. For all i, , 1 _-< < j-< n, input I-Ii__<k__< k F.
2. For all i, 0 <_- _-< n, compute

Ui dx

vi gcd Uo, ", ui),

gi vi-1/ vi (for i= 1).

3. Set max {i: 1 =< _<- n and gi 1}.
4. Return g (g,. , g).

THEOREM 5.3. Algorithm SQUAREFREE either computes the monotone square-
free decomposition of the input polynomial, or reports "failure." The probability of the
second case is less than 2-n. The algorithm runs in parallel time O(log2 n). If the field
is real, then the algorithm can be performed deterministically.

Proof. We first prove the bounds on the running time and failure probability, and
then correctness. In step 2, we apply for each i_-> 1 algorithm GCD OF MANY
POLYNOMIALS twice to compute vi, using the same number n as degree bound.
The parallel time is O(log2 n). SQUAREFREE reports "failure," if for some both
applications fail. (If neither fails, they will return the same value for vi.) The total
failure probability is at most n2-2n < 2-n.

For the proof of correctness, we can assume that f is monic, and let f fl.., fe,
be the factorization of f, where fl,’",fi are pairwise distinct irreducible monic



816 JOACHIM VON ZUR GATHEN

polynomials, and el," , er =< 1. Fix some k => r, and let

a, (f)’ 1-I I-I fJ.
et--i<l<--et <--jr

jk

Then fkai, and it is easy to see by induction on that

fek--i+ ui fek--i ai
for 0 =< i-< ek. It follows that the multiplicity of f in ui and vi is exactly ek-i for
0 <= <= ek, and in g exactly 1 for 1 <= <- e and 0 for > e. Hence g (gl," ",gt) is
the monotone squarefree decomposition of f.

Again, for an arbitrary field of characteristic zero, the algorithm can be performed
deterministically in parallel time O(log3 n).

6. Squarefree decomposition over finite fields. Let F be a field with q elements,
p char F, q pd, and f Fix] of degree at most n. We want to compute the squarefree
decomposition of f. If our goal are log2 (input size)-algorithms and q > p are both
large, then a hard case is an innocent-looking polynomial like f xp a. We only know
how to compute b aq/p (so that f= (x-b)p) in parallel time O(log (q/p)) which,
just as in 4, is in general not polynomial in log (input size) (see Open Question 4.1).
For the estimates below, we let T be an upper bound on the parallel time to compute

p2ap, a ,..., aq for a F. Thus Tv O(log (q/p)). The algorithms of this section can
be considered as reductions to this powering problem and systems of linear equations.

We first present an adaptation, called SQUAREFREE VIA DERIVATIVES, of
the algorithm of 5, which works for polynomials over a finite field. The only
complication that requires some extra care is that dvt/dx may be zero without vt being
constant. We will then have to compute h (v,) lip at parallel cost O(log (q/p)) and
restart the algorithm with input h. Since this situation may occur several times consecu-
tively, we only get O((log2 n + log (q/p)) logp n) as estimate for the pai’all.el time. We
then describe a second algorithm, SQUAREFREE VIA TAYLOR COEFFICIENTS,
that avoids this factor logp n.

We thus have four parallel Las Vegas algorithms A1, A2, A3, A4 to compute the
squarefree factorization. A is the factoring algorithm of 4 with G F. A2 is the
second version of that factoring algorithm, with G Zp, and step 5 of A1 executed on
the primary factors. A3 and An are SQUAREFREE VIA DERIVATIVES and
SOUAREFREE VIA TAYLOR COEFFICIENTS, repectively. The parallel comput-
ing times are as follows:

T(A) O(log2 n log q),

T(A2) O(log2 n log2 (d + 1) log p + Tv),

T(A3) O((log n + TF)logp n),

T(A4) O(loga n + Ti).

Thus, An has the best uniform timing estimate among these algorithms, comparing
particularly well with A3 if p is small, and with A and Ae if F Z, for large p. (Of
course, A and Aa provide much more information than A3 or A4 do.)

A somewhat surprising example is provided by polynomials of the form x2-a
Fix], where # F 2n; then Tv seems to be f(n, and all four algorithms use parallel
time O(n). Therefore we have the counterintuitive consequence that "squarefree
decomposition" can be harder in parallel than "factoring squarefree polynomials"
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over finite fields, while in characteristic zero, the first problem is always easy and the
second one not even known to be in NC.

ALGORITHM SQUAREFREE VIA DERIVATIVES.
Input: A number n e N, and f F[x] of degree at most n, where F is a finite field

of characteristic p.
Output: Either the monotone squarefree decomposition g of f, or "failure."
1, 2, 3. Execute steps 1, 2, 3 of algorithm SQUAREFREE.
4. If v’t 0, then return g =(gl,""", gt). If v’t =0, then compute h Fix] such

that vt hp. (Note that such an h exists.)
5. Call SQUAREFREE VIA DERIVATIVES recursively with input n/p ], h)

to obtain the monotone squarefree decomposition (hi,’’’, hs) of h.
6. Use Lemma 5.2 to merge the two monotone squarefree decompositions

(gl,’’’, gt) of f/hp and (hi,’", hi,’", hs,..., h) of hp (with each h
written p times), and return the monotone squarefree decomposition of f.

We say that a polynomial f eF[x] is p-power-free if there does not exist an
h F[x]\F such that hp divides f. Thus 2-power-free is the same as squarefree.

THEOREM 6.1. Let F be a finite field with q elements and char F p, and f Fix]
of degree at most n. Algorithm SQUAREFREE VIA DERIVATIVES either returns
the monotone squarefree decomposition of f, or reports "failure." The latter occurs with
probability less than 2-. The algorithm runs in parallel time O((logan+
log (q/p)) logp n). Iff is p-power-free, then it runs in parallel time O(log n). The number
of processors is polynomial in n.

Proof. We leave the proof to the reader. Observe that steps 2, 5 and 6 have to
be executed several times in parallel in order to get the estimate on the failure
probability.

To highlight the difference between the two algorithms presented in this section,
let us first trace SQUAREFREE VIA DERIVATIVES on input x8/ x7+ x4/ xae
Z[x].

Step 2. u0 x8+ x7 + X4-" X3,
Ul X6... X2
ui 0 for 2 <= <= 8,

/)0 X8 -I’- X7 -I- X4 "- X3,
vi x6+ xa for 1 -< <- 8,

gl xa+x,
g 1 for 1 _-< _-< 8.

Step 3. t= l.
Step 4. h x3 + x.
Step 5. (hi, ha) (x2 + x, x + 1) by recursive application.
Step 6. Merge (xa+x) with (x+x, xa+x, x+l, x+l) to get the output (xE+x,

X2-t- X, xE-- X, x+l, x+l).

We now want to discuss a different approach to squarefree decomposition. In
SQUAREFREE VIA DERIVATIVES, we compute pth roots from time to time, and
apply the procedure recursively. Algorithm SQUAREFREE VIA TAYLOR COEF-
FICIENTS first computes the p-power-parts Wo,’", Wm of f, where f-

p2WoWfWa w and each w is p-power-free. This approach avoids the factor logpn
in the parallel time.
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For i, n-> 0 define (xn)tiJ= (7)x n-i. Extending this by linearity, we get a mapping
il:F[x] F[x]. Thus dif/dxi i! fril, fto=f, and e.g. (X8"+-X7"-X4"{-X3)[2]= X5-I-X E
Z2[x]. Clearly the ft’s are more appropriate for computations than the derivatives,
since for any f E Z2[x], d2f/dx2 and all further derivatives are zero and thus carry no
information at all. The/t’s are the "universal Taylor coefficients" of f, since from
them we get the Taylor expansion of f at an arbitrary point a as follows:

f= L fti](a)(x-a) i.
O_--<i_--<deg f

ALGORITHM SQUAREFREE VIA TAYLOR COEFFICIENTS.
Input: A number n N, and a polynomial .f Fix] of degree at most n, where F

is a finite field of characteristic p.
Output: Either the monotone squarefree decomposition (gl,’",gt) of f, or

"failure".
1. For all i, ], 0 -< =< -< n, input () F.
2. For all i, 0-<i -< n, compute fti.
3. Set [logp n]. For all k, 0 <= k-< l, compute

Uk-’gcd (f[0],...,f[pk-1]),
Uk

l)k

(with Ul+ 1. Vk will be the "pk-power-part of f" in the following sense" vk
pkwill divide f and be equal to wk for some wk, and for no irreducible factor v

k+l
of Vk will vp divide f.)

Wk ) lk/P

Yk ;= Yk 1," Yk,t

the monotone squarefree decomposition of wk. (Using steps 1, 2, 3 of algorithm
SQUAREFREE. Note that wk is "p-power-free" and the complication men-
tioned at the beginning of this section does not turn up.)

4. For all i, 1-<_i<-_ n, do the following. Consider the p-adic representation i=
io + ilp +" + ilp of i, where 0 _-< ik < p. Compute

Z gcd (yo,, Yl,il, Y,i,),

(with Yk 1 if j> tk, and Yk,o =f for all k.)

gi lcm (zi, zi+, z,,).

5. Set max {i" gi # 1} and return g (gl," gt).

Before we analyse the algorithm, let us look at the example considered above.
With f xS+ xT+ x4+x3 Z2[x] as input, SQUAREFREE VIA TAYLOR COEF-
FICIENTS produces the following:

Step 2. f[o= xS+ X
7+ X4+ X3, f[5] X2,

fill X6_[_ X2, f[6] X,

f[2]= X5 + X, ft7] 1,
f[3]= X4+ 1, f[8] 1.
f[4] X3_[_ 1,
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Step 3. Set 3, and

Step 4.

U0 X8d- X7d- X4-1- X3, 1)0 X2d X,

Ul X6_l_ X2 1) X2
U2 X4"l 1, 1)2 X4" 1,
U3 1, v3 1,

W0 X
2 dr" X, Yo X2 -I- X),

Wl=X, yl (X),
w2 x + 1, Y2 (x + 1),
W3=1, y3= (1).

Z X2"I X
Z2 Z3 X, g g2 g3 X2 q- X,
2,4 2,5 X "1" 1, g4 g5 x + 1,
Z6 Z7 2,8 1, g6 g7 g8 1.

Step 5. Return g (x2 - X, X
2 -I- X, X2 "- X, X - 1, x + 1).

THEOREM 6.2. Let F be a finite field with q elements, p char F, and f F[x] of
degree n. With this input, algorithm SQUAREFREE VIA TAYLOR COEFFICIENTS
either returns the square[tee decomposition off or it reports "failure". The probability of
the second case is less than 2-". The algorithm runs in parallel time O(log2 n+
log2 (q/p)). If f is p-power-free, then it runs in parallel time O(logz n). The number of
processors is polynomial in n.

Proof. We first describe the execution of the algorithm in some more detail,
simultaneously proving the time bound. Then we establish the bound on the failure
probability, and finally correctness.

Steps 1 and 2 can be performed in parallel time O(log n). In step 3, we apply
algorithm GCD OF MANY POLYNOMIALS three times for each k to compute Uk.
Below we prove that Vk is a pkth power, and hence can be written as 1.)k O<=i )kixipk.
Then Wk Yo<-_i X can be computed in parallel time O(log (q/p)), where q,,-1 <
pk<_q,,, using O(n) processors. For Yk, we use steps 1, 2, 3 of SQUAREFREE,
applying it three times for each k. The algorithm runs in parallel time O(log2 n). In step
4, for each we apply GCD OF MANY POLYNOMIALS three times, and LCM OF
MANY POLYNOMIALS three times for each gi. The overall parallel time is
O(log2 n +log (q/p)), as claimed. If f is p-power free, then Vl Vl 1, and no
pkth roots with k => 1 have to be computed.

Failure may occur only in the computation of Uk, Yk, Zi, and gi. In every single
such computation, the failure probability is <_-2-3" The total failure probability is at
most (2/+ 2n)2-3" _-< 4n2-3" < 2-".

For the proof of correctness, we assume that f is monic and let f ho l’p1p2,l,2 hl
be the "p-power-decomposition" of f, where each hi Fix] is monic and p-power-free.

pk-1This decomposition exists and is unique. Fix some k, 0 <_- k < l, and write r h0" h k_l,
pk plS--hk hi Then f rs, r is pk-power-free, and s is a pkth power. We now show

that Uk S. For 0 _-< < pk, we have

f[i]=(rs)[i]= r[]]s[i-]]= r[i]s[]= r[i]S,
O<=j<=i

using Lemma 6.3(i) and (ii). Hence u s. gcd (rEl, , rEPk-ll). Lemma 6.3(v) implies
that gcd (rl, , rpk-l) 1, and hence u s. It lollows that for all k we have v h
and w h.
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Now each Yk,j (with j-> 1) is squarefree, hence also every zi and gi is squarefree.
Also g/l divides g. In order to show that g is the monotone squarefree decomposition
of f, we only have to prove that f gl"’" gt. So let a E Fix] be an irreducible monic
factor of f, and tn its multiplicity in f (so that am]f and a"/t f). We have to show
that a divides g iff i<= m. Using the p-adic representation m too+ mlp+" "+ mtp
of m, where 0 _-< mk< p, it follows from the above that a divides hk iff mk # O. More
precisely, a divides hk Wk exactly with multiplicity mk, and hence

a Yk,j’j <= ink.

It follows that a divides z, and hence g,,. Then a also divides each of gl,. , gin, and
it is sufficient to prove that a does not divide gm+l. But for any io+ ilp+" + ilpt> m
some p-adic coefficient ik is greater than ink, hence a does not divide Yk.k, and also
not zi or gi. It follows that the multiplicity of a in gl""gt is exactly m, and hence
f=gl"’’gt. I-!

We remark that in our model the binomial coefficients computed in step 1 are
considered as constants in F, and hence are given for free. However, they can also be
computed in F, just using the constants 0 and I and field operations, either by computing
(x+ 1) or by Lucas’ [1877] formula (see also Fine [1947]):

if io + ilp 4-. 4- itp with 0 =< ik < p is given in p-adic representation, and similarly
for j. Note that the definition via factorials may fail to give a computation in positive
characteristic.

In the following lemma we collect the facts concerning fti] that were used in the
preceding proof. It may be interesting to compare with the properties of the ith
derivative f(). Statements (ii) and (iii) are also true in that case, (iv) and (v) are false
in general, and (i) has to be replaced by the Leibniz rule

LEMMA 6.3. Let F be a field of characteristic p > O, f, g e Fix], and iN O. Then
f[]g[i-](i) (fg)[’]= Y-o-<_ji

(ii) (fp’)tJ 0 for 0 < j < p’.
(iii) f[(f’)ti1 for O <- j < i.
(iv) Iff is irreducible and f’ O, then gcd (f, (fi)ti1) 1.
(v) If F is finite and f is pi-power-free, then gcd (ftol, f, ", ftp-j) 1.
Proof. (i) The case f xm, g x follows from comparing coecients of x"+- in

(fg)tt]= (n+m) .+m-t X).+m
O<=lm+n Ol<=m+n

x (1 +

j,k j
X

j,k

Since both sides are bilinear, (i) also follows for arbitrary f, g.
(ii) For f ax" and 0< 1" < P with a F, (ii) follows from (’)P’)=0. For general

f, (ii) now follows from the additivity of the left-hand side.
(iii) We use induction on i, the case 0 or i= being trivial. For > 0 we write

(fi)[j] (fi-lf)tj] ., (fi-1)(l)f[-l],
O<=l<-j
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using (i). By the induction hypothesis, f divides each summand with < i- 1. The only
summand that is possibly left is (fi-1)[i-1]f[o]= (fi-1)ti-11f, which is also divisible by f.

(iv) We use induction on and write

h (fi)[i] (fi-lf)[i] ., (fi-1)[j]f[i-j].

Then f divides all summands except the one for ] i-1, and hence

gcd (f, h)= gcd (f, (f,-)t,-afol)= gcd (f, f’)= 1.

(v) Assume that there exists an irreducible g F[x] such that g divides ftJ for
0 =< j < pi. We show by induction on j for 0 <= j < pi that gj+l If. This yields the desired
contradiction for j p- 1. The claim is clear for j 0. For j => 1, we can write f gJh
with some h Fix] by induction hypothesis. Then g divides
and also by (iii) each summand with 0-<_ < j. Hence g divides (gJ)tJlht, and from (iv)
we conclude that g lh and gj/llf.

We remark that in (v) it is sufficient to assume F perfect, and in (iv) that F is
perfect and f squarefree. Without some such assumption, the conclusions may not
hold: If aF is not a pth power, then for f=xe/-ax and i=l we have gcd
(fto, f, ftp’-l) xp_ a # 1.

Algorithm SQUAREFREE VIA TAYLOR COEFFICIENTS will work over any
perfect field of characteristic p > 0, provided that we have an effective procedure for
extracting pth roots. The question of squarefreeness over arbitrary fields is undecidable
(von zur Gathen [1984]).

7. Some reductions. The previous sections have left open parallel versions for a
number of factorization problems that have good sequential solutions. The two most
important onesmconcerning boolean circuits--are the gcd of two integers (see Open
Question in Borodin-von zur Gathen-Hopcroft [1982]) and:

Open question 7.1. Can univariate and multivariate integer polynomials be fac-
tored fast in parallel7

The univariate factorization problem would probably be attacked along the lines
of Lenstra-Lenstra-Lovfisz [1982] via computing short vectors in Z-modules. For
multivariate polynomials, one might use Kaltofen’s [1982], [1983a] reductions. We now
give the parallel versions of these reductions, and also reduce the integer gcd’s to a
special case of the short vector problem.

In this section, we are concerned with the circuit (=parallel boolean) complexity
(rather than algebraic complexity over an arbitrary field) of functions; see Cook [1983]
for an excellent overview of this theory. Our notion of reduction comes from Cook’s
paper: A boolean function f is NC-reducible to another function g if there exists a

UE.-uniform family (an)nN of boolean circuits--of depth O(log n) for some
k Nwhere an computes f on inputs of length n and is allowed to have oracle nodes
for g. An oracle node for g has input edges x,..., Xr and output edges y,..., y
whose values satisfy g(xm,’" ,x)=(y,..., y). Such an oracle node contributes
[log r] to the depth of the circuit.

The functions INTEGER GCD, UNIVARIATE FACTORIZATION OVER Q,
and MULTIVARIATE FACTORIZATION OVER Q compute the (nonnegative)
gcd of two integers, the complete factorization of a polynomial in Q[x], and of a
polynomial in Q[xl, , xn], respectively. For the last problem, the input size is given
by the length of a dense encoding of the polynomial. For the sparse encoding, a
probabilistic sequential polynomial-time algorithm is known (von zur Gathen [1983a]),
but a fast parallel version of that reduction to the bivariate case is open. A function
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is called SHORT VECTORS if it takes as input vectors al,’", a.Zn, linearly
independent over Q, and returns a vector x in the Z-module ("lattice") M aiZ g Z
such that Vy M\{0} IxI-< 2(n-l)/21y I.
Thus x is a shortest vector in M, up to the factor 2(n-1)/2 arising in the work of
Lenstra-Lenstra-Lovisz, with respect to the L2-norm lYl =(Y. y2)1/2. A function is
called SHORT VECTORS IN DIMENSION TWO if it takes al, a2 Z2 as inputs and
produces an x as above; instead of the factor 22-1)/z we allow an arbitrary constant c.

TnEORZM 7.1. 1. UNIVARIATEFACTORIZATION OVER Q is NC-reducible
to SHORT VECTORS.

2. MULTIVARIATE FACTORIZATION OVER Q is NC-reducible to UNI-
VARIATE FACTORIZATION OVER Q.

3. INTEGER GCD is NC-reducible to SHORT VECTORS IN DIMENSION
TWO.

Proof. 1. and 2. follow from the reductions of Lenstra-Lenstra-Lovisz [1982]
and Kaltofen [1983a], using the results of the previous sections. Note that one has to
use a quadratic Hensel iteration instead of the more common linear one. One might
either lift each factor separately and discard duplicate ones at the end, or one might
lift all irreducible factors mod p simultaneously to factors mod pk (p, k as usual). (See
e.g. von zur Gathen [1984] for formulas for this lifting.)

For the reduction in 3., let c be the constant of the algorithm SHORT VECTORS
IN DIMENSION TWO. We can assume c N. In order to compute the gcd of a,
b Z, we can assume that a is positive, and associate to a, b the two vectors u
(a(ac+l),O), v=(b(ac+l), 1)Z2. If X--(X1, X2) is a short vector in the Z-module
M uZ+ vZ Z2, i.e.

VyM\(O} Ix <-_ clyl,

then we compute g gcd (a, b) as follows.
1. Set S={ieZ: l<=i<=c, x2/ieZ, x2b/aieZ}.
2. Set m max S. (We will show that S # .)
3. Return lain as gcd (a, b).
We now make two claims:
(i) kZ, 0<lkl_-<c and x=(0, ka/g). (This k is unique.)
(ii) k m.

Then g am/xz, and the correctness of the algorithm follows. To prove claim (i), let

z=--u+-v= O, e M\{O}.
g g

It is sufficient to show that for w (wl, w2)= su + tv M we have

Iwl clzl :ikeZ, O<--Iki<-cand w=kz.
(In particular, +/-z are the two shortest nonzero vectors in M, and any element of M
in the circle around 0 of radius clz[ is an integral multiple of z.) "" is clear. For "3",
assume wl-< clzl. Then

a
I( sa / tb)( ac + 1)1- Iw l Iwl clzl g

and ac + 1 > ca! g, hence sa + tb 0. The only solutions s, of this equation are of the
form b

s=k--, t=ka,
g g
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for some k Z. Then w su + tv (0, ka/g). From

g g

we get [k[ _-< c.
In order to prove claim (ii), we use from claim (i) that there exists k Z such

that 0<[k[_-<c and x=(O, ka/g). It is sufficient to show that S={iZ: ilk}. The
inclusion "_" is clear. For "c_", let i S and p N prime, and ea, eb, eg, ei, ek be the
multiplicities of p in a, b, g, i, k resp. Then eg =min {ea, eb}. If eg e, then from
ka/ ig x2/ Z we get ek + e >-- ei + eg and ek >- e. If eg eb, then from kb/ ig x2b/ ai
Z we get ek / eb -> e / eg and ek >= ei. In either case, the multiplicity of p in k is not
less than its multiplicity in i. It follows that divides k.

We remark that in the reduction for 3. only two special cases of integer division
were used: for a, b Z, test whether a divides b, and if it does, compute the quotient.
Reif [1983] has shown that the quotient and remainder of two n-bit integers can be
computed in O(log n log2 log n) parallel bit operations, and Beame-Cook-Hoover
[1984] have improved the parallel time to O(log n) with a slightly weaker uniformity
property.

Open question 7.2. Can short vectors in Z-modules be computed fast in parallel?

8. Conclusion. We have shown that a number of algebraic problems with poly-
nomial-time sequential solutions have polynomial-log-time parallel solutions. The basic
routines are those of linear algebra; all other problems get reduced to these.

The most important open questions are the factorization of integer polynomials,
and the analogous sequential vs. parallel behaviour for integer problems, e.g. computing
the gcd of two n-bit integers with log(i) n bit operations in parallel. We have reduced
this problem to a subroutine that is likely to be employed in factoring integer poly-
nomials.

In yon zur Gathen [1983b] we show in a general framework that problems like
Pad6 approximation, partial fraction decomposition (with factored denominators), and
various interpolation problems also have a fast parallel solution. Ongoing work at
Toronto has resulted in a fast parallel factorization procedure for multivariate poly-
nomials over finite fields (von zur Gathen-Kaltofen [1983]) and an irreducibility test
for multivariate polynomials over C (Kaltofen [1983b]).
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IS THE INTERESTING PART OF PROCESS LOGIC UNINTERESTING?:
A TRANSLATION FROM PL TO PDL*

R. SHERMAN,’, A. PNUELI" AND D. HAREL’

Abstract. With the (necessary) condition that atomic programs in process logic (PL) be binary, we
present an algorithm for the translation of a PL formula p into a program ’(p) of propositional dynamic
logic (PDL) such that a finite path satisfies pitt it belongs to ’(p). This reduction has two immediate
corollaries: 1) validity in this PL can be tested by testing validity of formulas in PDL; 2) all state properties
expressible in this PL are expressible in PDL. The translation, however, is of nonelementary time complexity.

The significance of the result to the search for natural and powerful logics of programs is discussed.

Key words, process logic, propositional dynamic logic, temporal logic

1. Introduction. The formalism of dynamic logic [Prl] has been successfully
proposed as a unifying framework for the formal reasoning about programs. It general-
izes, and at the same time simplifies, previous systems such as Hoare’s axiomatic system
[Ho], Dijkstra’s predicate transformers [D], etc. It appears that as long as it is the
input-output relation of a program (in contrast with its ongoing behavior) that we
wish to study, dynamic logic provides us with a mathematically complete and elegant
system of reasoning.

However, it was soon pointed out that if one is interested in the continuous
behavior of programs and not only their in-out behavior, then dynamic logic seems
inadequate. The need for reasoning about such behavior arises naturally in the study
of nonterminating programs such as operating systems, and in the investigation of
concurrent systems. One logic proposed in response to this need, temporal logic, has
been used successfully in the analysis of concurrent systems IMP]. However, there is
a desirable property, compositionality, which temporal logic does not enjoy, but which
dynamic logic and other formalisms, such as Hoare logic and Dijkstra’s predicate
transformers, do. The principle of compositionality decrees that the formalism be
syntax directed in the sense that it should derive its treatment of well-structured
programs from its treatment of their immediate components. In contrast, the current
formalism of temporal logic refers to instructions and labels in a fixed program and
requires the analysis of the program as a whole without the possibility of studying its
subparts. An additional drawback of temporal logic is its inability to express combined
properties of many programs.

In view of this apparent dichotomy--a compositional system which does not deal
with mid-execution properties, and a noncompositional system which does--there were
many attempts to extend one or the other to yield a system, generically called process
logic, enjoying the advantages of both. Pratt’s original process logic [Pr2], Parikh’s
SOAPL [PA] and Nishimura’s language IN], were preliminary efforts in this direction.
A recently proposed system which seems to have unified the basic concepts of both
dynamic and temporal logic is the system of process logic (PL) presented in [HKP].
It borrows the program constructs and modal operators and from dynamic
logic, and the temporal connectives t and sut from temporal logic and combines them
into a single system.

* Received by the editors June 4, 1982, and in final revised form August 19, 1983. The research
reported here was supported in part by a grant of the Israeli Academy of Science, Basic Research Foundation.

" Department of Applied Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel.
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The declared purpose of this new system is to enable compositional reasoning
about continuous behavior of programs. As such, one would expect it to be able to
express properties on the propositional level inexpressible by either PDL or TL, the
propositional versions of dynamic and temporal logic, respectively. Indeed, the PL
expression [a]somep, for example, states that in every execution of the program
there must be at least one state satisfying p. It can be shown [HI that this property
cannot be expressed in PDL. If p is some property of a second program, say
then it is not expressible in TL either.

Having demonstrated this greater expressibility, PL certainly becomes an attractive
system for study. It is shown in [HKP] that validity in (the propositional version of)
PL is decidable by reduction to SnS, the second order theory of n successors JR]. This
yields a nonelementary decision procedure in general, and it is still unknown whether
an alternative elementary decision procedure exists. It has also been shown that various
small extensions to the system lead to undecidability [CHMP], IS]. So much for
background.

The investigation reported upon here was prompted by the following simple
observation. Let us consider the PL statement [a ]solnep. As mentioned, it is inexpress-
ible in PDL for an abstract a. But suppose we knew the internal structure of a" for
example, let a =(ab)*c where a, b, c are atomic instructions. By assuming that they
are atomic, we imply that there are no observable states during the execution of any
of them. Thus if p, a state property, ever arises during a computation of a it may arise
either before or after an atomic instruction but never during one. Similarly, if p holds
before and after every atomic instruction of a it may be considered as holding
continuously throughout the execution of a. Thus the property [(ab)* c]somep, stating
that p must hold somewhere in every execution of a (ab)*c is equivalent to the
PDL statement:

[((p)?a(p)? b)*(-ap) ?c(-ap) ?]false.

This PDL formula states that there can be no computation such that p is false before
and after each of its atomic instructions. We immediately note the difference between
the two modes of expressing this property. In PL we say that somewhere within a, p
is realized; in the equivalent PDL formalization we have to explicitly state that it is
not true that p is not realized at any of the locations possible during a.

In this paper we show how to apply this basic idea systematically to produce a
translation algorithm from PL to PDL. However, no such translation is possible without
ensuring the compatibility between models of PL and PDL. To this end one must
adopt the locality of atomic formulas, i.e., that they are basically state formulas, true
at states rather than on paths. Locality was adopted in [HKP] too and, indeed, by
[CHMP], IS], the decidability of PL is lost without it. Moreover, one must adopt the
atomicity of atomic programs as discussed above, i.e., that they consist of binary
relations rather than arbitrary paths. Atomicity too is necessary since without it by
[HI no such translation from PL to PDL exists. Accordingly we consider BPL, for
binary process logic, the formalism obtained from PL by adopting the above restrictions.
One then notices that the same mathematical objects serve as models for both PDL
and BPL, the difference being only in the way satisfiability is extended from atomic
formulas to general ones.

Our translation, to be specific, assigns to each formula p of BPL a PDL program
’(p) such that for all finite paths x in any model, x satisfies p in BPL iff x is a possible
computation path of ’(p) in PDL, i.e., x r(p). Note that we treat finite paths only,
and indeed we consider only finite paths in the notion of validity in BPL. It would
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perhaps be possible to consider infinite paths if there were a programming construct,
say a’, which would generate in PDL infinite computations from atomic programs.
However, we feel that very little pragmatic power is lost due to the locality, atomicity
and finiteness assumptions.

An additional technical matter concerns the presence in PL of paths which do not
arise as computations of any program, in contrast to PDL where paths are implicitly
present only as program computations. To overcome this incompatibility r(p) will
employ a new atomic program u, understood to stand for the universal program which
connects any two states. This idea involves no real loss of generality since, after all,
the paths one is usually interested in are ones which arise from executing programs.
Moreover, the two corollaries to our result, which we discuss next, make no use of
this understanding regarding u. Also, it is easy to show that the addition of u to either
BPL or PDL does not destroy their decidability.

The translation of BPL formulas to PDL programs can be utilized in the following
two ways. First, we show how validity (over finite paths) in BPL may be reduced to
validity in PDL; this is done by showing that p is satisfiable in BPL itt (sr(p))true is
satisfiable in PDL. Secondly, we show that in a certain precise sense BPL and PDL
are actually equivalent in expressive power. Specifically, if formulas of BPL are
evaluated in zero-length paths, i.e., ones consisting of a single state, then BPL formulas
express precisely the properties expressible by PDL, provided all states are connected
by programs.

Returning to the title of the paper, we believe that in spite of the restrictions
imposed on BPL, it retains all the important features of PL, rendering it an advanced
system for reasoning compositionally about the continuous behavior of programs. Yet,
we have succeeded in showing that properties expressible in BPL are in fact expressible
in PDL too. Does this fact therefore detract from our interest in process logic?

Our argument is that rather than detract from it, he existence of such a translation
should even enhance our interest in systems such as PL. One reason for this is the fact
that the translation actually emphasizes the difference in modes of expression in the
two logics. As already pointed out above, we simply state [a]somep for the natural
utterance: "in all executions of a, p is true somewhere". To state the same in PDL
we must have full information about the structure of t and p, and in expressing the
statement we must exhaust all possible ways of partitioning them. This need for detailed
information about the structure of a and p, violates the principles of encapsulation
and information hiding, and implies that the PDL style of expressing this property is
by necessity a low level nonuniform one in comparison with the PL style.

Section 2 contains the definitions of PDL and BPL, 3, the main one of the paper,
contains our technical results, and in 4 we discuss the issue of complexity. The proofs
of some of the lemmas in 3 are tedious but straightforward manipulations of finite
automata considered as path acceptors, and are therefore gathered in an Appendix.
They do not seem, however, to follow from standard closure properties of finite
automata. The reader should be able to understand the idea of the proof of the theorem
without having to resort to these detailed proofs, which are provided for completeness.

2. PDL and BPL.
Notation. 0--the set of atomic formulas, 1-I0--the set of atomic programs.
Syntax and semantics of PDL ([FL]):
A model is a triple (S, ,/9) where:

S--is a set of states.
--is a satisfiability relation for atomic formulas.
p" II0- 2sS--is an interpretation for atomic programs.
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The set of PDL formulas , the set of PDL programs II and their extended
interpretations and p are defined by"

1. 0---
true , Vs S, s true
|alse , Vs S, s I |alse

2. If p, q then pv q,
spv q iff sp or sq
sp iff s:p

3. IfaH,pthen(
s (a)p iff lt, (s, t) p(a) and tp

4. IIo II,
0 e FI, p(0) , i.e., the empty set
u II, p(u)= S x $, i.e., the universal program

5. If a,/3 II then a LI/3 H, a/3 II and a* II
p(a U fl) p(e) U p(fl)
p(c/3) {(s, t)l:t’, (s, t’) p(,), (t’, t) p(,8)}
p(a*)= l,.Jiop(a i) (p(,)={(s, s)ls S},

6. If p then p? II
p(p?)={(s,s)lsp}

Syntax and semantics of BPL:
A model is a triple, ($, , R) where:

S, as before.
R---the interpretation for atomic programs is an assignment of sets of paths of
length one (two states) to atomic programs.

Note that a model for PDL, i.e., a triple (S, , p) is a priori also a model for BPL.
R is taken to be simply p itself.

A path in a model is a finite sequence of states, with repetitions allowed. For a

path x (x0," ", Xk), Y is a proper suffix of x, denoted y < x, if y (x,. , xk) for
some i->_ 1. We extend to a satisfiability relation over paths, denoted by p, and
define R--the interpretation of BPL programs. R assigns a set of paths R,, to each
BPL program, a, i.e., the set of all paths corresponding to a computations. Note that
while PDL formulas are interpreted over states, BPL formulas are interpreted over
paths. We will use to denote _p when there is no danger of confusion.

The set of BPL formulas , the set of BPL programs II and their extended
interpretations p, R are defined by:

1. o_,
For a path x and atomic formula Pc o, xpP itt Xo P where x0 is the first state

of x.
true , Vx, x p true
false , Vx, x I false

2. If p, q then pvq and -p(
XppV q iff Xpp or Xpq
x-ap_ iff x p

3. IfaH,pthen
x p (a)p iff ::1 y R such that xy pp
(If X=(Xo’’’Xk), y=(yo’’’yl) and Xk=Yo then xy=(Xo’’’Xky’’’y). If

Xk Y0 then xy is not defined. All future references to xy implicitly contain the
requirement that xy is defined.)
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4. If p, q then tp and psuiq dp

Xptp iff (Xo)pp (Xo is the first state of x; (Xo) is the path consisting of Xo alone.)
Xppsufq iff there exists a path y such that"
a. y < x and ypq
b. for every z such that y < z x, Zpp

5. IIo c__ II
O II, Ro
uII, Ru=SxS

6. If a,/3eI] then at.JfleI, afleI and a*eI]

Ru R UR
R {xl:ly e R, :IT e R s.t. x yz}
R* Ui=>o R, (Ro={(s)lseS})

7. If p e then p? e II
Rp?={xlxpp}

Programs of the form p?, in both PDL and BPL, are called tests.

3. Results.
DEFINITION.
1. For a BPL program a and a path x, denote x R simply by x a.
2. For a PDL program a and a path x (Xo,. , Xl), x a is defined by induction

on the structure o a"

If a e Ho then x e a iff 1 and (Xo, Xl) p(O); X I t9 for all x.
x e u iff x (Xo, Xl) for some states Xo, Xl;
x a t.J fl iff x a or
x afl iff :lj, O<-j<- such that (Xo, xi) a and (xl, xt) fl;
x a* iff =If-> 1 such that x a or =0 (i.e., x= (Xo));
If p dp then x p? iff 0 and (Xo, Xo) p(p?).
Note that for every x, x e u*.
Denote by T c_c_ II the set of all tests of PDL, i.e., programs of the form p? for

pq. We define IIu to be the set of all programs over the alphabet TU{u}. Thus,
the only atomic program used in II is u. Note, however, that the tests appearing in
H may themselves contain programs which are not in IIu.

THEOREM. For every BPL formula p there exists a PDL program (p) in II such
that, for every path x in every model, Xpp iff x e ’(p).

The proof of the theorem will proceed by induction on the structure of BPL
formulas. Accordingly we will present a sequence of propositions and lemmas corre-
sponding to the rules for constructing well formed BPL formulas.

PROPOSI:ION 1. To atomic BPL formulas and to the special formulas true and
false there correspond PDL programs in the sense of the theorem.

Proof. For atomic Pe take (P)=P?u*. Obviously, a path x=(x0,’",
satisfies P iff x0 P iff (Xo,’", xt) P?u*. Similarly take ’(true)= u* and ’(false)=
0.

PROPOSI:ON 2. Ifp, q alp, tWO BPL formulas, already have corresponding transla-
tions (p), (q) H in the sense of the theorem, then so does the formula p v q.

Proof. Take ’(pv q)=(p)U(q). Obviously XppV q iff Xpp or xpq iff
x e (p) or x e ’(q) itt x e (p) t.J ’(q).

Proposition 2 can be interpreted as a closure property, namely, that the class of
sets of paths definable by II, programs is closed under union. For our next step we
will need the closure of this class under complementation. Thus we shall show that to
every Hu program a, there corresponds a program t such that x a x t. Needless
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to say, this fact is not (and does not follow directly from) the fact that regular sets are
closed under complementation.

For a PDL program a, denote by T the set of tests appearing in a. Then a may
be regarded as a regular expression over the alphabet II0 U T.

DEFINITION. Two PDL programs a and/3 are equivalent, denoted by a /3, if
for every path x in every model, x a iff x /3.

We start by defining two special sets of PDL programs. The set of programs whose
execution sequences consist of alternations of atomic programs and tests is denoted
by F:

F {a[ a H, for every word w in the language defined by the regular expression
a, w is either or of the form pog.alPlg..., akPk? for some k _-> 0 and
ay IIoU {u}}.

F is defined similarly, except that u is the only atomic program allowed. Thus
F consists of alternations of tests with the universal program u.

The following lemmas and their corollaries establish that F and F are normal
forms (in the "path sense") of the set II of PDL programs, and, respectively, the set
H of PDL programs involving no atomic programs but u.

LEMMA 1.
1. Let a, fl F; then a t3 fl F.
2. Let a, F; then there exist programs 7, F such that 2, aft, and a*.
Proof. See Appendix.
COROLLARY 1. For every PDL program a II there exists a program g/(a) F

such that (a at.

Proof. By induction on the structure of a"

For atomic program a, let @(a)=true?atrue?.
For a p?, let @(a) a.
For a fl U y, let q(a) O(fl) U q(y). By Lemma 1, q(a) F.
For a fly consider q(fl) and (3,), which exists by the inductive hypothesis. Let

g/(a) be the program in F equivalent to (]),(y) and existing by Lemma 1.
For a fl*, let (fl) be the program existing for fl by the inductive hypothesis.

Let O(a) be the program in F equivalent to (fl)* and existing by Lemma 1.
LEMMA 2.
1. Let a, fl F; then a U fl F.
2. Let a, fl F; then there exist programs % F, such that y aft and - *.
Proof. See Appendix.
COROLLARY 2. For every PDL program a II there exists a program @(a)

such that d/( a a.

Proof. Similar to the proof of Corollary 1.
DEFINITION. Given a set of formulas T { Pl," ",P}, an atom of T is a conjunc-

tion/k’=l q where each q is either p or -np. TA is defined to be the set of all atoms
of T. Thus, in particular, TA is the set of atoms constructed from the tests appearing
in the program a.

LEMMA 3. Let a be a program in F with tests T,,. Then there exists a program
F over the alphabet { u} U TA such that for every path x in any model, x iff x : a.

Proof. See Appendix.
We may thus summarize this sequence of lemmas by the following proposition.
PROPOSITION 3. If a BPL formula p d is translatable into a PDL program (p)

in II in the sense of the theorem, then so is p.
Proof. By Corollary 2 there is a program y= @(’(p)) in F, equivalent to ’(p).

Now let sr(p) be , guaranteed to exist and to satisfy the properties by Lemma 3.
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PROPOSITION 4. If a BPL formula p is translatable into a PDL program ,(p) in
II, in the sense of the theorem, then so is tp.

Proof. Let ’(tp) be Yu*, where Y denotes the union of the set of all words of
the form q? in ’(p). Since Y is finite, ’(tp) is regular.

Even though taking care o union and complementation (cL Lemmas 2, 3)
automatically ensures closure under intersection, even in the "path sense", we do need
this property in a more general setting. We therefore consider next closure under
intersection.

LEMMA 4.
1. Let a II and/3 F,. Then there exists a program a f3/3 F such that for every

path x, x af3/3 iff xa and x/3.
2. Let a, fl F,. Then there exists a program a f3/3 F such that for every path

x, x a fq fl iff x a and x fl.
Proof. See Appendix.
We now have to deal with formulas in BPL of the form psuiq.
DEFINITION. l’a, the partition set for a program a F, is defined as a subset of

II, x II by induction on a"

1. , {(true?, u), (u, true?)}.
2. lip? {(true?, p?), (p?, true?)}.
3. u D, U
4. a, ={(3, 3)1(3,/) 1}U {(//, V)l(V, T)E}.
5. n. {(u?,Uae?)} U {(*,,/*)1(,, :) n}.
The intuitive meaning is that 12 contains the pairs of regular expressions which,

when concatenated, yield a.
LEMMA 5. Let a F,. Then for every path x and every Xl, x2 such that x XlX2,

x a iff there is a pair (al, a2) gl such that X a and x2 a2.
Proof. Immediate. E]

LEMA 6. Let a F,. Then there exists a program tr(a) F, such that x tr(a) iff
for every suffix (not necessarily proper) x’ of x, x’ a.

Proof. Let / =((utrue?)*t), and take tr(a) to be /. One then observes that
x tr(a) if[ x (utrue?)*t, iff for every suffix x’ of x, x’ , iff for every suffix x’ of
X, X’ c.

LEMMA 7. Let a, fl F. Then there exists a program tz(a, fl) F such that for
every path x, x I (a, fl iff there exists y , with y < x, such that
(*) for every z, if y < z < x then z a.

Proof. Let 12 be a nonempty subset of the partition set 12. Denote:

h(ll) U G1,
{1[2,(O O2) ’

t(l)) CI
{x2llal ,(tx 1,tx2) ’

Then let

/z,(a, fl) U (o’(h(l))((ufl) FI t(D,))),

We first prove the following claim:
For every path x (Xo," , Xk), X’ (Xl,. Xk) e ]./,1(O, fl) iff there exists y /3,

y< x’ and y satisfies (,) above. Indeed, x’/Zl(a,/3), iff (for some lc_ f, fixed in
what follows) x’tr(h(t))((ufl)fqt(12)), iff ::l], l<__]<_k such that (Xl,.",xj)
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tr(h(f)), (Xj,’’’,Xk)EU and (xj,’’’,Xk)et(D), iff :lj, l<_j<__k such that
(X+l, ", Xk) e , ll, 1 <--_ <-- j, (X," ", X) e h(a) and (x,. ., Xk) e a2, Va2 s.t. =lax,
(al, a2) e D (by Lemma 4, Part 2), iff :lj, 1 -<_ j-< k such that (xi+l, , Xk) e and Vl,
l <-_ <-_j, ?(, ) ea such that (x, xfl e al and (x, Xk) e a2, iff =lj, l <-j<- k
such that (X+l, ", Xk) e and (by Lemma 5) 11, 1 _<- _-< j, :l(a, a2) e

alC2 c, iff 3y e/3, y < x’ such that y satisfies (.) above. This completes the proof of
the claim.

Back to the main proof: Clearly,/z0(a,/3) e IIu and by Corollary 2 there exists a
program/z (a,/3) e r, such that/Xo(a,/3) ;z (a,/3). Let x be a path, x (Xo, Xk). Then
x/z(a,/3) iff xE/x0(a, fl) iff (Xl,’’’,Xk)fl or (Xl,’’’,Xk)/Xl(a,/3) iff
(Xl," ", Xk) fl or (by the claim) there exists y /3, y < (x,. , x), such that y
satisfies (,) above, iff there exists y E fl, y < x, which satisfies (,).

PROPOSITION 5. If BPL formulas p and q are translatable into PDL programs
(p) and (q) in II in the sense of the theorem then so is psuiq.

Proof. Let ’(psufq)=/z(’(p), ’(q)), existing by Lemma 7. D
Proof of the theorem. By induction on the structure of p: by Propositions 1-5 all

we need to prove is the case p (fl)q. We prove first that for every BPL program
there exists a PDL program/3’ F such that for each path, z /3 if[ z /3’. Define fl’
by induction on/3 as follows:

If/3 IIo then fl’ =true?/3true?.
If fl p? then by the main inductive hypothesis and Corollary 2 there exists
’(p) E F, such that z(p) iff Zpp. Thus (p?)’ can be taken to be ’(p).
Now define:
(/ U/)’ =/ U -.
(//2)’ =//.
(/*)’ (/)*.

To continue the proof, note that Xpp iff there is y /3 such that xyp q, iff (by the
inductive hypothesis and the construction of fl’) Ely /3’ such that xy ’(q), iff =ly Efl’,
(tl, O2) G ’(q) such that x 6 al, y O2 and xy is defined, iff ::l(al, c2) fq such
that x E al, Yo is the last state of x and Yo (/3’D a2)trlle (the existence of/3’f3 a2 is
guaranteed by Lemma 4, Part 1), if[ x "(p) where r’(p)H, is defined as

U(al,a2)eD,.(q O1((’ D a2)true)?.
By Corollary 2 there exists (p)F with r(p) r’(p), and the proof is com-

plete. D
Examples. Let P be an atomic formula, and a an atomic program. The following

are simplified forms of ’(q) for some sample formulas q.
1. A simplified form of ’((a)P): P?*((a)true)?.
2. A simplified form of ’([a*]allP): P?(P?)*([a*(-P)?a*][alse)?.
3. A simplified form of ((a*)someP): *P?* U *((a*)P)?.
COrOLLArY 3. For eery BPL formMa p there exists a PDL formMa p’ sch that

p is valid, i.e., tre of all finite paths in all models, iff p’ is valid, i.e., tre of all states
in all models.

Proof. We will show that a BPL formula q is satisfiable itt (’(q))true is satisfiable
in PDL. Accordingly, p’ is taken to be [’(-p)]ialse. Indeed, assume Xpq in some
model M. Let M’ be the extension of M in which u is interpreted as the universal
program connecting any two states. By the theorem x ’(q) in M’, and hence
Xo(’(q))true in M’. Conversely, if s(’(q))true in some model M, then there is
some path x in M, with x0 s, such that x E (q). By the theorem Xpq in M.

DEFINITION. A program model over a set a ={al,’’ ", an} of atomic programs,
is a model in which any two states are connected by some sequence of elements of d.
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COROLLARY 4. For every BPL formula p there exists a PDL formula p’ such that
for every state s in any program model M, M, (s)p fp iff M, s p’.

Proof. Let s be a state in a program model M over a ={al,’", an}. By the
theorem (S)p fp in M if[ (s)c ’(fp) in the model extending M by interpreting u as
the universal program. Define "(fp) to be the program ’(fp) where every appearance
of the universal program u is replaced by (kJ ’= ai)*, then by the definition of a program
model x c ’(fp) in the extended model if[ x c "(fp) in M for any path x. Since (s) is
of length zero, it follows that M, (S)pp if[ M, (S)p fp ift M, s(sr’(fp))true. V1

As pointed out by one of the referees, the converse of Corollary 4 is also true.
Namely, PDL formulas are translatable in BPL formulas such that satisfaction in a
state is transferred into satisfaction in the appropriate zero-length path. To see this,
the formula (false suf true) (true only in paths of length zero) is added to each test,
and the PDL formula is otherwise left untouched. Thus, in the sense of Corollary 4,
BPL and PDL are actually equivalent in expressive power.

4. Complexity. The operator "chop" was defined in [HKP] by Xppchopq iff
:i y, z such that’ x yz and ypp, zp q. A formula containing chop can be easily
translated to a PDL program by ’(pchopq)= (p)(q). Thus, in particular our result
gives a decision procedure for validity in BPL+chop. A simple analysis of the translation
algorithm presented herein shows a nonelementary complexity. This is actually not
accidental since (as observed in [HP]) PL+chop is nonelementary even for program-
free formulas. Thus BPL+chop is also nonelementary.

Appendix. The closure properties of F and Fu claimed in Lemmas 1-4 are proven
here by considering special forms of finite automata accepting the programs in these
classes. Although regular sets are closed under composition, Kleene-star, complementa-
tion and intersection, we are interested in these operations in the "path sense".

For example, the required complement c of a is not a program which defines a
set of words over atomic programs and tests which is the complement of that defined
by a, but rather is a program whose set of paths in the model is the complement of
that of a. The existence of such a complement t is indeed established below by
considering a certain deterministic automaton for a and appropriately complementing
the set of final states, but this construction has to be done with care, and does not
follow from the classical one.

First, for a c F, let be a nondeterministic finite automaton defining the language
of a, which alternates in a predetermined way between two disjoint subsets of its set
of states when encountering tests and atomic programs.,, (K1 U Ka U {d}, IIo U T,,, ko, n, F)

where:
K1 [IK2=@, ko c K1, F

_
K2.

For kcK, if pc T then rl(k,p)_K2, and if aCIIo then rt(k,a)={d},
For kcK.,if pc T then q(k,p)={d},and if acIIo then q(k,a)c_K1,
If pc T then r/(d, p) ={d}, if a CIIo then r/(d, a) ={d}.
Let Ka be the set of states leading to a final state:
Kl={klkcK1, :lpc T such that rl(k,p)f3Ffg},
For any kc/(1 define: T(k)={plpc T,
Note. For a program a c F, and a path x (Xo," , x), x c a if[ there is a word

w defined by a, w po?ao al-Pl 9. such that x c w; that is, xi c p? i.e. xp, 0_<- _<- l,
and (x,xi+l)cp(ai), O<-i<l.
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Proof of Lemma 1.
1. Obvious.
2. Let to‘, o be the automata defining a,/3 respectively:
d//to‘ (K1 U K2 U {d}, Iio U To‘, ko, r/, F),
ego (K U K U {d’}, IIo U To, k, r/’, F’),
Define: T ^
Define the automaton t by:

.//,t.,/= (/, U/:z U {d}, IIo U
where

F= IFUF’ F’ ifotherwise,hE/3 (for example, if/3 is of the form/3* or/31"fl2"),

g, K1 U K[ U {e,}, /:z K:z UKU {e:z}.
The transition function is given by the tollowing cases:

A) For k E/
if a E IIo then (k, a) {a}
if p E To‘ To then

(k, pl=rl(k,p), kK1,
({e2}, k K’ U {e}

if p To To‘ then

(k,p)=’(k,p), kK’,
({e}, kKU{el}

if p e To‘ f3 To then

n’(k,p), kK’,
r/(k, p), k e K-K,

(k, p)= {e}, k- e,
n(k, p) U n’(k’o, p), pe T,(k) rl T, k e K,
n(k,p), pc: r(k)Cl r, keg

if p e To‘ ^ To { To‘ r3 To } then

n’(k,q)Un(k,r), p=q^r, rer,,(k),qeTo, keg,
(k’P)=

[{e.}, p_ T(k)^ To, keK or k/
B) For k e/

if pe TU TU{T,^ T} then (k,p) ={}
if a e IIo then

n(k, a) keK,
(k, a)= r/’(k, a) k

el} k e2

C) For a
if pe T,,UToU{T,^ ro} no then (a, p) {a}

The program , is then taken to be some regular expression corresponding to .
For the a* case define by:

(/ U/. U {a}, IIo U To‘ U { To‘ ^ To‘} U {true}, ko, , P)
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where: /1 K1 U (el), /2 K2 I,.J ( kt, e2}, P F U ( kt}. The transition function is
given by thefollowing cases"

A) For k e K1
if a e Iio then (k, a) {}
if p e T then

(k, p) r/(k, p), keK,
({e2}, k=e

if p e T ^ T then

n(ko, q) U 7(k, r),
p)= J n(ko, p) p),

({e},

p=q ^ r, re T,(k),q r, qe T, keK,
pe T(k), keK,
ke!K orp T,(k) ^ T

{ k,}, k ko,
(k, true)

{e.}, otherwise

B) For ke/2
if pe T U{T ^ T}, (k,p) ={a}
if a e IIo

[ r/(k, a), k e K,
k, a)

{ el}, k e { k,, e}
C) For a

if pe TU{T^ T}U IIo then (a, p) {a}
The program 8 is then taken to be some regular expression corresponding to .

Proof of Lemma 2. Similar to the proof of Lemma 1. I-1

Proof of Lemma 3. To prove the lemma we first define a path deterministic
automaton (and later the complement automaton) in the sense that a path is "accepted"
by at most a single sequence of states of the automaton.

Consider, for example, the automaton given in Fig. 1. While this automaton is
deterministic in the usual sense, it is not path deterministic, because, for example, the
path x (Xo, Xl) where XoP ^ Q, and x, R ^ U, is "accepted" by both sequences
(So, Sl, s2, s3) and (So, s4, ss, s6) of the automaton. Thus, while the labels on the edges
originating in So are disjoint, there exist paths satisfying P ^ Q which are compatible
with both.

P?

FIG.
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We will be using the set of atoms TA.
DEFINITION. Let a Fu and let t =(K1U K2 U {d}, {u} U T, ko, r/, F) be the

automaton defining a. Then , the (nondeterministic) extended automaton for , is
defined by:

’ <g ugu(,7}, (uIU 7"2, o, n ’, >
where:/1 K1 U {ea}, g2 K2 U {e2}, and Ta is the set of atoms for a. The transition
function r/E is given by the following cases:
A) For k

n(k,u)={d}
for k e K1

f {e},, (g, A7=1 qi) / U {’o(k, qi)lq To,},

(e, A’]= qi) {e}

{qi}=l N T =Q,
otherwise

B) For k6/2
rt (k, A7=1 qi) {}

n(k, u),n(k, u)-- {e},

C) If p e T2 tO { u}, n (c?, p) {c}
Claim 1. Let a e F,, and let a be any program defining the set of words over

{u}U T2 accepted by . Then:
1.
2. E.
Proof.
1. Obvious from the form of
2. Let x=(xo,’",x) be a path, xea. Then there is a word wed, w=

ro?u’" urn?, and (x) e r?, ONiNk. For every pe T either (x) ep? or (x) e (p)?.
It follows that for every i, ONiNk there exist q,... ,qe TUT such that q=r
and (x)e (A%1 q{)? for ONiNK. By the definition of the word w given by:
wz (A]=I q)?u.., u(AT=l q{)? is accepted by
which accepts w, and (x)e (A7=1 q)? for every 0N iN k; that is, x e a.

Let x (x0," , x), x e a z. Then there is a word w , w r9. u. urf9,.
xe w, r e T2; that is, rf A% q{, q{e T UT. Since is accepted by , it
follows that for every there is a j such that q{,e T, otherwise Z(k, A= q) {e2}.
Since (x,)er?, (x,)eq{,?, ON iNk, and the word w=qeu.., uqe is accepted by. Thus we have x

DzFmo. Let

/ (K1 U K2 U {d}, {u} U T2, ko, q, F).

The deterministic automaton for a, ,/D, is defined from the nondeterministic one in
the usual way by:

d/ID =(KIDU KU{d}, {u}U TA, {ko}, qD, FD)
where" KD=2K1, K=2tq, FD={,.IK and/NF# }.
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For/eKD
riD( [, u) {d}
if pc TA then riD(,,p)=U{riE(k,p)lke,}

For

if p e T2 then nD(, p) {d}
For every pe r2U{u}, nD(d,p)={d}.

Claim 2. Let a e F, and let aD be any program defining the set of words accepted
by D, the deterministic automaton for a. Then:

1. aDeF,.
2. For every word w over { u} U T2, w e a iff w e a o.
Proof.
1. Obvious by the form of .
2. If w e a then obviously w e a e.

Suppose w e a, w ro?u" Urk ?. By the form of
{E(k, U)} KI, for each keK2
{ E k, p)} K2, for each k e Kx, and p e T2

from which it follows that w is accepted by , and we have w
To complete the proof of the lemma let o be the deterministic automaton for

Define t by

D =(KIUK2U{d}, {u}U T2, ko, rl, F).

, (K, U Kz U {d}, { u} U T2, ko, ri D, K2-F}

and let be a program defined by . Obviously c7 e Fu.
Consider a path x =(x0,’"’, Xk) such that x a. Let Tie TA (0<= iN k) be the

T atom which is true in xi (obviously there exists a unique element of TA which is
true in xi). Then the word To?u’" UTk? is not accepted by o (x a). Neither does
it lead o to the error state d. Hence it leads o to a state in K2-F and is acceptable
by . Therefore x c.

Suppose x e c and x e a, then also x a D. Let x (x0,""", xk); then:

there is a word ff e c,
there is a word w e a D,
r,_ T2=C, ri A7=1, T2=a A"

ff o?u Uk? and x e if,
w ro? u" Urk ? and x w,
q! e {pj, pj} for every p T,

{ p, -p} for every p T.

We know that for every state x and every formula pc T, either (x)ep? or
(xi) e (--np)? but not both. It follows that q{ , 1 -< ]-<_ n, 0 _-< -< k. But then w ff is
accepted by both , contradicting the definition of va.o This completes the
proof of Lemma 3.

Proof of Lemma 4.
1. Without loss of generality we can assume a e F by Corollary 1. Let and

A/o be the automata defining a,/3 respectively.

d// (K1 U K2 U {d}, IIo U T, ko, ri, F),

Io ={K’I U KU{d’I, {uIU T, k, ri’, F’}.

The automaton n0 is defined by’

n </IU/ U (a}, IIo U (T A T}, , ’o, #)
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where

/1 K1 x K, /2 K2 x K,

16 F x F’, /o (ko, k).

A) Let (k, k’) e/
for pe {T ^ To}

r/(k, q) x r/’(k’, r),
((k, k’), P)

n(k,p)xn’(k’,p)
p=q ^ r, q r,
pTNT

for a e IIo,

((k, k’), a)={c}
B) Let (k, k’)e/.

for pe {T A To},
for a e IIo,
for pe {T A To} U IIo,

((k,k’),p)={d}
(( k, k’), a)= rt( k, a) x rt’( k’, u)
(d,p) ={d}

Let a N fl be a program defined by nt, then a N fl e F. Let x (Xo,. , Xl) be a
path. Then: x a N/3 if[ there exists a word w in the language defined by a n/3 such
that w= ro?ao a_lr?, where for each i,0<= <- l, (x)E r?, (x, X+l) aandw T ^T; that is, :lp T, q T such that r=pi^q if[ w=po?ao’" al-lPl? is accepted
by , w qo?u. uql ? is accepted by t and x w, x w:x a and x E/3.

2. The proof for a,/3 E F, is similar to the proof of part (1) except that the
alphabet for n is {u}U{T ^ Tt} and consequently IIo is replaced by {u} in the
proof. U

Acknowledgment. Two detailed and thoughtful reports by anonymous referees
prompted us to prepare a considerably improved revision replacing a rather unreadable
first draft.

[CHMP]

[D]
[FL]

[HI
[HKP]

[HP]
[Ho]

[MP]

IN]
[Pa]

[Prl]

REFERENCES

A. CHANDRA, J. HALPERN, A. MEYER AND R. PARIKH, Equations between regular terms

and an application to process logic, 13th ACM Symposium on Theory of Computing, 1981,
pp. 384-390.

E. W. DIJKSTRA, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1976.
M. J. FISCHER AND R. E. LADNER, Propositional dynamic logic of regular programs, J. Comp.

Syst. Sci., 18 (1979), pp. 194-211.
D. HAREL, Two results on process logic, Inform. Proc. Letters, 8 (1979), pp. 195-198.
D. HAREL, D. KOZEN AND R. PARIKH, Process logic: expressiveness, decidability, complete-

ness, J. Comp. Syst. Sci., 25 (1982), pp. 144-170.
D. HAREL AND D. PELEG, Process logic with regular formulas, submitted.
C. A. R. HOARE, An axiomatic basis for computer programming, Comm. Assoc. Comput.

Mach., 12 (1969), pp. 576-580.
Z. MANNA AND A. PNUELI, The modal logic of programs, 6th International Colloquium on

Automata, Languages and Programming, Graz, Austria, 1979, Lecture Notes in Computer
Science 71, Springer-Verlag, New York, pp. 385-409.

H. NISHIMURA, Descriptively complete process logic, Acta Inform., 14 (1980), pp. 359-369.
R. PARIKH, A decidability result ]’or second order process logic, 19th IEEE Symposium on

Foundations of Computer Science, 1978, pp. 177-183.
V. R. PRATT, Semantical considerations on Floyd-Hoare logic, 17th IEEE Symposium on

Foundations of Computer Science, 1976.



TRANSLATION FROM PL TO PDL 839

[Pr2]

JR]

IS]

V. R. PRATT, Process logic, 6th ACM Symposium on Principles of Programming Languages,
1979, pp. 93-100.

M. O. RABIN, Decidability ofsecond order theories and automata on infinite trees, Trans. Amer.
Math. Soc., 141 (1969), pp. 1-35.

R. S. STREETT, Global process logic is undecidable, Proc. 2nd Conference on Foundations of
Software Technology and Theoretical Computer Science, 1982, Bangalore, India.



SIAM J. COMPUT.
Vol. 13, No. 4, November 1984

(C) 1984 Society for Industrial and Applied Mathematics
012

INFORMATION TRANSFER UNDER DIFFERENT SETS OF
PROTOCOLS*

J. JA’JA"I’, V. K. PRASANNA KUMAR. AND J. SIMON

Abstract. We study four kinds of protocols in distributed computing. Besides the case of deterministic
protocols, we consider random, nondeterministic and probabilistic models. We show a strict containment
relationship with exponential gaps. We also explore in some depth the relationship between one-way and
two-way communications. It is shown, for example, that the complexity classes of random one-way protocols
and of deterministic two-way protocols are incomparable: exponential gaps exist in either direction. On the
other hand there is no difference between the complexity of one-way and two-way communications in the
nondeterministic case.

Key words, distributed computation, VLSI, lower bounds, information transfer, communication
complexity, probabilistic methods, complexity classes

1. Introduction. The minimum amount of information flow in distributed compu-
tations is a fundamental measure of complexity. It is a lower bound on certain practical
measures of cost of VLSI circuits, and it is interesting on its own. There seem to be
two limitations to our understanding of parallel algorithms, and to writing good parallel
programs (assuming that we understand the sequential case at least moderately well):

a) It is difficult to understand which sequentiality constraints (if any) are inherent
to a given problem, and which partial results can be computed simultaneously.

b) It is difficult to determine how much information must be exchanged among
the separate parallel subcomputations in order to obtain the final result.

The two problems are to a large extent unrelated. In many cases, it is the second
that limits the efficiency of parallel algorithms--information flow considerations deter-
mine the optimal layout of the processors, the routing of messages, the size of buffers,
and, very often, the speed of the algorithm. A quantitative measure of the minimal
information flow has been defined and studied by Yao [Y3], [Y4], Ja’Ja’ and Kumar [JK],
Mehlhorn and Schmidt [MS] and by Papadimitriou and Sipser [PSI and others. We
continue this line of research, studying different nonstandard information transfer
protocols. In particular, using different models of probabilistic computation we examine
the problem of whether probabilistic computations can decrease the amount of com-
munication necessary to solve a problem. The question is specially interesting, since
it has been shown that random choices can be very powerful in distributed algorithms
[R], [RS1], [RS2] etc. The intuition behind such probabilistic algorithms is that, in
distributed computations, a lot of resources must be used to coordinate and synchronize
independent subcomputations, that in general, behave in an unknown and unpredictable
fashion. Much less coordination is necessary if processes behave similarly, and random
choices ensure such a "generic" behavior. It is then to be expected that information
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transfer will be decreased in some probabilistic computations. Our results bear out
this intuition.

Our model is similar to that of [Y3] and [PSI: we consider two processors computing
a boolean function of 2n boolean variables. Each processor receives n bits of input.
The two processors are connected by a communication link. We measure the number
of bits through this link. We consider one-way and two-way links, as well as fixed or
arbitrary partitions of the 2n input bits into two groups of n bits.

We study four kinds of computers (and protocols). Besides the case of deterministic
machines we study probabilistic, nondeterministic, and random models. For probabilistic
protocols, we allow each processor to toss an independent, unbiased coin to decide
what message to send, and to use in its computation. We say that the set of two
processors computes fprobabilistically if the probability of the event "the result output
by the computation is the value of f for the input given" is greater than 1/2. This is a
very weak notion of probabilistic computation, analogous to the probabilistic
(unbounded error) computations discussed in [G], IS].

A more restricted, and more realistic model is that of random protocols, analogous
to the sequential random algorithms, studied by Adleman [Ad] and others. Again, the
processors can toss coins, but we say that the two processors compute f if the
computation outputs a 0 if the value of f is 0, and if the value of f is 1, then a 1 will
be output with probability at least 1/2. In both cases, we count the number of bits
exchanged in the worst case--i.e, the number of bits interchanged for any outcome
of the coin tosses.

The nondeterministic model was studied in [PSI and [MS]. In this case we allow
each processor to make a guess such that, if the value of f is 1, then there exists a
guess for which the output produced is equal to 1; otherwise, no such guess exists.
Note that, for the nondeterministic model there is no loss of generality by assuming
that the accept/reject decision is deterministic.

One of the reasons for studying these problems is that they provide a parallel
communication analogue to the fundamental and very difficult problems in sequential
computations, namely proving the strict containment relations among probabilistic,
nondeterministic, random and deterministic computations. For the polynomial time
complexity classes, it is widely conjectured that PP NP R P, but a proof is nowhere
in sight. In contrast, it is possible to prove exponential gaps among the corresponding
communication complexity classes. These are some of the results of the paper.

Another issue which we explore in some depth is the relationship between one-way
and two-way communications. In one-way communication we allow only one processor
to send messages to the other; when both processors can exchange information, we
call it two-way communication. We strengthen the known gap for deterministic
algorithms, and obtain some possibly surprising results for other classes of algorithms.
It is shown, for example, that the complexity classes of random one-way protocols
and of deterministic two-way protocols are incomparable: exponential gaps exist in
either direction. On the other hand, there is no difference between the complexity of
one-way and two-way communications in the nondeterministic case.

Before closing this section we introduce some notation. We recall that all functions
considered in this paper are single output boolean functions. We define the following
eight classes.

Dl(g(n)): the set of all functions with input of length 2n which can be
computed with <=g(n) bits of information transfer (in the worst
case) by a one-way deterministic algorithm in the case when the
input bits are evenly divided between two processors P1 and P2.
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D2(g(n)):
ND(g(n)):
ND2(g(n)):
Rl(g(n)):
R2(g(n)):
Pl(g(n)):
P2(g(n)):

same as Dl(g(n)) but by a two-way deterministic algorithm.
same as Dl(g(n)) but by a one-way nondeterministic algorithm.
same as Dl(g(n)) but by a two-way nondeterministic algorithm.
same as Dl(g(n)) but by a one-way random algorithm.
same as D(g(n)) but by a two-way random algorithm.
same as Dl(g(n)) but by a one-way probabilistic algorithm.
same as Dl(g(n)) but by a two-way probabilistic algorithm.

2. Basic characterizations. In this section we give combinatorial characterizations
of the amount of communication required by one-way nondeterministic, random and
probabilistic algorithms. In 4 we explore the relationship of these results to two-way
communication. Our characterizations lead to optimal bounds.

Let f be a boolean function whose input is specified by 2n bits partitioned evenly
in an arbitrary fashion between two processors P1 and P2. Let M(N) be the set of
all possible values taken by input bits known to P1 (P2). The rectangle R corresponding
to this partition is defined to be M x N. A subrectangle S x T, S

_
M, T c_ N is said to

be constant (monochromatic in [Y3]) if the function remains constant over S x T. It
is known [Y3] that, if nrow (f) is the number of distinct rows of R, then log nrow (f)
is precisely the amount of information transfer required by one-way deterministic
algorithms. On the other hand, if we let d(f) be the minimum number of disjoint
constant rectangles which cover R, then log d(f) is a lower bound on the information
transfer required by two-way deterministic algorithms. It is not known whether
O(log d(f)) is also an upper bound. It turns out that the nondeterministic case is easier
to characterize.

A 1-cover of R is a collection of constant rectangles {S x T/} which cover all the
l’s in R. Note that the rectangles need not be disjoint. We can similarly define the
0-cover for the complement of f. Let nd (f) be the minimum number of rectangles in
any 1-cover of R relative to f. We are ready to prove our first theorem.

THEOREM 2.1. Let f, R and nd (f) be as defined above. The amount of information
transfer required to compute f by a one-way nondeterministic algorithm is O(log nd (f)).

Proof. Let I be the amount of communication required. Let {ml,m2, ink}
be the set of possible strings P1 sends to P2. It is clear that k <= 2z. Define, for e M
and ]e N,

U(i) =the set of all possible messages sent by P1 on input i,
V(]) the set of all messages which can yield 1 as output when P2 has ] as input.

For 1 =< =< k, let

Sl={iliM and role U(i)}, Tl {YlY N and mle V(j)}.

It is clear that St Tt is a constant rectangle containing l’s, for otherwise there
exist (i, j) Sl x Tt such that f(i, )=0 and there is a nondeterministic computation
leading to f(i, ) 1. On the other hand, whenever f(i, j) 1, there exists such that
(i, j) Slx Tl. Hence k _->nd (f) and therefore I _-> log nd (f).

We now derive a matching upper bound. Let {St x T}k= be a 1-cover of R. Given
known to P1, may belong to several St x Tl. P1 makes a nondeterministic guess

and sends the corresponding index to P2. If does not belong to any St x Tt then P1
sends the index k + 1 to P2. In either case P2 has enough information to complete
the computation. Hence the amount of communication required is _-<log (k + 1).

We will see in 4 that the above argument can be modified to prove that the
classes NDl(g(n)) and ND2(g(n)) are identical. From the above proof it follows that,
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given a 1-cover of size k, there exists a nondeterministic protocol computing f using
log (k + 1) bits such that,

i) P1 is a nondeterministic processor while P2 is deterministic,
ii) at every step the number o[ nondeterministic choices at P1 is at most 2.
This observation will be helpful in simulating a nondeterministic protocol using

a probabilistic protocol. The lemma below, the easy proof of which is omitted, is often
helpful in establishing lower bounds on the size o 1 and 0-covers.

LEMMA 2.2. If f has a 1-cover of size k, then
i) f has a decomposition into disjoint constant rectangles of size at most 2TM.
ii) f has a O-cover of size at most 2k.
We now turn our attention to random and probabilistic algorithms. Recall that

we are only considering one-way communications in this section. For random
such that thealgorithms, we expand each row of R by a set of rows rx, r2,"" ", rp

following conditions hold.
i) If f(i, j) 0, then the jth entry in rl is 0, for 1 =< =< p.
ii) If f(i, j)= 1, then at least half the entries in the ]th column contain a 1 in the

rOWS /’1 /’2
Let R’ be the rectangle that has the vectors r’t for its rows and let dr be the

minimum number of distinct rows in any such R’. Then,
THEOREM 2.3. The number of bits exchanged by a random algorithm computing

f is precisely log
Proof. It is easy to check that we can assume that P2 is deterministic. Given

known to P1, P1 flips a set of coins, and based on the outcome, sends a message to
P2. Suppose that there are p possible random outcomes {st}, 1 <= t<= p. Then for a
given { i, st}, P1 behaves just like in the deterministic case. Hence the entire computation
can be viewed as a deterministic process with corresponding rectangle R’.

A similar characterization can be easily given for probabilistic algorithms. Expand
each row of the rectangle R into a collection r} of rows and each column j into a
collection c of columns such that if f(i, j)= 1 then at least half the entries in the
corresponding subrectangle are l’s. Similarly for f(i, j)=0. Again we let R’ be the
expanded rectangle. Let dp be the minimum number of distinct rows in any R’
which satisfies the above, conditions. Then log dp is both an upper and lower bound
on the information transfer necessary to compute f in a one-way probabilistic
computation.

3. Relative power of different classes. We study in this section the amount of
information transfer reduction introduced by allowing randomization or nondetermin-
ism. Our results will imply a strict hierarchy D(g(n))gRl(g(n))gND(g(n))g
P(g(n)), with exponential gaps. Before establishing the main result of this section,
we discuss the case of fixed partition which will illustrate the intriguing relationship
between the above classes.

Let x xoxl x-i and y YoY Y,-I be two n-bit strings, such that P1 has
x and P2 has y. Define the equality function 8(x, y) and the boolean inner product
a (x, y) as follows:

1 if x= y,
8(x, y)

0 otherwise,

a(x,y)=( 1 if ::1 0-< =< n- 1 such that xi yi 1,
0 otherwise.
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THEOREM 3.1. With respect to the fixed partition given above the following hold"
i) 6(x, y)Pl(log n) while 6(x, y) requires fl(n) bits of communication by any

nondeterministic or one-way random algorithm.
ii) a(x, y)NDl(lOg n) while it requires 12(n) bits of communication by any

one-way random algorithm.
iii) t(x, y) NDl(lOg n) Rl(log n), while requires fl(n) bits of communication

by any two-way deterministic algorithm.
Proof. (i) we show that O(log n) bits of communication are enough to compute

6(x, y) probabilistically. We use a technique similar to that used in [G]. We use log 2n
unbiased coins, let S be the set of all possible outcomes. Clearly, ISI 2n. Let S1

_
S

be such that ISll n-1 and $2 S-S1. The algorithm goes as follows"
1) P1 tosses log 2n coins. If the outcome is in S1, it outputs the value of as 0.

Otherwise, P1 tosses log n coins whose outcome is used to specify a position in x.
P1 then sends and xi to P2.

2) Whefi P2 receives and xi, he checks to see if x y. If this is the case, P2
declares 1; otherwise, 0.

We now show that the above algorithm works correctly. Suppose x y, then the
correct result is output whenever the coin tossing results in an outcome in $2. Hence,

n+l 1 1 1Pr (output 1) .2 2 2

Suppose that x y then we obtain the correct result if the outcome is in S or
the outcome is in $2 and is the bit position in which x and y differ. Hence,

Pr(output=o)>n-l+n+l(_ln). 1 1 1
’"’"’2 n 2n +n2>"

Thus 8(x, y) Pl(lOg n). On the other hand, the corresponding rectangle consists
of l’s along the diagonal and O’s everywhere else. Hence the number of constant
rectangles must be at least 2 and thus 6(x, y) requires 12(n) bits of communication
by any nondeterministic or random algorithm.

(ii) P1 just guesses such that x 1 and sends to P2. P2 checks to see if y 1
and, if this is the case, outputs a 1; otherwise a 0. Hence a(x, y) NDl(log n).

We use Theorem 2.3 to show that lq(n) bits of communication are required by
any random algorithm. Let R be the corresponding rectangle and let R1 be the
subrectangle obtained by restricting y to have exactly one 1. It is clear that R1 consists
of n columns and 2 rows and that the rows correspond to the set of all strings of
length n. Let R/2 be the set of rows of R1 such that each contains exactly n/2 l’s.
We show that any expansion R of R, as outlined before the statement of Theorem
2.3, has at least 2n/4 distinct rows.

Suppose a row in R/2 is replaced by rows in R. Then one of these rows must
have at least k >= n/4 l’s. This row. can only appear in the blocks corresponding to
rows with l’s in these k positions. The number of such rows is
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Hence the number of distinct rows in R is at least

3n

which can be shown by simple algebraic manipulations to be =>2n/4.
(iii) It is obvious that g(x, y) NDl(log n). To show that g(x, y) Rl(log n), we

use a well-known technique ([P], [Y2], [MS]). P1 randomly selects a prime Pi, 0 < pi <= n,
and sends the residue x mod p to P2 together with the index of p. The desired result
follows from the following fact: Let P,P2,"" ,Pt be the primes =<n; if x, y
{0, 1,... ,2n-l}, x y, then [{lxymodp}[>=l/2. As for the last part, it is easy
to check that any decomposition of the corresponding rectangle (as shown in Fig. 1)
has 2" disjoint constant rectangles.

0
0

0

0

0

FIG.

There is a weak point about the above examples. The results heavily depend on
the partition of the input and as a matter of fact, if the input is properly partitioned,
then and 8 could be computed with constant amount of communication by a
deterministic algorithm. In the remainder of this section, we show the strict hierarchy
by exhibiting examples for which the corresponding results hold regardless of the
partition of the input bits.

To this end we introduce shifted equality function y and shifted inner product
function/3 whose input consists of an m-bit string x and a log m-bit selection input
i. Without loss of generality we assume that rn and log rn are even. Let 2n rn + log rn.
Then y and/3 are defined as follows:

y(x,/)=l ifx0xl,’" Xm/4-1= XiX(i+l)modrn, X(i+rn/4_l)modm
[0 otherwise,

/3(x,i)=[1 if:lj, 0<=j<=m/4-1, s.t.
[0 otherwise.

THEOREM 3.2. Regardless of how the input (x, i) is partitioned equally between
two processors P1 and P2, we have the following"

(i) /(x, i) Rl(lOg n) fq NDl(log n), while it requires f(n) bits of communication
by any two-way deterministic algorithm.

(ii) #(x, i)eNDl(lOg n) but f(n) bits of communication are required by any
random algorithm.
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(iii) y(x, i)Pl(lOg n) but it requires f(n) bits of communication by any non-
deterministic or random algorithm.

Proof. (i) We prove the upper bound for all partitions of (x, i) such that P1 has
i. In the next paragraph, we prove the lower bounds hold for all partitions. The problem
now involves checking if y z, where y and z are m/4 bit integers obtained from x.
Suppose P1 has Yl and Zl and P2 has Y2 and z2, such that y Yl + Y2 and z Zl + z2.
P1 randomly chooses a prime pj, 0< pj <= m/4 and sends the residues Yl mod p and
zl mod p to P2 together with the indices j and i. As in the proof of Theorem 3.1(iii),
one can show that the random algorithm above works correctly and involves the
transmission of O(log n) bits from P1 to P2. On the other hand, it is easy to check
that /(x, i) ND(log n).

We now prove the following claim.
CLAIM. Regardless of how the bits of (x, i) are partitioned between P1 and P2,

/(x, i) requires l(n) bits of communication by any two-way deterministic algorithm.
Proof of the claim. Consider the set of indices {0, 1,. , m/4-1} of x. Without

loss of generality assume that P1 has at least m/8 of these indices, say il, i2,’’’, ip,
p >= m/8. Construct the table shown in Fig. 2 as follows. The (ik,/)th entry is 1 if
(ik + l) mod m corresponds to an index in P1 and 0 otherwise.

m/4 m/4+l m/4+2 3/4m-1

FIG. 2

Since P1 has p indices in {0, 1,..., m/4-1}, given any ik, the row ik has at least
m/2-((m+logm)/2-p) O’s. Therefore the table contains at least s=
p(m/8-1ogm/2) O’s. But s=p(2n-51ogm)/8>=pn/8>=mn/64, for n sufficiently
large. Hence there exists a column say with at least n/32 O’s. Considering the
subfunction /(x, l), it is clear that P1 and P2 have to compare two n/32 bit integers,
which requires fl(n) bits of communication by any two-way deterministic algorithm.

(ii) Without loss of generality, we assume that P1 has all the bits of i. If P1 has
indices j and (i + j) mod rn such that x x<i/) moo 1, then P1 outputs 1. Otherwise
it guesses such a j and sends i, j to P2. Hence (x, i) ND(log n).

Using the same technique as in the proof of the claim in part (i) and Theorem
3.1(ii), it is easy to see that/3(x, i) requires I(n) bits of communication by any one-way
random algorithm.

(iii) It is easy to generalize the proof of Theorem 3.1(i) so that it works for
arbitrary partition of (x, i).

Before stating the main theorem of this section, we show the following.lemma.
LEMMA 3.3. The following inclusions kold:

D(g(n))
_
Rl(g(n)) _:NDl(g(n))

_
Pl(g(n))

for any function g( n) <= n.
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Proof. The first two inclusions are obvious. The inclusion NDl(g(n))_ Pl(g(n))
can be shown as follows: P1 tosses g(n) + 1 coins and outputs a I for 2g()- 1 outcomes,
while for the remaining outcomes, it simulates the nondeterministic algorithm by
substituting coin tossings for guesses. The rest of the proof is similar to that of Theorem
3.1 (i)(cf. [G]). [3

THEOREM 3.4. Let g(n) be any function such that log n <= g(n) < n. Then we have
the following strict hierarchy:

Dl(g(n)) Rl(g(n)) NDl(g(n)) Pl(g(n))

where exponential gaps exist.

Proof. Immediate from Theorem 3.2 and Lemma 3.3.

4. One-way versus two-way communications. We have considered one-way com-
munications in the previous sections and we turn our attention to two-way communica-
tions. A result is known in the literature [PSI which shows that two-way deterministic
communication is more powerful than one-way deterministic communication. We
strengthen this result and show several such results for random and nondeterministic
algorithms.

Fig. 3 defines a function h (x, y) which will be used repeatedly in this section. Note
that the length of the input is 2(k + 1).

Suppose P1 has value x0 of x and P2 has a value Yo of y. Then, with two-way
communication, P1 and P2 can in O(1) bits of communication determine one of the
six subrectangles which contains (x0, Y0). Then in at most log k bits, they can compute
the value of h(x0, Yo). However since the rectangle has 2k+ k + 1 distinct rows, 12(k)
bits of communication are required by any one-way deterministic algorithm._

2k+l ,.

2k+l

2

2 kl

all strings
of length k

FIG. 3

We now generalize the function , to the following function f(x, i):

f(X, i) X (X0Xl,""" Xm/4_l, XiX(i+l)modm, X(i+rn/4_l)modm

where x is an m bit integer and is a log m bit integer.
THEOREM 4.1. Let g(n) be any function such that log n <= g(n) < n. Then:
(i) Dl(g(n)) D2(g(n)) with exponential gap.
(ii) D2(g(n)) and Rx(g(n)) are incomparable and exponential gaps exist in each

direction.
(iii) R(g(n)) R(g(n)) with exponential gap.
(iv) NDl(g(n)) ND2(g(n)).
(v) D(g(n)) R(g(n)) with exponential gap.
(vi) ND2(g(n)) P2(g(n)) with exponential gap.
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Proof. (i) It is not hard to generalize the argument before statement of the theorem
to show that regardless of how (x, i) is partitioned between P1 and P2, O(log n) bits
of communication are enough to compute f(x, i) by a two-way deterministic algorithm.
On the other hand using the claim shown in Theorem 3.2(i) it is easy to see that the
corresponding rectangle has f/(2on) distinct rows, for some constant c > 0 (regardless
o the partition of (x, i)) and hence f/(n) bits of information transfer are required by
any one-way deterministic algorithm.

(ii) Using the claim established in Theorem 3.2(i) and the technique outlined in
Theorem 3.1(ii), one can show that f(x, i) requires f/(n) bits of communication by
any one-way random algorithm. Theorem 3.2(i) finishes the proof of this part.

(iii) It is clear that D2(g(n))
_
R2(g(n)). Hence f(x, i) R2(log n).

(iy) We show that the lower bound established in Theorem 2.1 for ND1 will also
hold for ND2. Define for iM and ] N,

U(i) the set of all possible messages exchanged between P1 and P2 on input i,
V(]) the set of all possible messages which can yield 1 as output when P2 has

as input.
For q k, let

S={iliM and m U(i)}, T={]IjN and m V(])}.

The rest of the proof follows as in the proof of Theorem 2.1. (v) follows from
(ii). (vi) follows from (iv) and Theorem 3.2(iii). U

We conclude this section by sketching a diagram representing most of our results.

D2 R2 ND2 P2
U?

D R ND P

Exponential gaps exist between all strict inclusions. We conjecture that exponential
gaps exist in the two inclusions R2 c__ ND2 and P1 g P2.

5. The complement classes. The main result of this section is stated in the
following theorem.

THEOREM 5.1.
i) For anyfunction g(n) <= n, P(g(n)) and D(g(n)) are closed under complement.
ii) For any function g(n), log n <= g(n) < n, ND(g(n)) and R(g(n)) are not closed

under complement.
Proof. i) is trivial and ii) follows from Theorem 3.2. [3
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HOW TO GENERATE CRYPTOGRAPHICALLY STRONG
SEQUENCES OF PSEUDO-RANDOM BITS*

MANUEL BLUM’[" AND SILVIO MICALI*

Abstract. We give a set of conditions that allow one to generate 50-50 unpredictable bits.
Based on those conditions, we present a general algorithmic scheme for constructing polynomial-time

deterministic algorithms that stretch a short secret random input into a long sequence of unpredictable
pseudo-random bits.

We give an implementation of our scheme and exhibit a pseudo-random bit generator for which any
efficient strategy for predicting the next output bit with better than 50-50 chance is easily transformable
to an "equally efficient" algorithm for solving the discrete logarithm problem. In particular: if the discrete
logarithm problem cannot be solved in probabilistic polynomial time, no probabilistic polynomial-time
algorithm can guess the next output bit better than by flipping a coin: if "head" guess "0", if "tail" guess "1".

Key words, randomness, pseudo-random number generation, unpredictability, random self-reducibility

1. Introduction.
1.1. Randomness and complexity theory. We introduce a new method of generat-

ing sequences of pseudo-random bits. Any such method implies, directly or indirectly,
a definition of randomness.

Much effort has been devoted in the second half of this century to make precise
the notion of randomness. Let us informally recall Kolmogorov’s influential definition
[18]:

A sequence of bits A a, a,. , a is random if the length of the minimal
program outputting A is at least k.

We remark that the length of a program, from a computational complexity point
of view, is a rather unnatural measure. We want to investigate a more operative
definition of randomness in the light of complexity theory.

A mental experiment. A and B want to play head and tail in four different ways.
In all of them A "fairly" flips a "fair" coin. In the first way, A asks B to bet and then
flips the coin. In such a case we expect B to win with a 50% frequency. In the second
way, A flips the coin and, while it is spinning in the air, she asks B to bet. We are still
expecting B to win with a 50% frequency. However, in the second case the outcome
of the toss is determined when B bets: in principle, he could solve the equation of the
motion and win! The third way is similar to the second one: B is allowed to bet when
the coin is spinning in the air, but he is also given a pocket calculator. Nobody will
doubt that B is still going to win with 50% frequency: before he can initialize any
computation the coin will have come up head or tail. The fourth way is similar to the
third, except that now B is given a very powerful computer, able to take pictures of
the spinning coin, and quickly compute its speed, momentum, etc. We will not say
that B will always win, but we may suspect he may win 51% of the time!

The purpose of the above example is to suggest that

The randomness of an event is relative to a specific model of computation
with a specified amount of computing resources.
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The links between randomness and the computation model were pointed out by Michael
Sipser in [31], where he defines randomness with respect to finite state automata (see
also [24]). In his very nice paper [29], Shamir considers also the factor of the computing
resources, presents significant progress in this direction and points out some open
problems as well.

In this paper we investigate the randomness of/c-bit long sequences with respect
to. the computation model of Boolean circuits with only Poly k) gates.

1.2. CSPRB generators. We introduce the notion of a cryptographically strong
pseudo-random bit generator (CSPRB generator) and show under which conditions
it can be constructed. A CSPRB generator is a program G that, upon receiving as
input a random number (hereafter referred to as the seed), outputs a sequence of
pseudo-random bits b, b2, b3," . G possesses the following properties:

1) The bits b’s are easy to generate. Each b is output in time polynomial in the
length of the seed.

2) The bits b’s are unpredictable. Given the generator G and b,. , b, the first
s output bits, but not the seed i, it is computationally infeasible to predict the s + 1st
bit in the sequence with better than 50-50 chance. Here s is polynomial in the length
of the seed.

Our generators are an improvement of Shamir’s pseudo-random number gen-
erators. In [29], Shamir presents programs that from a short secret random seed,
output a sequence of numbers x’s such that the ability of predicting the next output
is equivalent to inverting the RSA function [27]. The main difference between ours
and Shamir’s generator is:

Shamir’s generator outputs numbers and not bits. Such numbers could be unpredict-
able and yet of very special form. In particular every bit of (information about) the
next number in the sequence could be heavily biased or predictable with high probabil-
ity. As a consequence, if the numbers so generated are 100 bits long, they might not be
uniformly spread in the interval [1, 2].

1.3. Pseudo-random sequences and statistical tests. Passing given statistical tests
is the key point for evaluating pseudo-random sequences. The classical sequence
X/l ax + b mod n, provides a fast way of generating pseudo-random numbers. Such
a sequence is known (for a clever choice of the parameters a, b, and n) to generate
"well mixed numbers" (see Knuth [17]). However it is not cryptographically strong.
Plumstead [25] shows that the sequence can be inferred even when a, b and n are all
unknown.

In contrast, our bit-sequences cannot be generated as fast, but cannot be inferred
either. This is so because they have "embedded" some hard problem.

An analysisof a particularly simple pseudo-random number generator appears in
Blum, Blum and Shub [9]. They point out that well mixed sequences in which hard
problems are embedded can nevertheless be poor pseudo-random sequences. Something
more is needed to construct good generators of pseudo-random sequences; what that
is is pointed out in 2.

Unpredictability of the next output bit is the key test studied in this paper, in an
earlier version of this paper [10], we presented a deterministic polynomial-time
algorithm that stretched a random k-bit long seed into a polynomially (in k) long
bit-sequence. Any probabilistic polynomial-time algorithm, correctly predicting the
next bit with probability greater than 1/2+ e in a so produced pseudo-random sequence,
could be easily transformed to a probabilistic algorithm, running in expected
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poly (k, e -1) time, for solving the discrete logarithm problem for a fraction e of the
primes of length k.

Though we were aware of the polynomial dependency on e-1 (in fact in [10]
Lemma 2 explicitly states it), our main theorem summarized our results stating that
the next bit in our pseudo-random sequences could not be predicted in polynomial
(in k) time with probability greater than 1/2+ e, for 0 < e < 1.

Yao [33] was the first one to realize the importance of emphasizing the polynomial
functional dependency on e-1 and made excellent use of it (see 1.3.2).

Indeed, without any changes in our algorithm, e could be replaced with the smallest
value that will keep the running time polynomial. Since in our case the running time
is polynomial in k and e-1, we henceforth use 1/poly (k) for e in this paper.

We now proceed to a formal treatment.

1.3.1. The next-bit-test. Let P be a polynomial and S {Sk} be a collection of
multisets such that Sk contains P(k)-bit long sequences (the same sequence s may
belong more than once to Sk). Let P1 be a polynomial. A predicting collection C {C}
is a collection of circuits such that each circuit C has less than Pl(k) gates, Boolean
inputs, i< P(k), and one Boolean output. On input the first bits of a sequence s
randomly selected in Sk, C will output a bit b. Let pkC, denote the probability that
b the + 1st bit of s. We say that the collection S passes the next-bit-test if for all
predicting collections C, all polynomials Q, all sufficiently large k and all i< P(K),

1 1
p kc’i < "+ Q k----

Ability to predict the next bit from the preceding ones is indeed a statistical test
tor a bit-sequence. In fact, if a bit-sequence were generated by independent coin flips,
no strategy would predict the next bit with a success rate even slightly better than
50-50. This particular test is passed by the sequences produced by a CSPRB generator.
Therefore CSPRB generators produce evenly distributed numbers: just divide the output
sequences into k-bit long segments.

Subsequently, Yao [33] showed the following very interesting result.

1.3.2. Yao’s statistical test. The following definition is derived from Yao [33].
As before, the collection S {Sk} is such that the multiset Sk contains P(k)-bit long
sequences.

Let P1 be a polynomial. A polynomial-size statistical test is a collection C {Ck}
of circuits. Each circuit Ck has less than Pl(k) gates, P(k) Boolean inputs and one
Boolean output. Let c

Pk,S denote the probability that Ck outputs 1 on input a randomly
selected sequence in Sk, and pCk,R the probability that Ck outputs 1 on a randomly
selected P(k)-bit long sequence. The collection S passes all polynomial-size statistical
tests if for all polynomial-size statistical test C, for any polynomial Q, for all sufficiently
large k,

1
P,s-p,RI<Q(k).

THEOREM (Yao). A collection S {Sk} passes the next-bit-test if and only if it
passes all polynomial-size statistical tests.

1.3.3. Related tests tor strings. Earlier definitions and theorems about tests for
distinguishing strings belonging to two different sets can be found in Goldwasser and
Micali [13]. They presented a probabilistic encryption scheme in which a single bit b
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is, with the help of a coin, encoded by a k-bit long string /3, called a probabilistic
encryption of b. Here k is a security parameter. Both 0 and 1 will have many possible
probabilistic encodings, but all of them are uniquely decodable. They defined a
probabilistic encryption scheme to be bit-secure if for all polynomials P and Q, for all
sufficiently large k, no circuit with less than P(k) gates can correctly guess whether/3
is the encryption o 0 or 1 with probability greater than 1/2+ 1/Q(k). Under an
intractability assumption for the quadratic residuosity problem, they present a prob-
abilistic encryption scheme that is bit-secure.

A probabilistic encryption of an n-bit long (n <Pl(k) for some polynomial P1)
string bl," , bn is a sequence/31," ,/3n where each/3i is a probabilistic encryption
of bi. Let P be a polynomial. A separator is defined to be a collection of circuits
C { Ck}. Each circuit Ck has less than P(k) gates, kn Boolean inputs and one Boolean
output. For a string s Sl ., s, let c

,’" Ps,k denote the probability that Ck outputs 1 on
input a probabilistic encryption of s. The encryptions of the string x Xl,’’’, x, are
unseparable from the encryptions of a string y yl,..., Yn if for all separators C and
for all polynomials Q, for sufficiently large k,

1
Px’k--PY’kl< Q(k)"

The computational difficulty of separating the encryptions of polynomially long
bit-sequences reduces to the one of correctly guessing the decoding of an encrypted
single bit.

THEOREM (Goldwasser and Micali). For any pair of n-bit long strings x and y, the
encryptions of x and y are unseparable if and only if the encryption scheme is bit-secure.

1.4. Instances of the CSPRB generator model. A general algorithmic scheme
for constructing CSPRB generators is presented in 2. The first instance of this scheme
is based on the intractability assumption for the discrete logarithm problem and is
described in 4. Other interesting instances of the general model have subsequently
been found based on the intractability assumption of various one-way functions. Yao
[33] and Blum, Blum and Shub [9] found instances based on the intractability .of
deciding quadratic residuosity modulo composite numbers whose factorization is
unknown. Yao [33] and Goldwasser, Micali and Tong [14] implemented CSPRB
generators based on the intractability of factoring. Yao [33] also proves that one can
obtain instances of the CSPRB generator scheme if one-way functions with a particular
property exist.

1.5. Applications. Recently, a large number of cryptographic protocols for pro-
tecting private communication and business transactions have been developed [7], [8],
[13], [14], [15], [20]. The security of these new protocols is based both on the security
of some encryption scheme and the ability of the participants to generate large random
numbers unknown to an adversary. Security vanishes if an adversary, though not able
to break the encryption scheme, can successfully predict the output of the pseudo-
random number generator. This is not an abstract worry as shown by Plumstead. The
problem calls for the use of CSPRB generators.

In private key cryptography, one-time pads constitute the best type of cryptosys-
tem. In practice, one-time pads are approximated by pseudo-random number gen-
erators [4]. Shamir [29] points out that "unpredictable" pseudo-random number
generators may be a valid substitute for one-time pads. Therefore, CSPRB generators
are particularly good substitutes for one-time pads: two partners who both possess
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the same CSPRB generator and have secretly exchanged a random seed, are actually
sharing a long bit-sequence that can be successfully used as a one-time pad.

The fact that the cryptographic strength of CSPRB generators depends only on
the secrecy of the seed and not on the secrecy of the program, makes them an available
tool to mathematically nonsophisticated users. In fact, it is unreasonable to assume
that a business person should be able to design a cryptographically strong generator.
However, anyone can buy such a program from the public market and secretly select
a short random seed.

2. A general algorithmic scheme for constructing CSPRB generators. In this
section we present the formal definition of a CSPRB generator and a theorem showing
a set of conditions that allow one to construct such generators. In 3 we show some
results about the discrete logarithm problem; namely that there exists a Boolean
predicate whose computational difficulty is equivalent to that of the discrete logarithm
problem. In 4 we show that these results make possible, under the intractability
assumption for the discrete logarithm problem, to concretely implement CSPRB
generators. In 5 we explicitly define the notion of random self-reducibility that is
the basis of our results.

DEFINITION. Let O be a polynomial, ! a set of inputs and Ik c_c_ I the set of inputs
of length k. Let A be a deterministic algorithm that, on input a seed x Ik, outputs a
Q(k)-bit sequence sx. Let Sk {SxIX Ik}. The algorithm A is a Q-CSPRB generator
if the collection S {Sk} passes the next-bit-test.

The sequences output by a CSPRB generator will be called the CSPRB sequences.
CSPRB sequences are ultimately periodic. However, for the great majority of the
seeds, the corresponding CSPRB sequences do not quickly become periodic with a
short period.

Let a and/3 be integers. We say that a bit-sequence is (a,/3)-periodic if it becomes
periodic, with period length less than/3, after at most a bits.

THEOREM 1. Let P1, P2 and P3 be polynomials. Set Q P1 + P2+ 2P3 + 1 and let
G be a Q-CSPRB generator Let 6k denote the fraction of the seeds of length k for which
G generates a (Pl(k), P2(k))-periodic pseudo-random sequence. Then 6k < 1/P3(k) for
all sufficiently large k.

Proof. Assume, for contradiction, that 6k>=l/P3(k) for each kF where F is
infinite. Let k F. Denote by ei the fraction of seeds of length k for which the first
Pl(k)+P2(k)+i bits in the corresponding CSPRB sequence form a (Pl(k), P2(k))-
periodic sequence. Then we have

1
2"P3(k)= k e3(k)"

Let the integer ie[0,2. P3(k)) be such that ei-ei+<-1/2(1/P3(k)). (Such an exists,
otherwise e0 > 1.) Consider the following algorithm A that predicts the (i + 1)st bit in
a CSPRB sequence bl, b_,. ., bo() produced with a seed of length k:

Look at S=bl,"., bi. If S is not a (Pl(k), P2(k))-periodic sequence,
predict b/l by flipping a coin. Else, predict bi+ so to preserve the (Pl(k), P2(k))-
periodicity.

Because of e>=l/P3(k) and our choice of i, A will predict b/l correctly with
probability greater than 1/2+ 1/(2. P3(])). We have reached a contradiction as, for some
polynomial P, for each k e F, A can be transformed to a circuit Ck, with less than
P(k) gates, that accomplishes the same task. Q.E.D.
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We just mention that we could replace the above algorithms Ak by a uniform
probabilistic polynomial time algorithm that makes use of sampling.

2.1. Problems in building generators. Let B be a predicate defined in a domain
D with 2k elements, such that B(x) 1 for half of the x’s in D. Then we could generate
random bits bo, bl,’’’ by picking xi at random in D and outputting bi B(x). The
drawback of this method is that we need to use k random bits to pick each x, but we
generate a single bit b. Instead, we would like to pick only the first x0 at random in
D and to select the other x’s in a deterministic way, namely, by setting Xi+x =/(x)
where f is a deterministic function. The problems of this approach are illustrated by
the following example. Let D consist of the integers in the interval [0, n], B(x)= 1 if
x<n/2 and B(x)=0 otherwise, and let f(x)=x+l. With such a choice for f, we
would essentially output always 0 or always 1, a not too random-looking bit-sequence!
This simple example shows that the deterministic function f may interact badly with
the predicate B spoiling the "randomness" of the output. Theorem 2 essentially shows
simultaneous conditions on f and B that prevent such bad interaction. We first describe
what predicates B should be used.

2.2. Unapproximable predicates. N {0, 1, 2,. }. B is said to be a set ofpredi-
cates if B {B: D {0, 1}/i Sn, n N}, where Sn is a subset of the n-bit integers
and D is a subset of the integers with at most n bits. An element of Di is always
represented by n bits, the leading ones may be O’s.

Set In {(i, x)li Sn and x D}. An element of In is called an input of size n. B
is accessible if there are two constants c and c2 and a probabilistic algorithm A such
that, on input n, A halts after n c, steps; A outputs "?" with probability 1/2c2k; and
whenever A does not output "?" it outputs an element (i, x)In with uniform
probability.

Let B be a set of predicates and P be a polynomial. Let cP. denote the size of a
minimum size circuit C C[.,. ] that computes B(x) correctly (i.e. C[i, x]= B(x))
for at least a fraction 1/2+ 1/P(n) of the inputs (i, x) of size n. Such a circuit C will be

Psaid to 1/P(n)-approximate B. B is unapproximable if for any polynomial P, c grows
faster than any polynomial in n.

Example (Goldwasser and Micali [13]). Let Sn set of all n-bit composite integers
that are products of two distinct equal-length primes. Let D denote the set of all
integers x [1, i] relatively prime to whose Jacobi symbol (x/i) +1; and let Bi(x) 1
if x is a quadratic residue mod i, B(x)= 0 otherwise. Then it is easy to show that B
is accessible. Furthermore, under the quadratic residuosity assumption [13], B is also
unapproximable. Another example can be found in 4.

Remark. Note that for an unapproximable predicate B, as n goes to infinity, the
fraction of In such that B(x)= 1 (B(x)=0) goes to 1/2.

2.3. Sufficient conditions for constructing CSPRB generators.
EASY

f(x)

HARD

B(f(x))
FIG.

THEOREM 2. Let O be a polynomial, B {B: Di-, {0, 1}1i Sn, n N}, an un-
approximable and accessible set of predicates and I {(i, x) In ln N} be the set of all
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inputs relative to B. Let
1) f’(i, x) 1 Di be a polynomial time computable function;
2) fi f i, )" Di Di be a permutation .for all
3) h" (i, x) ! Bi(j(x)), be a polynomial time computable predicate (see Fig. 1).

Then it is possible to construct a Q-CSPRB generator G.
Proof Let heN.As B is an accessible set of predicates, let c, c2 and A be its relative

constants and probabilistic algorithm. Set c Q(n), the desired length of the sequence
and n’ [n/C,J. The following constitutes the Q-CSPRB generator G that stretches the
random n-bit seed r to a Q(n)-bit pseudo-random sequence.

Run A on input n’ using the bits of r as coin tosses. If A’s output is "?" then generate
the sequence consisting of c O’s. Else, if A has randomly selected an input
(i,x)I,,,,

generate the sequence Ti,x x,f(x),fEi(x), ,f(x) and
fr6m right to left (!), extract one bit from each element in T,, as follows"
for j= c to l, output the bit B,(f(x)).

For simplicity, let us assume that A never outputs "?" and n n’. Then G takes
the random input (i, x) and stretches it into the sequence S, (s)__t,...,c where

Sj Bi(f-J+l(x)).
G operates in polynomial time. The sequence T,x can be constructed in Poly (n)

time as the function f (and thus each function ]) is polynomial time computable
(hypothesis (1)).

Once the sequence T,x is computed and stored, each bit s S,x can also be
computed in polynomial time: by hypothesis (3), s B(f-+(x)) is easy to compute
as f-(x) is given.

G is cryptographically strong. Let P and P2 be polynomials. We want to prove
that, when n is large enough, for any k between 1 and c- 1 Q(n), a circuit C with
less than P(n) gates, cannot "predict" Sk+ with probability greater than 1/2 + 1 /P2(n).
The proof is by contradiction. Assume that there is an infinite family of integers, F,
such that for each n F there is a circuit C,, with less than P(n) gates, predicting
Sk+ correctly with probability (taken over all the possible seeds of length n) at least
2 + 1/P2(n). Then the following poly(n) time algorithm A, making calls to the circuits
C,, 1/P2(n)-approximates B; i.e. A(i,x)=B(x) for a fraction 1/2+l/P2(n) of the
(i, x) I. This will contradict the assumption that B is unapproximable. In fact, as all
C, have size less than P(n), for some polynomial P3, for each n e F, A can be
transformed to a circuit, with less than P3(n) gates, that -+ 1/P2(n)-approximates B
for inputs of size n.

ALGORITHM A.
For input (i, x) In, n F, generate the sequence of bits (b,. , bk-1, bk)

(Bi(fk(x)), Bi(f2(x)), B(f(x))). Input these k bits to the circuit Cn to

compute a bit y. Set A(i, x) y.
We now prove that A 1/P2(n)-approximates B for inputs of size n, n F. Notice that
the bits bl, bk are the first k bits of the Q-CSPRB sequence S.k-c,,z, x). Thus
A(i, x)= B(x) if and only if Cn correctly predicts the k + 1st bit of S,-c<x). But this
will happen for a fraction at least -12+ 1/P2(n) of the (i, x) In. In fact we are assuming
that Cn correctly predicts the k + 1st bit of the S,x sequences for a fraction 1/2+ 1/P2(n)
of the (i, x) In and we know that the function fk- is a permutation as, by hypothesis
(2), ] is. Q,E.D.

3. The discrete logarithm problem. Let p be a prime. The set of integers [1, p- 1]
lorms a cyclic group under multiplication mod p. Such a group is denoted by Z*. Let
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g be a generator for Zp*. The unction fp.s" x Z*p gX mod p defines a permutation
on Zp* computable in Poly (Ipl) time. The discrete logarithm problem (DLP) with inputs
p, g and y consists in finding the x Zp* such that gX mod p y. A circuit C[.,., .]
solves the DLP mod a prime p if, for any g generator for Zp* and any y Zp*,
C[p, g, y] x such that x Zp* and gX mod p y. Such an x will be simply denoted by
indexg(y) whenever no ambiguity may arise about p.

3.1. Actual knowledge about the DLP. gX mod p seems to be a one-way function.
The fastest algorithm known for the DLP is due to Adleman [1] and runs in
time O(2C41gploglgp). It is easy to see that the difficulty of the DLP does not depend
on the generator g or y. By this we mean that if for a nonnegligible fraction 1/Poly (I Pl))
of pairs (g, y), g a generator and y Zp*, the DLP with inputs p, g and y could be
efficiently solved, then it could be solved in probabilistic poly (Ipl) time for any g and
any y. Thus our intractability assumption for the DLP will depend only on the
prime p.

Pohlig and Hellman [26] show that the DLP mod a prime p such that p- 1 contains
only small prime factors can be efficiently solved. However such primes constitute a
negligible fraction of all primes [34]. No one knows how to construct "small" circuits
that solve the DLP mod even a single prime p that is not of the above type.

3.2. The intractability assumption for the DLP. Let P be a polynomial and let
Pc, denote the size of a smallest size circuit C that solves the DLP for at least a fraction

PliP(n) of the n-bit primes p. Then c, grows faster than any polynomial in n.
Why circuit complexity? The above intractability assumption is certainly a strong

one. It implies that the CSPRB sequences, implemented using the DLP as described
in 4, resist prediction by polynomial size circuits.

For the same implementation, if we assume that the DLP cannot be solved in
probabilistic polynomial time., we could prove (in essentially the same way!) that the
CSPRB sequences would resist prediction by any fixed probabilistic polynomial time
Turing machine M, i.e., for all sufficiently large seed length k, M cannot predict the
next bit in a CSPRB sequence generated with a seed of length k better than at random.

This, however, is not satisfactory for the cryptographic applications mentioned in
1.5. We would like first to choose a seed length, and then allow our adversary to

choose any probabilistic polynomial time Turing machine for predicting our sequence!
The problem calls for nonuniform complexity.

3.3. The DLP and the principal square root problem. We recall some known
results about Zp*.

An element T of Zp* is called a quadratic residue mod p if and only if T x2 mod p
for some x Zp*; such an x is called a square root mod p of T.

FACT 1. Given any generator g for Z’p, an element T of Z*p is a quadratic residue
mod p if and only if T g2S mod p for some integer s [1, (p-1)/2]. We recall that
such a representation of T is unique. Moreover T has two square roots mod p: g2 mod p
and gS+p-1)/2 mod p (e.g. see Shanks [30]).

FACT 2. There exists a polynomial time algorithm for testing whether an element
T of Z*p is a quadratic residue mod p (e.g. see [30]).

FACT 3 (Adleman, Manders and Miller [2], Berlekamp [5]). Given any T, a
quadratic residue mod p, there exists a probabilistic polynomial-time algorithm to compute
both square rdots of T mod p.

We introduce the following basic definition.
DEFINITION. Let g be a generator for Zp*, T a quadratic residue mod p and 2s

the unique index of T such that 2s[1, p-1]. Then g mod p .will be called the
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g-principal square root of T, and gS+(p-1)/2 mod p the g-nonprincipal square root of T.
We will simply say principal square root and nonprincipal square root when no
ambiguity about the generator g may arise.

Let g be a generator for Zp*. Notice that given T, a quadratic residue mod p, but
not the index of T base g, one can still test efficiently that T is indeed a quadratic
residue and can efficiently extract its two square roots mod p, say X and Y. However
Theorem 3 shows that deciding which square root of T is the g-principal one is a
much harder problem. In fact, even allowing a weak oracle for the principal square
root problem, the DLP becomes easy.

DEFINITION. Let g be a generator for Zp* and x Zp*. The predicate Bp,g(X) is
defined to be equal to 1 if x is the principal square root of x2 mod p and 0 otherwise.

Remark 1. Notice that, given s Zp* such that x g mod p, it is easy to evaluate
Bp,g(x)" just check whether or not s<-_(p-1)/2 and output 1 or 0 respectively.

THEOREM 3. Let Q be a polynomial. Let MBo[’, ", "] (magic box) be an oracle
such that, .for all primes p and for all generators for Z’p, MBo[p, g, x] Bp,g(x) for a
fraction at least 1/2+ 1/Q(IPl) of the x Z*p. Then there is a probabilistic algorithm with
oracle MBo that, for all primes p, solves the DLP mod p in expected poly (IPl) time.

We first establish some intermediate results. The following lemma shows that with
an oracle or the principal square root problem, the DLP is solvable in polynomial time.

LEMMA 1. Let MB[" ", be an oracle such that, for all primes p, for all generators
g for Z*p and all x Z’p, MB[p, g, x] Bp,g(X). Then there is a poly ([p[) time algorithm
with oracle MB that solves the DLP mod p for all primes p.

Proof. We actually prove a stronger result: we exhibit a poly (Ipl) time algorithm
that finds indices base g mod p by only making use of the more restricted oracle
MB[p, g, ].

The algorithm, given by y Zp*, finds x =index(y) bit-by-bit from right to left.
In the middle of the execution, the variable index will contain the right half of the
bits of x and the variable element is such that indexs(element)=the left half of x.
Think of indexs(element) and index as lists of O’s and l’s. The algorithm, abstractly,
transfers the last bit of index(element) in ront o index until index(element) vanishes
(i.e. element= gO= 1) and thus all of x has been reconstructed in index. "-" denotes
the concatenation operator.

Step 0 (Initialization)
element := y; index := empty word.

Step 1 (check for termination condition)
If element 1 HALT. index x.

Step 2 (find one more bit of x)
Test whether element is a quadratic residue mod p. If yes index := 0---index and
go to step 4 else index := 1---index and go to step 3.

Step 3 (element is a quadratic nonresidue, i.e. indexg(element) is odd. Change the last
bit of indexg(element) from 1 to 0)

element := g-1. element mod p
Step 4 (erase 0 from the tail of indexs(element))

element is a quadratic residue. Compute both square roots of element mod p. Have
MB select the principal one. element := principal square root of element and go
to Step 1.

Q.E.D.

The algorithm in Lemma 1 needs, for Pl times, to select the principal square root
of a quadratic residue mod p. It does so by making pl calls to the oracle MB that
computes Bp. correctly 100% of the time.
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We should ask what happens to the algorithm if it is allowed to make calls to an
oracle that evaluates Bp,g only slightly better than guessing at random.

The following lemma, making use of the algebraic structure of Zp*, shows how to
"concentrate a stochastic advantage", i.e. how to turn an oracle that answers most of
the instances of a decision problem correctly, even if we do not know which ones!, into
an oracle answering any specific instance correctly with arbitrarily high probability.
Let us recall one version of the weak law of large numbers:

If Yl," Yk are k independent 0-1 variables such that Yi 1 with probability
a, and Sk Yl-t-. d-Yk, then for real numbers e and 8 > 0,k > 1/(4e28) implies
that Prob (ISk/k-al> e)< 8.

Let us define trials (e, 8). trials (e, 8) 1/(4e28). Notice that trials (e, 8) depends
polynomially on e -1 and 8-1.

Let p be a prime, g a generator for Zp* and t[1, p-1]. Then IS(p, g, t), the
t-initial segment of Z*p with respect to g, is defined by IS(p,g, t)=
{gX mod pl0 --< x <_- p- 1)/t}.

LEMMA 2. Let e (0, 1/2) and 8 (0, 1). Set =trials (e/2, 8). Let MB[.. .,. be
an oracle such that for p prime, g generator for Z*p and x Z’p, MB[p, g, x] Bp.g(X)
for a fraction at least 1/2+ e of the x Z*p. Then, there is a probabilistic poly (Ipl,
8 -1) algorithm with oracle MB that on input p (prime) and e (quadratic residue mod p
belonging to IS(p, g, t)) selects the g-principal square root of e correctly with probability
greater than 1 &

Proof. Let p prime and g generator for Zp*. Again, to find indices base g mod p
we will only make use of the more restricted oracle MB[p, g, ]. As in the rest of the
proof p and g will remain fixed, we write MB[x] instead of MB[p, g, x]. On input
ee IS(p, g, t), e quadratic residue mod p, select rl," ", rt at random in [1, (p- 1)/2].
Compute 2r,. , 2ri. Compute el e. g2rl mod p," , en e. g2ri mod p. All the ei’s
are quadratic residues modp as indexs(e) is even for all i’s. In fact index(e)=
(indexg(e)+2r) mod p-1 and both indexg(e) and p-1 are even. Compute the two
square roots X and Yi of each e. (Note that while both square roots can be computed,
it is not (yet) clear which of X and Yi is principal.) For each e select PSQR, your
guess for the principal square root of ei, in the following way: if MB[X]- MB[Y],
randomly select, with probability 1/2, one of the two square roots Xi and Y; call Z
your selection and set PSQRi Z. Otherwise, if MB[Xi] 1, set PSQR X; else
set PSQR Y. Notice that the ei’s have been drawn at random with uniform probabil-
ity among the quadratic residues mod p: in fact every even index between 1 and p- 1
can be uniquely written in the form (index(e) + 2r) mod p- 1, for 1 <_- 2r-< p- 1. Thus,
even if an adversary has chosen the x’s for which MB(x)=Bg(x), setting a’=
Prob (PSQR is the principal square root of e), we have a’ =1/2+ e.

Notice the following fact:

Let 2s be the index of e, i.e. e gES mod p and 2s l, p- ], and let X and
Ybe its square roots mod p. Let 2s + 2r < p 1. Then X. g"mod p is the principal
square root of e. gEt mod p if and only ifX is the principal square root ofe.

2s is unknown, but, as e IS( p, g, t), we know that 2s[1,(p-1)/t]. Therefore, if
2s + 2ri > p 1, 2r must belong to the interval [( 1 )( p- 1 )/t, p 1]. This will happen
with probability= 1/t. Assume, without loss of generality, that PSQRi=X and
X. g’, mod p X. Then,

a Prob (Bp,g(X) IlPSQR, X) >-_ a’- 1/t > 1/2+ e/2.
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(Recall that 1/ea&) We exploit this fact in the following way: initialize to "0"
two counters Cx and Cv. For each r if X. gr, mod p- PSQR then increment Cx,
else increment Cv. Upon termination, if Cx > Cv output X as the principal square
root of e, or else Y. As a > 1/2+ e/2 let X be the principal square root of e, then by
the weak law of large numbers, Prob ([Cx/t- a[ > e/2) < 8. Or equivalently, Cx > Cv
with Probability > 1- 8. Q.E.D.

LEMMA 3. Let Q be a polynomial and

(1t--- trials
O(I pl)’ 21pl

Let MBo be an oracle such that, for all primes p and all generators g for Z’p,
MBo[p, g, x]= Bp.g(x) for at least a fraction 1/2+ / Q(Ipl) of the x Z*p. Then there
is a probabilistic poly (Ipl) algorithm that on input p prime and y IS(p, g, t) finds
indexg (y) mod p in expected poly (] Pl) time.

Proof. On inputs p, g, and y we will only call the more restricted oracle
MB[p, g,. ]. Let y be any element in iS(p, g, t). We apply a modification of the
algorithm in Lemma 1 to find the index of y, That algorithm, in Step 4, to select the
principal square root of a quadratic residue mod p, and thus also for a quadratic residue
in IS(p, g, t), would call the oracle MB. Call instead MBo as in the algorithm of
Lemma 2 setting e 1/Q<Ipl) and 8 1/21pl. By Lemma 2, Step 4 will be p6tformed
correctly with independent probability equal to 1-1/2lpl. Notice that if x belongs to
1S(p, g, n), so does x. g-1 mod p; and that if x is a quadratic residue mod p belonging
to IS(p, g, t), also its principal square root will belong to 1S(p, g, t). Therefore, if in
Step 4 the algorithm correctly selects the principal square root, the total computation
will be done in the initial segment IS(p, g, t). As Step 4 is executed at most IPl times,
the probability that the index of y will be found correctly is greater than
(1-1/(21pl))lpI> 1/2 (consider the Taylor series expansion around x 0 of the function
f(x)-(1-’l/x)lpl). It is easy to see that the whole computation is polynomial in
Ipl, Q.E.D.

We are now ready to prove Theorem 3.
Proof of Theorem 3. The following probabilistic poly (Ipl) time algorithm finds

indexg(y) mod p for any y Z*p by only making calls to the oracle MBo[p, g," ]. Set

(1trials Q(Ipl)’2lpl"

Recall that

IS(p’g’t)={gx mdp x[o"P-I]}"t
The algorithm makes use of the variables i, w, index(w), and candidate.

Step 0 (Initialization)

i:=1

Step 1 (guess that index(y)[i(p-1)/t, (i+l)(p-1)/t] and map y into the
t-initial segment)

W :-- y" g-i(p-1)/t mod p
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Step 2 (If w IS(p, g, t), find the index of w)

Apply the algorithm in Lemma 3 to find the index of w. index(w):= the index
of w.

Step 3 (check whether the index of y has been found)

candidate := index(w) + i(p- 1)/t; if gcandidate mod p y then HALT: candidate
is the index of y in base g. Else continue.

Step 4 (keep on guessing)

i:= i+ 1. If i> then i:= 1 and go to Step 0; else go to Step 1. Q.E.D.

4. A concrete CSPRB generator based on the discrete logarithm problem. Let
us describe an implementation, based on the intractability assumption for the DLP,
of our general algorithmic scheme for constructing CSPRB generators.

We first recall a recent and powerful result due to Erich Bach [3].
LZMMA 4 (Bach [3]). There is a probabilistic algorithm that, on input n N, selects

an integer k, together with its prime factorization, with uniform probability among the
n-bits integers. The algorithm runs in expected poly (n) time.

TI-IEOREM 4. Under the intractability assumption for the DLP, we can construct a
CSPRB generator

Proof. Let $2n be the set of the 2n-bit integers (leading bit 1) such that the
first n bits of constitute a prime p, and the next n bits (leading bit possibly 0) a
generator g for Zp*. Let "---" denote concatenation. For S2n, p-- g, set Di Zp*
and, for x Z*, set Bi(x) Bp.s(x). We show that the set of predicates B {Bli S.}
is an accessible, unapproximable set of predicates.

B is accessible, a) With uniform probability, we can select, among all the n-bits
primes, a prime p together with the factorization of p- 1, in probabilistic poly (n) time.

S’elect, with uniform probability, an n-bit integer k, together with its prime
factorization, until k + 1 is a prime. By Lemma 4,/c can be selected in expect.ed poly (n)
time. k + 1 can be tested for primality in random poly (n) time (see Solovay and
Strassen [32]) and it will be a prime after expected O(n) random selections of k
because of the prime number theorem. If the prime p k + 1 has been so selected, it
has been selected with uniform probability.

b) To generate a triplet (p, g, x) such that p is an n-bit prime, g a generator for
Zp* and x Zp*, with uniform probability we follow the following algorithm:

(1): Generate p as in (a).
(2): Flip 2n fair coins; if the first n outcomes of the flips constitute a generator

for Zp* and the second n outcomes constitute an x Z* then halt, the desired
triplet has been selected, else go to (1).

As all triplets (p, g, x) so generated have the same probability of being selected
it remains to show that the above algorithm runs fast. For this, note that, for all n-bit
primes p, the probability of generating an x Zp* is greater than 1/2. Also, for all the
n-bit primes p, the probability of constructing a generator for Zp* by flipping n fair
coins is greater than 1/(12 1Oge 1Oge (p-- 1)). In fact, for all p, the generators for Z*
are (p- 1) (where is Euler totient function) and Rosser and Schoenfield [28] prove
that (k) > 1/(6 1Oge 1Oge k) for k > 3. Moreover, as we have the factorization of p- 1
as well, it is easy to check whether g is a generator for Zp* (see [30]).

B is unapproximable. By contradiction. Assume that there are polynomials P1
and P: such that for n F, F infinite, there is a Pl(n)-size circuit Cn that evaluates
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Bp,g(X) correctly for a fraction of at least 1/2+ 1/Pa(n) of the n-bit inputs p, g, and x.
Then a counting argument shows that there would be a fraction at least 1/P.(n) of
pairs (p, g) for which the circuit Cn evaluates Bp,g(x) correctly for at least a fraction
1/2+ 1/(2. Pa(n)) of the x e Z*. A trivial modification of Theorem 3 would then show
that there is a probabilistic poly (n) time algorithm A, with oracle Cn, that for each
n e F solves the DLP for at least a fraction 1/Pa(n) of the n-bit primes p. This would
violate the intractability assumption for the DLP as, for some polynomial P3, for each
n e F, A could be transformed to a circuit with less than P3(n) gates.

B satisfies the hypothesis of Theorem 2. A seed is a pair (i =p-g, x). Define
fi(x) gX mod p. Note that, given x e Zp*, it is easy to check whether gX mod p is a
principal square root: just check whether x _-< (p-1)/2. The other properties trivially
hold. Q.E.D.

Theorems 2, 3 and 4 imply that it is possible to stretch a short random seed into
a long pseudo-random bit sequence such that any efficient strategy to predict better
than 50-50 the next output bit can be easily transformed to a "small" circuit solving
the discrete logarithm problem.

5. Random sell-reducibility. The purpose of this section is to single out the notion
of random self-reducibility that we hope will be useful to complexity theory.

The notion of reducibility (Cook [11], Karp [16] and Levin [19]) is central to
complexity theory. Conjunctive self-reducibility has also played an important role (see
Berman [6], Fortune [12], Meyer and Paterson [22] and the article of Mahaney [21]
proving the conjecture of Berman and Hartmanis that no NP-complete set can be
reduced to a sparse set unless P NP).

We introduce the notion of random self-reducibility by distilling the properties
of the reductions in 3. Informally, these properties guarantee that, if the majority
of the instances of a decision problem (even if we do not know which ones) can be
efficiently answered correctly, then every individual instance can be efficiently answered
correctly with arbitrarily high probability.

In the two definitions below, B {Bi:D {0, 1}1i e Sn, and n e N} is an accessible
set of predicates, p is the "reduction function" and tr the "interpretation function’"
using r, a sequence of coin tosses, /9 randomly maps instance x into instance y;
given the answer for y and the sequence of coin tosses r, tells us what the answer for
x should be.

DEFINITION (strong random self-reducibility). Let p: e S, x e Di, re Di) --) Di
and tr: (i e Sv, x e D, r e D, b e {0, 1}) {0, 1} be polynomial time computable func-
tions. We say that B is strongly randomly self-reducible if for all e Sv and all x e D:

a) p(i, x,. is a permutation over D and
b) for all reDi, Bi(x)=tr(i,x,r,B(p(i,x,r))).
DEFINITIOr (weak random self-reducibility). Let t9: e Sn, x e Di, re Di) D be,

as before, a polynomially computable function and r: (i e Sv, x e D, r e D, e e (0, 1),
b e {0, 1}) {0, 1} be a function computable in probabilistic poly (1il, e-l) time. We say
that B is weakly randomly self-reducible if for any polynomial Q, for all sufficiently
large e Sv and all x e D:

a) t9(i, x,. is a permutation over D and
b) letting r be randomly selected in D,

Prob (B,(x)= tr(i, x, r, ni(p(i, x, r))) > 1/2+ 1/Q(Iil).
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CYLINDRICAL ALGEBRAIC DECOMPOSITION I:
THE BASIC ALGORITHM*

DENNIS S. ARNON GEORGE E COLLINS AND SCOTT McCALLUM

Abstract. Given a set of r-variate integral polynomials, a cylindrical algebraic decompo-
sition (cad) of euclidean r-space E partitions E" into connected subsets compatible with the
zeros of the polynomials. Each subset is a cell. Collins gave a cad construction algorithm in
1975, as part of a quantifier elimination procedure for real closed fields. The cad algorithm
has found diverse applications (optimization, curve display); new applications have been pro-
posed (term rewriting systems, motion planning). In the present two-part paper, we give an

algorithm which determines the pairs of adjacent cells as it constructs a cad of E. Such
information is often useful in applications. In Part we describe the essential features of the
r-space cad algorithm, to provide a framework for the adjacency algorithm in Part II.

Key words, polynomial zeros, computer algebra, computational geometry, semi-

algebraic geometry, real closed fields, decision procedures, real algebraic geometry

1. Introduction. Given a set of r-variate integral polynomials, a cylindrical alge-
braic decomposition (cad) of euclidean r-space Er partitions Er into connected subsets
compatible with the zeros of the polynomials. By "compatible with the zeros of the
polynomials" we mean that on each subset of E, each of the polynomials either
vanishes everywhere or nowhere. For example, consider the bivariate polynomial

y4 2y3

__
y2 3x2y _[_ 2x4.

Its zeros comprise the curve shown in Figure 1.

Fig. 1
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Figure 2 shows a cad of the plane compatible with its zeros. The cad consists
of the distinct "dots", "arcs", and "patches of white space" of the Figure (a rigorous
definition of cad is given in Section 2).

Fig. 2

Cad’s were introduced by Collins in 1973 (see [COL75], [COL76]) as part of a
new quantifier elimination, and hence decision, method for elementary algebra and
geometry. He gave an algorithm for cad construction, and proved that for any fixed
number of variables, its computing time is a polynomial function of the remaining
parameters of input size. As can be seen in the example above, cad’s are closely
related to the classical simplicial and CW-complexes of algebraic topology. In fact, the
essential strategy of Collins’ cad algorithm, induction on dimension, can be found in
van der Waerden’s 1929 argument ([WAE29], pp. 36(}-361) that real algebraic varieties
are triangulable.

Collins’ cad-based decision procedure for elementary algebra and geometry is the
best known (see [FER79]; very little besides a cad is needed for the decision procedure).
J. Schwartz and M. Sharir used.the cad algorithm to solve a motion planning problem
([SCH83a], [SCH83b]). D. Lankford [LAN78] and N. Dershowitz [DER79] pointed out
that a decision procedure for elementary algebra and geometry could be used to test
the termination of term-rewriting systems. P. Kahn used cad’s to solve a problem on
rigid frameworks in algebraic topology ([KAH79]). Kahn also observed ([KAH78]) that
a cad algorithm provides a basis for a constructive proof that real algebraic varieties
are triangulable, and thus for computing the homology groups of a real algebraic
variety.

Implementation of Collins’ cad algorithm began soon after its introduction, cul-
minating in the first complete program in 1981 [ARN81]. The program has begun to
find use; in May, 1982 the termination of the term-rewriting system for group theory
in the Appendix of [HUE80] was verified using it. It has also been utilized for display
of algebraic curves [ARN83]. In 1977, Miiller implemented certain subalgorithms of
the cad algorithm and used them to solve algebraic optimization problems [MUE77].

We use a somewhat different (but equivalent) definition of cad than that in
[COL75]; we devote Section 2 to it. We then take up the cad algorithm. Its in-
tuitive strategy can be described by means of an example. Consider the curve of
Figures 1 and 2. Given the bivariate polynomial which defines it, we will compute
univariate polynomials whose roots constitute a "silhouette" of the curve. By this
we mean that. the roots of the univariate polynomials are the projections, onto the
x-axis (E1), of the "significant points" of the curve. The curve’s "significant points"
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are its singularities (e.g., self-crossings, cusps, isolated points), and the points at which
its tangent is vertical. Suppose that E is decomposed into the points of the silhou-
ette, and their complementary open intervals (this is done by finding the roots of the
univariate polynomials). Then the portion of the curve "over" each of these points
(intervals) consists of finitely many disjoint "dots" ("arcs"). Our cad of the plane is
made by decomposing the line (strip)in the plane "over" each point (interval)in E
into the "dots" ("arcs") of the curve, and the "arcs" ("patches") of the complement
of the curve, that it contains.

For our sample curve, we compute a single univariate polynomial (its discrimi-
nant):

2048x12 4608x 37x8 -- 12x6.

This polynomial has five roots, whose approximate values are-1.49,-0.23, 0.0, 0.23,
and 1.49. All roots but the third are projections of points with vertical tangent. The
third is the projection of the two singularities (self-crossings). Using the roots, we
decompose the real line into points and open intervals (Figure 3).

Fig. 3
The Cartesian products of each of the eleven elements of this decomposition with

a line, give us eleven vertical lines and strips. As we see in Figure 2, each "significant
point" of the curve lies on one of the vertical lines, and within each strip, the curve

has finitely many disjoint "arcs". The "dots" and "arcs" which make up each line,
and the "arcs" and "patches of white space" which make up each strip, give us the
cad of Figure 2.

The general algorithm consists of three phases: projection (computing successive

sets of polynomials in r- 1, r- 2,..., 1 variables; the zeros of each set contain a

"silhouette" of the "significant points" of the zeros in the next higher dimensional

space), base (constructing a decomposition of El), and extension (successive exten-
sion of the decomposition of E to a decomposition of E2, E2 to E3,...,Er-1 to

Er). In Sections 3, 4, and 5 we describe each of these phases in turn. In the interests

of succintness, we will at various times specify simple but inefficient methods of per-

forming computations (for example, isolating the roots of a product of polynomials,
rather than isolating the roots of each of the factors separately). In Section 6, we give

a detailed example of the algorithm.

2. Definition of cylindrical algebraic decomposition. Connectivity plays an im-
portant role in the theory of cad’s. It is convenient to have a term for a nonempty
connected subset of Er; we will call such sets regions. For a region R, the cylinder
over R, written Z(R), is R E. A section of Z(R) is a set s of points a, f(a) ,
where a ranges over R, and f is a continuous, real-valued function on R. s, in other
words, is the graph of f. We say such an s is the f-section of Z(R). A sector of Z(R)
is a set of all points c, b >, where c ranges over R and f(c) b f2(c) for
(continuous, real-valued) functions f f2. The constant functions fl --oc, and

f2 q-oc, are allowed. Such an is the (fl, f2)-sector of Z(R). Clearly sections and
sectors of cylinders are regions. Note that if r 0 and R E a point, then
Z(R) E, any point of E is a section of Z(R), and any open interval in E is a
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sector of Z(/7).
For any subset X of Er, a decomposition of X is a finite collection of disjoint

regions whose union is X. Continuous, real-valued functions fl f2
fk, k

_
0, defined on R, naturally determine a decomposition of Z(R) consisting

of the following regions: (1) the (fi, f+l)-sectors of Z(R) for 0 _( i (_ k, where

f0 --oc and fk+l -qt-(X), and (2)the f-sections of Z(t?) for 1 <: i

_
k. We call

such a decomposition a stack over R (determined by fl,..., fk).
A decomposition D of E is cylindrical if either (1) r 1 and D is,a stack over

E, or (2) r 1, and there is a cylindrical decomposition D of E-1 such that for
each region/ of D, some subset of D is a stack over/. It is clear that D is unique
for D, and thus associated with any cylindrical decomposition D of E are unique
induced cylindrical decompositions of E for i r-- 1, r-- 2,..., 1. Conversely, given
a cad/ of E, r, a cad D of E is an extension of if D induces/.

For 0

_
i _( r, an i-cell in Er is a subset of Er which is homeomorphie to Ei.

It is not difficult to see that if c is an i-cell, then any section of Z(c) is an i-cell, and
any sector of Z(c)is an (i - 1)-cell (these observations are due to P. Kahn [KAH78]).
It follows by induction that every element of a cylindrical decomposition is an/-cell

for some i. Also, if c is an i-cell, we say that Z(c)is an (i -- 1)-cylinder, and that any
stack over c is an (i -- 1)-stack.

The decomposition of E2 in Figure 2 is cylindrical. Figure 3 shows the induced
decomposition of E1, consisting of five 0-cells and six 1-cells. The decomposition in
Figure 2 consists of eleven stacks. The first, or leftmost, stack consists of a single
2-dimensional sector; the next stack consists of two 1-dimensional sectors and one
0-dimensional section; and so forth.

A subset of E is semi-algebraic if it can be constructed by finitely many appli-
cations of the union, intersection, and complementation operations, starting from sets
of the form

{x 6 Er IF(x)

_
0},

where F is an element of Z [Xl,... Xr] the ring of integral polynomials in r variables.
We write Ir to denote Z Ix1,..., xr]. As we shall now see, a different (but equivalent)
definition of semi-algebraic sets is possible, from which one obtains a useful charac-
terization of them. By a formula we will mean a well-formed formula of the first
order theory of real closed fields. (The "first order theory of real closed fields" is a

precise name for what we referred to above as "elementary algebra and geometry";
see [KRE67]). The formulas of the theory of real closed fields involve elements of I.
A definable set in Ek is a set X such that for some formula (xl,...,x), X is the
set of points in E satisfying . is a defining formula for X. (We follow the con-
vention that tP(Xl,... ,xk) denotes a formula P in which all occurrences of xl,... ,x
are free, each xi may or may not occur in , and no variables besides xl,...,xk oc-
cur free in .) A definable set is semi-algebraic if it has a defining formula which is
quantifier-free. The existence of a quantifier elimination method for real closed fields
was established by Tarski [TAR48]. Hence a subset of Er is semi-algebraic if and only
if it is definable.

A decomposition is algebraic if each of its regions is a semi-algebraic set. A
cylindrical algebraic decomposition of E is a decomposition which is both cylindrical
and algebraic.

Let X be a subset of E, and let F be an element of Ir. F is invariant on X (and
X is F-invariant), if one of the following three conditions holds:

(1) F(a) > 0 for all a in X. ("F has positive sign on X").
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(2) F(a)-- 0 for all a in X. ("17 has zero sign on X").
(3) F(c) 0 for all a in X. ("17 has negative sign on X").
Let A {A1,..., A,}, be a subset of Ir ("subset of It" will always mean "finite

subset"). X is A-invariant if each Ai is invariant on X. A collection of subsets of E
is A-invariant if each element of the collection is.

The decomposition in 17igure 2 is an A-invariant cad of E2 for A {y4 2y3
y2 3X2y__ 2X4}. Note that a set A C I does not uniquely determine an A-invariant
cad D of E. Since any subset of an A-invariant region is also A-invariant, we can
subdivide one or more regions of D to obtain another, "finer", A-invariant cad.

3. The cylindrical algebraic decomposition algorithm: projection phase. Let us
begin with a more precise version of the cad algorithm outline at the end of Section 1.
Let A C / denote the set of input polynomials, and suppose r

_
2. The algorithm

begins by computing a set PtOJ(A) C It-1 ("POJ" stands for "projection"), such
that for any PtOJ(A)-invariant cad D of Er-1 there is an A-invariant cad D of Er

which induces D. Then the algorithm calls itself recursively on PROJ(A) to get such
a D. Finally D is extended to D. If r 1, an A-invariant cad of E is constructed
directly.

Thus for r

_
2, if we trace the algorithm, we see it compute PtOJ(A), then

PROJ(PIOJ(A)) PROJ(A), and so on, until PROJ-I(A) has been computed.
This is the projection phase. The construction of a PROjv-l(A)-invariant cad of E is
the base phase. The successive extensions of the cad of E to a cad of E2, the cad of E2

to a cad of E3, and so on, until an A-invariant cad of E is obtained, are the extension
phase. For the example of Section 1, where A {y4 2y3

_
y 3x2y

_
2x4},

PROJ(A)-- {2048x --4608x -- 37xs - 12x6}.
The key to the projection phase is to define the map PROJ (which takes a subset

of Ir to a subset of Ir--1), and to prove that it has the desired property. We stated
this property above as" any PROJ(A)-invariant cad of Er-1 is induced by some
A-invariant cad of E. To establish this, clearly it suffices to show that over any semi-
algebraic, PIOJ(A)-invariant region in Er-l, there exists an A-invariant algebraic
stack. In this section, we define PROJ and outline the proof that it has this latter
property.

Central to our definition of PROJ will be the notion of delineability. For F
Ir, r

_
1, let V(F) denote the real variety of F, i.e., the zero set of F. Let/i be a

region in E-1. F is delineable on R if the portion of V(F) lying in Z(R) consists of
k disjoint sections of Z(R), for some k

_
0. Clearly when F is delineable on R, it

gives rise to a stack over R, namely the stack determined by the continuous functions
whose graphs make up V(F)V] Z(R). We write S(F, R) to denote this stack, and speak
of the F-sections of Z(/). One easily sees that S(F, R) is F-invariant.

For example, consider again F(x, y) y4--2y3 y2--3x2y2x4. F is delineable
on each of the eleven cells shown in Figure 3, and in fact the stacks which comprise
the cad of Figure 2 are just the stacks determined by F over these eleven cells.

Our tentative strategy for defining PROJ is: insure that for any PROJ(A)-
invariant region R, the following two conditions hold: (1) each Ai A is delineable on
/, and (2) the sections of Z(R) belonging to different A and Aj are either disjoint or
identical. If these conditions are met, then clearly we have an A-invariant stack over
/, namely the stack determined by the functions whose graphs are the sections of the
Ai’s.
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The lefthand drawing in Figure 4 illustrates a region R and hypothetical bivariate
polynomials A1, A2, and A3 for which these conditions do not hold. A1 and A2 are
delineable on R, but the Al-section meets the A2-section. A3 is not delineable on R.
The righthand drawing in the Figure illustrates a partition of R into five regions, on
each of which the conditions are satisfied.

V(A )

V(A2)

V(A )

R2 R3R4 R5

Fig. 4

The following example points out a difficulty with our tentative strategy. Let
A C I2 be the set {A (x, y),A2(x, y)} {x,y2 -[-x2- 1}. A(O,y)is the zero
polynomial, hence A vanishes everywhere on Z({0}), hence A1 is not delineable on
the set {0} C E1, nor on any superset of it. We resolve this difficulty as follows. We
say F EIr is identically zero on X C Er-1 if F(a,x) is the zero polynomial for
every a E X. If F is identically zero on X, then any decomposition of Z(X) will be
F-invariant. Hence we may simply ignore F in decomposing Z(X). In particular, in
our example, we need only take account of the sections of A2 in decomposing Z({0}).
Thus, we modify condition (1) above to read "(1’) each Ai A is either delineable or

identically zero on R".

PROJ(A) will consist of two kinds of elements: those designed to attend to
condition (1’), and those to attend to condition (2). Elements of both kinds are
formed from the coefficients of the polynomials of A by addition, subtraction, and
multiplication (remark: Ir consists of polynomials in x whose coefficients are elements
of I-1). We now specify how this is done.

Let J be any unique factorization domain, and let F and G be nonzero elements of
J[x]. We write deg(F) to denote the degree of F (the zero polynomial has degree
Let n min(deg(F), deg(G)). For 0 _( j n, let Sj(F, G) denote the jtA subresultant
of F and G. Sj(F, G)is an element of J[x] of degree _( j. (Each coefficient of Sj(F, G)
is the determinant of a certain matrix of F and G coefficients; see [LOOS2b], [BRT71],
or [COL75] for the exact definition.) For 0 _( j n, the jth principal subresultant
coefticient of F and G, written pscj(F, G), is the coefficient of xj in Sj(F, G). We
define pscn(F, G) to be 1 J. Note that for 0 (_ j n, pscj(F, G) 0 if and only if

C)) < j.
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The following theorem is the basis for definition of the first class of elements of
PROJ(A). Some notation: suppose F is an element of It. The derivative of F, written
F’, is the partial derivative of F with respect to xr. deg(F) is the degree of F in x.
For c E E-1, we write F(Xr)or F to denote F(a, Xr).

THEOREM 3.1. Let F E It, r

_
2, and let R be a region in Er-1. Suppose that

deg(F) is constant and nonnegative for R, and that if positive, then the/east k
such that psck(F, F’) 0 is constant for a R. Then F is delineable on R.

A proof is given in [ACM82] (Theorem 3.6). The essential ideas are contained in
the proof of Theorem 4 of [COL75]. [COL75] uses a definition of delineability stronger
than ours, but a polynomial delineable by that definition is delineable by ours.

Theorem 3.1 suggests that for a PROJ(A)-invariant region R, and for each
Ai A, we should have deg((Ai)) constant for a R. This may be a nontrivial
requirement. Suppose, for example, that r 3 and A contains

F(x, y, z) (y2

__
x2 1)z3

__
(x- 1)z2 --(x- 1)2 -If R is a region in the plane disjoint from the unit circle, then F has degree 3. If

R is a subset of the unit circle which does not contain the point 1, 0 , then F
has degree 2. If R is the point 1, 0 , then F is the zero polynomial. PROJ
must separate these cases. Theorem 3.1 also suggests that for any PROJ(A)-invariant
region R on which deg(F) is constant and positive, we should insure that the least/c
such that psck(F, F’) 0 is constant for a E R.

To achieve these goals, we introduce the notion of reductum of a polynomial. For
any nonzero F I Ir--l[xr], ldcf(F) denotes the leading coefficient of F. The
leading term of F, written ldt(F), is

ldcf(F) xdeg(r)

The reductum of F, written red(F), is F--ldt(F). If F 0, we define red(F) O.
For any k

_
0, the kth reductum of F, written redk(F), is defined by induction on k:

red(F)- F.

redk+(F) red(redk(F)).
For any F I, the reducta set of F, written RED(F), is

(reda(F)lO (_ k (_ deg(F) reda(F) A 0}.

Thus the reducta set of our sample F(x, y, z) above is

(F(x, y, z), (x- 1)z2 --(x- 1)2 -- y2, (x- 1)2 --We now incorporate reducta into a specification of the (first) desired property of
a PROJ(A)-invariant region R. For each F A, there should exist an rn such that
deg(F) rn for all a R. Furthermore, if rn is positive, then where i is such that
deg(red(F)) m, and Q redi(F), the least k such that psc(Q, Q) 0 should
be constant for a E R.

Let F and G be nonzero elements of Ir[x]. Let n min(deg(F), deg(G)). The
psc set of F and G, written PSC(F, G), is

{pscj(F, G) O (_ j (_ n & pscj(F, G) A 0}.
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If either F 0 or G 0, then PSC(F,G) is defined to be the empty set. Let
A (A1,...,An}, n

_
1, be a set of polynomials in It, r

_
2. PROJI(A) C I-1,

the first class of polynomials in PROJ(A), is defined as follows: For each i, 1 (_ i _( n,
let Ri RED(Ai ). Then

PROJI (A) U U ({ldct(G)} U PSC(G, C)).

With the following simple observation, we can prove that PROJ behaves as
we want. Suppose F and G are nonzero elements of I, and suppose that for
some a E E-1, deg(F) deg(Fa)

_
O, and deg(G) deg(Ga)

_
O. Let

n min(deg(F),deg(G)). Then for every j, 0 (_ j (_ n, it is the case that
(pscj(F, G)) pscj(F, G). We see this as follows: For j n, since deg(F)
deg(F) and deg(G) deg(G), the matrix obtained by evaluating the entries of the
Sylvester matrix of F and G at a is just the Sylvester matrix of F and G, hence if
j n then (Sy(F, G)) is equal to Sy(F,, G), and so (pcy(F, G))a pscy(F, G).
If j n, then (pscy(F, G)), pscy(Fa, G,) 1.

THEOREM 3.2. For A C I, r >_ 2, ifR is a PROJI (A) -invariant region in E-,
then every element ofA is either delineable or identically zero on R.

Proof. Consider any F E A. If F 0, then F is identically zero on R. Suppose
F A 0. By definition, PROJx(A) includes every nonzero coefficient of F, so each
coefficient of F either vanishes everywhere or nowhere on R. Hence deg(F) is constant
for a R. Let degn(F) denote this constant value. If degn(F) --oc, then F
is identically zero on R. If degn(F) O, then obviously F is delineable on R.
Suppose degn(F)

_
1. Then there is a unique reduetum Q of F such that deg(Q)

degn(Q) degn(F). Then F Q for all a R, hence if Q is delineable on R,
then F is delineable on R. Since PSC(Q, Q’) C PROJ(A), the least k such that
(psca(Q, Q’)) 0 is constant for a R. Hence by our observation above, the least
k such that psck(Q, Q) 7d 0 is constant for a R. Hence by Theorem 3.1, Q
is delineable on R, hence F is delineable on R. Thus every element of A is either
identically zero or delineable on R.

The following theorem is the basis for definition of the second class of elements
of PROJ(A).

THEOREM 3.3. Let A C It, r

_
2, and let R be a region in E-1. Suppose that

for every F E A, the hypotheses of Theorem 3.1 are satisfied. Suppose also that for
every F, G A, F G, the least k such that PSCk(Fa, Ga) 7 0 is constant for a R.
Then every F A is delineable on R, and for every F, G A, any F-section and any
G-section of Z(R) are either disjoint or identical.

A proof is given in [ACM82] (Theorem 3.7). The essential ideas are contained in
the proof of Theorem 5 of [COL75].

Let A and Ri be as in the definition of PI?OJ. Let

We define PROJ(A) to be the union of PROJI(A) and PROJ2(A). The following
theorem establishes that PROJ works, i.e., that conditions (1’) and (2) are satisfied
for a PROJ(A)-invariant region:

THEOREM 3.4. For A C I, r

_
2, if R is a PROJ(A)-invariant region in E-,

then every element of A is either delineable or identically zero on R, and for every
F, G A, any F-section and any G-section of Z(R) are either disjoint or identical.
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Proo By Theorem 3.2, every element of A is either delineable or identically zero
on R. By an argument similar to that used in the proof of Theorem 3.2, but with
Theorem 3.3 in place of Theorem 3.1, it follows that for every F, G E A, any F-section
and any G-section of Z(FI) are either disjoint or identical. []

This completes the proof that if R is a PROJ(A)-invariant region in Ev-l, then
there exists an A-invariant stack over R, namely the stack whose sections are the
sections of those Ai’s in A which are delineable on R. In general, when every element
of A C Iv is either delineable or identically zero on some R C Er-l, we write S(A, R)
to denote this stack. Our agenda for this Section will be completed by showing that if
also R is semi-algebraic, then S S(A, R) is algebraic. By our remarks in Section 2,
it suffices to show that each region of S is definable. Let x denote x1,..., xv-1
and y denote xv. Any section of S is an F-section of Z(R) for some F E A which is
delineable on R; say that it is the jth section of S(F, R) (where sections are numbered
from bottom to top). Then we can define it as the set of x, y satisfying a formula
"x R and y is the jth real root of F(x, y)". If is a defining formula for R, then
the following is such a formula:

F(X,yl)= 0 F(2,y2)---- 0 _(2,Yj_l)-- 0 _]’(2,y)-- 0

yjt- y F(x, yj_[_l) O) Yj-I . Y } ].
The sectors of S can now be defined using the defining formulas for the sections:

a sector is either the set of x, y between two sections of S, or the set of x, y
above the topmost section of S, or the set of x, y below the bottommost section
of S. This concludes the proof.

4. The cylindrical algebraic decomposition algorithm: base phase. Let us use
the precise definition of cad given in Section 2 to give precise specifications for a cad
algorithm. Its input is a set A C Iv, r

_
1. Its output is a description of an A-

invariant cad D of Ev. This description should inform one of the number of cells in
the cad, how they are arranged into stacks, and the sign of each element of A on each
cell. We define in this section the index of a cell in a cad; our cad algorithm meets
the first two of the above requirements by producing a list of indices of the cells of the
cad of E that it constructs. We also define in this section an exact representation for
algebraic points in Er, that is, points whose coordinates are all real algebraic numbers.
Our cad algorithm constructs, for each cell, an exact representation of a particular
algebraic point belonging to that cell (we call this a sample point for the cell). The
sign of Ai A on a particular cell can then be determined by evaluating Ai (exactly)
at the cell’s sample point, and in this way we meet the third requirement above.

Where A C Iv is the input to the cad algorithm, in the projection phase we
computed PROJ(A), PFIOj2(A), and finally K PROjr-a(A) C 11. It is the task
of the base phase to construct a K-invariant cad D* of E1, that is, to construct cell
indices and sample points for the cells of such a cad. Let us now define cell indices.

In a cylindrical decomposition of El, the index of the leftmost 1-cell (the 1-cell
with left endpoint --oc), is (1). The index of the 6-cell (if any) immediately to its right
is (2), the index of the i-cell to the right of that 0-cell (if any)is (3), etc. Suppose
that cell indices have been defined for cylindrical decompositions of E-1, r

_
2. Let

D be a cylindrical decomposition of E. D induces a cylindrical decomposition D of
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Er-1. Any cell d of D is an element of a stack S over a cell c of D’. Let (il,..., iv--l)
be the index of c. The cells of S may be numbered from bottom to top, with the
bottommost sector being called cell 1, the section above it (if any) cell 2, the sector
above that (if any) cell 3, etc. If d is the jth cell of the stack by this numbering, then
its cell index is (i1,..., it-i, j).

The sum of the parities of the components of a cell index is the dimension of

the cell (even parity 0, odd parity 1). In a cylindrical decomposition of E2, for

example, cell (2,4)would be a 0-cell, (2,5)would be a l-cell.
We begin the base phase by constructing the set of all distinct (i.e., relatively

prime) irreducible factors of nonzero elements of K (see [KAL82] for polynomial fae-

torization algorithms). Let M {M1,..., M} C 11 be the set of these factors. The

real roots al "" a, n > 0, of l-I M will be the 0-eells of D* (if n-- 0then

D* consists of the single l-cell E1). We determine the aj’s by isolating the real roots

of the individual Mi’s [CLO82]. By their relative primeness, no two elements of M
have a common root. Hence by refining the isolating intervals for the aj’s, we obtain

a collection of disjoint left-open and right-closed intervals (rl, sl], (r2, s2],..., (r,, snl
with rational endpoints, each contaiJaing exactly one aj, and with rx s <_ r2

As soon as we know n, we can trivially write down the indices of the 2n -- 1 cells
of D*. Clearly each cell is definable, hence semi-algebraic. To describe sample point
construction, we first define a representation for an algebraic point in Ei, i >_ 1. Loos
([LOO82a], Section 1) describes the representation of a real algebraic number y by
its minimal polynomial M(x), and an isolating interval for a particular root of M(x).
With y so represented, and letting m deg(M), one can represent any element of
Q(y) as an element of Q[x] of degree <_ m- 1 (as Loos describes). For an algebraic
point in Ei, there exists a real algebraic / such that each coordinate of the point is
in Q(/); /is a primitive element for the point. Our representation for the point is: a
primitive element /and an i-tuple of elements of Q(/), all represented as described
by Loos.

For the 1-cells of D* we primarily use appropriately chosen (rational) endpoints
from the isolating intervals above as sample points. However, if si ri+l is a 0-cell,
we find (by bisection) a positive rational e, such that (ri+i -, 8i-[-1] isolates Oi__l,
and use ri+ - e as sample point for cell (2i + 1). Also, we use sn + 1 as a sample
point for cell (2n - 1). If D*-- (E }, we use an arbitrary rational number. Obviously
the only point in a 0-cell is the cell itself. Its value is an algebraic number. Thus all
our sample points for D* are algebraic numbers, and hence can be trivially expressed
in our just-defined algebraic point representation. Examples of sample points for a

cad of E are given in Section 6.

5. The cylindrical algebraic decomposition algorithm: extension phase. First,
consider the extension of the cad D* of E to a cad of E2. In the projection phase, we
computed a set J PROJr-2(A) C 12. Let c be a cell of D*. We want to construct
the stack S(J, c) (as defined following Theorem 3.4). Let a be the sample point for c,
and let Jc(Y) be the product of all nonzero G(c, y), G E J (we construct Jc E Q()[y]
using algorithms for exact arithmetic in Q(c)[LOO823]). We isolate the real roots of
Jc(y) ([LOO82a], Section 2). This determines S(J, c): /3 is a root of J(y)if and only if

c,/3/ lies on a section of S(J, c). For each such/3, we use the representation for c,
the isolating interval for/3, and the algorithms NORMAL and SIMPLE of [LOO82a]
to construct a primitive element - for Q(c,/3); we use /to construct a representation
of the form we require for ,/3 /. We get sector sample points for S(J, c) from
c and the (rational) endpoints of the isolating intervals for the roots of Jc, much as
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was done in Section 4 for E1. Thus sector sample points are of the form c, r ), r
rational, so we can take /-- a for them. Given the cell index for c, and the isolated
roots of Jc, we can trivially write down the indices for the cells of S(J, c) (as for E
in Section 4).

After processing each cell c of D* in this fashion, we have determined a cad of
E2 and constructed a sample point for each cell.

Extension from Ei-1 to E for 3 _< i _< r is essentially the same as from E
to E2. The only difference is that a sample point in Ei-1 has i- 1, instead of just
one, coordinates. But where a is the primitive element of an Ei-1 sample point, and
F F(Xl,... ,xi) an element of/, arithmetic in Q(a) still suffices for constructing
the univariate polynomial over Q(a) that results from substituting the coordinates

al,..., hi-1 ) of the sample point for Xl,...,Xi_l ) in F.
The following abstract algorithm summarizes our discussion of the cad algorithm.

CAD(r,A;I,S)
Inputs: r is a positive integer. A is a list of n >_ 0 integral polynomials in r

variables.
Outputs: I is a list of the indices of the cells comprising an A-invariant cad D of

Er. S is a list of sample points for D.
(1) [r 1]. If r 1 then go to 2. Set I .- the empty list. Set S - the empty

list. Isolate the real roots of the irreducible factors of the nonzero elements of
A. Construct the indices of the cells of D and add them to I. Construct sample
points for the cells of D and add them to S. Exit.

(2) [r > 1]. Set P .- PIOJ(A). Call CAD recursively with inputs r- 1 and P to
obtain outputs I and S that specify a cad D of Er-1. Set I the empty list.
Set S - the empty list. For each cell c of D, let i denote the index of c, let a
denote the sample point for c, and carry out the following four steps: first, set
Ac(xr) +--- 1-I(Aj(o, Xr)lAj E A & Aj(a, Xr) g 0}; second, isolate the real roots of
Ac(xr); third, use i, a, and the isolating intervals for the roots of Ac to construct
cell indices and sample points for the sections and sectors of S(A, c); fourth, add
the new indices to I and the new sample points to S. Exit.

6. An example. We now show what algorithm CAD does for a particular example
in E2. Let

Al(X, y)- 144y2 + 96x2y + 9x4 + 105x2 + 70x--98,

A2(x, y) xy2 + 6xy + x3 + 9x,

and A-- {A,A2 }. CAD is called with input A. We compute PROJ(A):
ldcf(A 144,
psco(A,A’)- --580608(x4 15x2 10x + 14),
psCl(A,Al)- 1,
ldcf(red(A1)) 96x2,
psco(red(A1), [red(A )]’) 1,
ldcf(red2(A)) 9x + 105x2 + 70x- 98,
ldcf(A2 x,
psco (A2, A) 4x5,
p8Cl (A2, A2 1,
ldcf(red(A2)) 6x,
psco(red(A2), [red(A2)]) 1,
ldcf(red2(A2)) x(x2 + 9),
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psco(A1,A2) x2(81xs - 3330x6 1260x5 37395x4 --45780x3 32096x2 -[-
.167720x + 1435204),
pSCl(A1,A2)-- 96x(x2 9),
psc2(A1, A2) 1,
psco(red(Ai),A2) x(81xs - 5922x6 -[-- 1260x5 + 31725x4 25620xa + 40768x2

13720x -- 9604),
psc (red(A1), A2 1,
psco(A1, red(A2)) --36x(3x4 33x2 70x- 226),
pSCl(A1, red(A2)) 1,
psco(red(A1), red(A2)) 1.

It turns out that the roots of pl(x) x4 15x 10x - 14 and p2(z) x
give us a "silhouette" of V(A1)t2 V(A), hence for simplicity in this example, let us
set PROJ(A) (pl(x),p2(x)} (in general, PROJ(A) may contain superfluous ele-
ments; [COL75] and [ARN81] describe techniques for detecting and eliminating such
elements).

pl and p2 are both irreducible, so we have M1 Pl and M. p2 in the notation
of Section 5. M1 has four real roots with approximate values-3.26, -1.51, 0.7, and
4.08; M2 has the unique root x 0. The following collection of isolating intervals for
these roots satisfies the conditions set out in Section 5:

11],(4,8](--4,--3],(--2,--1],(--1,0],(-,
Since there are five 0-cells, the cell indices for the cad are (1), (2), (11).

We now construct representations for the sample points of the induced cad of E
Each 1-cell will have a rational sample point, hence any rational - will be a primitive
element. We arbitrarily choose 3 0. (--1, 0] is an isolating interval for /as a root
of its mimimal polynomial x. We may take the 1-cell sample points to be -4, -2, -1,
1/2, 4, and 9. The four irrational 0-cells have as their primitive elements the four roots
of M1 (x). The representation for the leftmost 0-cell, for example, consists of Ml(X),
the isolating interval (--4, 3] for the leftmost root of M1, and the 1-tuple x ,
where x corresponds to the element of Q(/). The 0-cell x 0 is represented in the
same fashion as the rational 1-cell sample points.

We now come to the extension phase of the algorithm. Let c be the leftmost 1-cell
of the cad D’ of E1. AI (--4, y) 0 and A2(--4, y) 0, hence

Ac(y) AIA2(--4, y) 24(y2 + 6y -[- 25)(24y2 -- 256y + 601).

y2

__
6y-- 24 has no real roots, but 24y2 256y 601 has two real roots,

which can be isolated by the intervals (--8,--7] and (--4,--2]. Thus the stack S(A, c)
has two sections and three sectors; the indices for these cells are (1,1), (1,2),
(1,5). From the endpoints of the isolating intervals we obtain sector sample points of

--4,--8 , --4,--4 , and --4,--1 ) (which will be represented in the
customary fashion). The two roots "1 and "2 of 24y2 256y 601 are not only y-
coordinates for the section sample points, but also primitive elements for these sample
points. Thus the (representations for the) section sample points are

{24y2 -]-- 256y -- 601, (--8, --7], < --4, y . }

and
{24y2 --[- 256y --[- 601, (--4,--2], <" --4, y
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Now let c be the leftmost 0-cell of D’; let a also denote this point. A1 (a, y) 0
and A2(a, y) 0; we have

At(y) AIA2(a, y) (y2 + 6y + a2 + 9)(y -+- la2)2.
3

y2 _+_ 6y + a2 -+- 9 E Q(a)[y] has no real roots, but obviously y %- 1/2a2 has exactly one;
(--8, 8] is an isolating interval for it. Hence S(A, c) has one section and two sectors;
the indices of these cells are (2,1), (2,2), and (2,3). The appropriate representations
for --a,--8 and --a, 9 are the sector sample points. Since y-+- 1/2a 2 is
linear in y, its root is an element of Q(a). Hence

lX2{M1 (x), (--4, 31, < x, >}
3

is the representation of the section sample point. Thus in this particular case it was
not necessary to apply the NORMAL and SIMPLE algorithms of [LOO82a] to find
primitive elements for the sections of S(A, c). In general, however, for a 0-cell c a
of D, Ac(y) will have nonlinear factors with real roots, and it will be necessary to
apply NORMAL and SIMPLE. Saying this another way, where a is a 0-cell of D and

a,/3 is a section sample point of D, we had in our example above Q(a, ) Q(a),
but in general, Q(a)will be a proper subfield of Q(a, 3).

The steps we have gone through above for a 1-cell and a 0-cell are carried out for
the remaining cells of D to complete the determination of the A-invariant cad D of
E2

Although information of the sort we have described is all that would actually be
produced by CAD, it may be useful to show a picture of the decomposition of the
plane to which the information corresponds. The curve defined by Al(X, y) 0 has
three connected components which are easily identified in Figure 5 below. The curve
defined by A2(x, y) 0 is just the y-axis, i.e., the same curve as defined by x 0,
which cuts through the middle of the second component of V(A). Figure 5 shows the
A-invariant cad that CAD constructs.

We remark that the curve Al(X, y)is from ([HIL32], p. 329).

Fig. 5
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CYLINDRICAL ALGEBRAIC DECOMPOSITION H:
AN ADJACENCY ALGORITHM FOR THE PLANE*

DENNIS S. ARNON GEORGE E COLLINS AND SCOTT McCALLUM

Abstract. Given a set of r-variate integral polynomials, a cylindrical algebraic decompo-
sition (cad) of euclidean r-space E partitions E into connected subsets compatible with the
zeros of the polynomials. Each subset is a cell. Informally, two cells of a cad are adjacent if

they touch each other; formally, they are adjacent if their union is connected. In applica-
tions of cad’s one often wishes to know the adjacent pairs of cells. Previous algorithms for
cad construction (such as that given in Part of this paper) have not actually determined
them. We give here in Part II an algorithm which determines the pairs of adjacent cells as it

constructs a cad of E.
Key words, polynomial zeros, computer algebra, computational geometry, semi-

algebraic geometry, real closed fields, decision procedures, real algebraic geometry

1. Introduction. In Part I of the present paper we defined cylindrical algebraic
decompositions (cad’s), and described an algorithm for cad construction. In Part II we
give an algorithm that provides information about the topological structure of a cad
of the plane. Informally, two disjoint cells in Er, r

_
1, are adjacent if they touch

each other; formally, they are adjacent if their union is connected. In a picture of a
cad, e.g., Figure 2 of Part I, it is obvious to the eye which pairs of cells are adjacent.
However, the cad algorithm of Part I does not actually produce this information, nor
did the original version of that algorithm in [COL75].

Adjacency information has already been an essential part of certain applications
of cad’s. For example, for r 2 and r 3, a cad construction algorithm has been
developed which uses adjacency information to circumvent certain time-consuming
steps of the original algorithm [ARN81]. Schwartz and Sharir use cell adjacency in
their solution to the mover’s problem [SCH83b], as do Arnon and McCallum in their
recently developed algorithm to determine the topological type of a real algebraic curve

[ARM84]. We remark that adjacency of cells is a slight generalization of the notion
of incidence of cells in algebraic topology (for which one may consult [MAS78]).

We present here an algorithm which, given a set of polynomials A C I2, constructs
an A-invariant cad of E2, and determines all pairs of adjacent cells in that cad. For
certain inputs A, the cad constructed by this algorithm (which we call a "proper"
cad) is different from the cad constructed by algorithm CAD of Part I. In a proper
cad, knowing only some of the pairs of adjacent cells (those in which both cells are

*Received by the editors January 13, 1983, and in revised form January 2, 1984. This
work was partially supported by the National Science Foundation, Grant MCS-8009357 to
the University of Wisconsin-Madison, and by the Purdue Research Foundation. This paper
was typeset at Xerox PARC using TEX in the Cedar environment. The final copy was

produced on September 19, 1984.

Xerox PARC, 3333 Coyote Hill Road, Palo Alto, California 94304. Formerly with
Computer Science Department, Purdue University, West Lafayette, Indiana.

Computer Science Department, University of Wisconsin-Madison, Madison, Wisconsin,
53706.

Department of Computer Science, University of Toronto, Toronto, Canada MbS 1A7.
Formerly with Computer Science Department, University of Wisconsin-Madison, Madison,
Wisconsin.

878



CYLINDRICAL ALGEBRAIC DECOMPOSITION II 879

sections) suffices for determining the rest, and the algorithm for constructing the set
of sufficient pairs is attractively simple.

The following definitions and observations are our starting point for adjacency
determination. If R1 and R2 are adjacent regions, we call the set {R1, R2} an adja-
cency. If both R1 and R2 are sections, it is a section-section adjacency. Recall that a
cad of Er, r

_
2, is the union of certain stacks over the cells of some induced cad of

Er-1. Clearly the adjacencies of any cad can be divided into those in which both cells
are in the same stack, and those in which the two cells involved are in different stacks.
The first kind may be called intrastack adjacencies, and the second kind interstack
adjacencies. To determine the intrastack adjacencies of a cad it suffices to know the
number of sections in each of its stacks. This is because in any stack, each section is
adjacent to the sector immediately below it, and to the sector immediately above it,
and every adjacency involving two cells of that stack is of one of these two forms. Any
algorithm for cad construction must determine how many sections are in each stack
(cf. the specifications for cad algorithms in Section 4 of Part I). Hence, the only hard
part of determining the adjacencies of a cad is determining the interstack adjacencies.

The contents of the paperis as follows. Section 2 defines the notion of a proper
cad, and shows that in a proper cad of the plane, if one knows the section-section
interstack adjacencies, then one can infer from them all other interstack adjacencies.
Section 3 presents an algorithm (called SSADJ2) to determine the section-section inter-
stack adjacencies between a pair of stacks in E2 satisfying certain hypotheses (which
will be satisfied by the stacks in a proper cad). In Section 4 we develop an algorithm
(called CADA2) which, given A C I2, constructs a proper A-invariant cad of E:, and
its adjacencies. Section 5 traces CADA2 on the example of Section 6 of Part I.

Algorithm CADA2 has been implemented [ARN81]. The basic idea of algorithm
SSADJ2 is due to McCallum [MCC79]. We remark that Schwartz and Sharir [SCH83b]
propose adjacency algorithms for cad’s which are quite different from ours, and whose
feasibilities have not yet been determined. The notion of proper cad (called "basis-
determined cad") was first used in [ARN81]. A similar notion ("well-based cad") was
used in [SCH83b].

2. Adjacencies in proper cylindrical algebraic decompositions. We say that a cad
D of E is proper if (1) there exists some F E I such that V(F)is equal to the union
of the sections of D, and (2) if r 1, then the induced cad D of E-1 is proper.
When such an F exists for a cad D, we say it is a defining polynomial for D. Such
polynomials are not unique. For example, given a defining polynomial F(x, y) for a
cad D of E2, (y 1)F is also one.

The following theorem provides a useful characterization of proper cad’s. Recall
that if D is a cad of E, then D Jc), S(c), where for each c D’, S(c) denotes
the unique stack over c which is a subset of D.

THEOREM 2.1. If D is a proper cad of Er, r 2, then (1) D’ is proper, (2)
any defining polynomial F Ir for D is delineable on every c D, and (3) for any
defining polynomiM F for D, D JceD, S(F, c). Conversely, if D is proper, if there
ex/sts F I which is delineable on every c D, and if D ceD, S(F, c), then D
is proper.

Proof. Suppose D is proper, and suppose F is a defining polynomial for it. By
definition of proper cad, D is proper, and for any c E D, every section of S(c)
is in V(F), and no sector of S(c) meets V(F). Hence F is delineable on c, and
S(c) S(F, c). Thus D JceD, S(F, c). Conversely, if D’ is proper, if there exists
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F E Ir which is delineable on every c E D’, and if D UceD, S(F, c), then clearly
V(F) is equal to the union of the sections of D, and so D is proper.

Let us illustrate how a cad constructed by algorithm CAD of Part I may not be
proper. Given input {xy}, CAD would construct the {xy}-invariant cad of E2 shown
in Figure 1. A superscript attached to the name of a cell will denote its dimension,
e.g., co is a 0-cell, c is a 1-cell.

Fig. 1

Assume F(x, y)is a defining polynomial for this cad. By definition, c1 C V(F). Hence
it follows thatF(x, 0)-- 0forallx, so 0,0 > V(F). But 0,0 > does not
belong to any section of the cad, a contradiction.

Figure 2 shows a proper {xy}-invariant cad with defining polynomial y:

’0

Fig. 2
In dealing with interstack adjacencies, it will be convenient not to have to treat

points at infinity specially. We therefore introduce the following notation and termi-
nology. We write E* for E [J (--oc, +oo}, the usual two-point compactification of the
real line. For a subset X of any Ei, we write Z*(X) to denote X X E*, which we
call the extended cyliz]der over X. If R is a region in Ei, a section of Z*(R) is either
a section of Z(R) or R X {--oo} or R X {+oc}. R {--oc} and R X {+oo} are
respectively the --oc-section and the +oo-section, or collectively the iz/izite sections,
of Z*(R). If S is a stack over R, then S* is S plus the infinite sections of Z*(R). S*
is the extension of S, and we say also that it is an extended stack over R.

Given a cad P UceD, S(c), for any c D’ we write S*(c) to denote the
extension of S(c). If c has cell index (i), and S(c) has j sections, then the cell indices of
the --oc and +oc-sections of S*(c) are defined to be (i, 0) and (i, 2j- 2), respectively.

THEOREM 2.2. Let co ( be a O-cell in E1, let R be a region in E which is
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adjacent to c, and let F(x, y)E I2 be such that F(a, y) 7 0 (thus F is delineable on
c), and F is delineable on R. If s is a sect/on of S*(F, R), then s has a unique limit
point p in Z*(c), and p is a sect/on of S*(F, cO).

Proof. If s is an infinite section of S*(F, cO), then the assertion is obvious. Suppose
s is the graph of a continuous function f" R - E. Then F(x, f(z)) 0 for all E R,
hence f is an algebraic function. Hence sufficiently close to c, f is monotone as z C R
approaches c. Then where {hi, a2,...} is a sequence of points in R converging to c,
the sequence (f(al), f(a),..., } converges to a limit - in E*, and p -- a, / is
the unique limit point of s in Z*(c).

Ifp---- a,--cx) orp---- a,q-oo we are done. Supposepis neither of
these. It is a standard fact that the variety of a polynomial is a closed set. Hence
p V(F). By hypotheses, F(a, y) 7 O, hence it has finitely many real roots, hence
since S(F, c) is F-invariant, F 0 at every point of every sector of S(F, cO). Hence
p is a section of S(c).

We call p the boundary section of s in S*(F, c).
Our next theorem requires a general notion of boundary. For a subset X of a

topological space T, the boundary ofX, written OX, is X-X (X denotes the closure
of X). One can easily show that OX is the set of all limit points of X which do not
belong to X. We introduce some notation: for a region R in Ei, suppose that sections

81 and s2 of Z*(R) are respectively the fi-section and f2-section of Z*(R), and that
fi < f2. We write (Hi, s2) to denote the (fi, f2)-sector of Z(/), and [si, s2] to denote
sl U s2 t_J (Hi, s2) (see Part I, Section 2, for the notation fl-section, f-section, and
(fi f2)-sector).

THEOREM 2.3. Let co a be a O-cell in E1, let R be a region in E which is
adjacent to c, and let F(x, y) 12 be such that F(a, y) 7 O, and F is delineable on
R. Let s (sl, s21) be a sector of S(F, R); let tx and t2 be the respective boundary
sections ofs and sx in S *(F, cO). Then the portion of Os contained in Z *(c) is ItS, t2].

Proof. Suppose s is the fl-seetion, and sx the f2-seetion, of Z*(R). The following
argument will assume that both tx and t2 are finite, but can easily be modified for the
eases where either or both is infinite. Let p be a point of [t, t]. p can be written in
the form

"/tl -- (1 /)t, 0 _( " _( 1.

Let {al, a2,..., } be a sequence of points in R converging to c. Then the sequence

{ < al, "/fl (al) -- (1 ")f:(al) >,...}

in s converges to p, hence p is a limit point of s. Suppose p is a limit point of s in
Z*(c). Then there is some sequence of points ( xi, yi >} in s converging to p. We
have fl(xi) yi f2(xi), hence p--lim( xi, yi >} is an element of It1, t2]. Hence

n Z*(c) Iti,
Given two disjoint regions, it is not difficult to see that they are adjacent if and

only if one contains a limit point of the other. Using this fact, we now show that if c,
R, and F(x, y) are as in the hypotheses of Theorems 2.2 and 2.3, then all interstack
adjacencies between S(F, c) and S(F, R.) can be determined from their section-section
interstack adjacencies. Let s be a section of S*(F, R). By Theorem 2.2 and the fact
that regions are adjacent if and only if one contains a limit point of the other, if s
is adjacent to a cell of S*(F, c), then that cell is a section of S*(F, c). Hence any
interstack adjacency involving a section of S*(F, R) is a section-section adjacency. Let
s2 (s, s) be a sector of S*(F, R). Where tl and t are the respective boundary
sections of s and s in S*(F, cO), by Theorem 2.3, s is adjacent to all cells of S*(F, c)
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between tl and t inclusive, and to only those cells of S*(F, cO). Hence knowledge of
the section-section adjacencies between S(F, c) and S(F, R) suffices for determining
all interstack adjacencies between them.

We now relate our general development to proper cad’s. We first establish that
we can make use of Theorems 2.2 and 2.3.

THEOREM 2.4. Let D be a proper cad ofE2, let co a and c1 be adjacent ceils
of D’, and let F(x, y) E 12 be a defining polynomial for D. Then F(a, y) 7 O, F is
delineable on c, S(F, c) S(c), and S(F, c) S(c).

Proof. By Theorem 2.1, F is delineable on every c D’, and D UcV, S(F, c).
The conclusions of the theorem now follow directly.

Theorems 2.2- 2.4 give us:

COROLLARY 2.5. Let D be a proper cad ofE, and let c a and c be adjact
cells of D’. If s is a section of S*(cX), then s has a unique limit point p in Z*(c),
and p is a section of S*(c). If s (s, s) is a sector of S(cl), and t and t are the
respective boundary sections of s and s in S*(c), then the portion of Os contained

Z*(c) ItS,
The same argument we used in the more general setting can be applied to show

that if D is a proper cad of E2, and if c and c are adjacent cells of D’, then all
interstaek adjaeeneies between S(c) and S(c1) can be inferred from their section-
section interstaek adjaeeneies. It follows that all interstaek adjaeeneies of D can be
inferred from knowledge of its section-section interstaek adjaeeneies.

3. Determination of section-section adjaeeneies. To find the section-section in-
terstack adjacencies of a proper cad D of E2, we use the following strategy: for each
0-cell c of D’, and for the two 1-cells c and c of D’ adjacent to c, we find all adja-
cencies between sections of S*(c) and sections of S*(c), and all adjacencies between
sections of S*(c) and sections of S*(c). Algorithm SSADJ2, which we develop in
this section, handles a particular triple c, c, c1. The application of SSADJ2 to each
triple c, c, c2 of D is done by algorithm CADA2 of Section 4.

Our results in this section apply to a setting similar to that which we had for
Theorems 2.2 and 2.3. That is, we have a 0-cell co a in E1, aregion R in E
which is adjacent to c, and an F(x, y) I2 such that F(a, y) O, and F is deline-
able on R. The application of these general results to the context of proper cad’s is
straightforward.

Suppose e is a section of S(F, cO). Theorems 3.1 and 3.2 below provide a method
of determining how many sections of S(F, R) are adjacent to e. This method can be
described as: draw a suitable "box" centered at e; then the number of sections of
S(F, R) adjacent to e is equal to the number of intersections of V(F) with the left
(right) side of the box (R is to the left (right)of c).

But knowing how many sections of S(F, R) are adjacent to e is not enough; we
must determine which sections are adjacent to it. This we accomplish by processing
the sections of S(F, c) in consecutive order from bottom to top, after an initial step
suggested by Theorem 3.3" determine how many sections of S(F,R) are adjacent
to the ---section of S*(F, c), i.e. how many sections of S(F,R) tend to
as x -- a in R. If there are n

_
0 such sections, then by Theorem 2.2 they are

the bottom n sections of S(F,R). Next, we apply the "box" method of Theorems
3.1 and 3.2 to the bottommost section e of S(F, cO). If we determine that there
are m

_
0 sections of S(F,R) adjacent to e, then by Theorem 2.2 these are the

(n + 1)st,..., (n + m)th sections (counting upwards) of S(F, R). Next, let e be the
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second (from the bottom) section of S(c), and apply the box method to find out how
many sections of S(F, R) are adjacent to it. If there are q _> 0 such sections, then
these are the (n q- m-- 1)s,..., (n +m+ q)th sections of S(F, 1). We continue in this
fashion until we have processed all sections of S(F, cO). If there remain sections "at
the top" of S(F, R) which are not adjacent to the top section of S(F, c), then they
are adjacent to the oc-section of S*( c) i.e., they tend to as x a in R.

The above steps can be described as analyzing (either the le or the right) "sides"
of a collection of "boxes" stacked on top of each other. This is indeed what SSJ2
does, but with a refinement: a complete set of suitable boxes is determined at the
beginning of the algorithm, all of which have the same width (they may have different
heights). Thus one might picture a single "ladder", whose "compartments" are the
"boxes" for the different sections of S(F, c) (cf. Figure 8 in Section 6).

We now give Theorems 3.1 3.3, followed by SSJ2.
THEOREM 3.1. Let c a be a O-cell in E, suppose for some b E, a b,

that F(x, y) I2 is delineable on R (a, b], and suppose for s, t, u E, 8 t u,
ha t is the unique real root of F(a, y) in [8, u], and neither F(x, 8) nor F(x, u) has
real roos in [a, hi. Then he number of sections of S(F,) which are adjacen o he
section e a, t > of S(F, c), is equal o he number of real roos of F(b, y) in

Proof. Le a be a section of S(F,R) which is adjacen o e. Then e is a
limi poin of , so clearly here is a poin of in (a, b) (s, ). For some y E,

b, y . If y is no in (s, u), hen by he Intermediate Value Theorem, either
F(z, s) or F(z, ) has a real roo in [a, b], contrary o hypothesis. Hence y (s, ),
and gives rise o a real roo of F(z, b)in (s, ).

Consider any real roo y (s, ) of F(z, b). By definition of S(F, ), b,
lies in a section a of S(F, ). If contains any poin outside of X (s, ), hen by
he Intermediate Value Theorem, we violate our hypotheses. By Theorem 2.2, has a
limi poin a, z in Z*(c). We mus have z [s, ], since C X (s, u). Since
V(F) is closed, a, z V(F), hence by hypothesis, z t, hence is adjacen o
a,t.

Let us see an example of how we will use Theorem 3.1. Let F y --x3, a 0,
b 1, s --2, t 0, and u 2. Figure 3 shows the curve defined by F 0, and
Figure 4 illustrates our complete situation:

Fig. 3 Fig. 4

Clearly we satisfy the hypotheses of Theorem 3.1. From the fact that F(1, y) has
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two real roots in (--2, 2), we learn that there are two sections of S(F, R) adjacent to
the section 0, 0/x of S(F, cO).

There is a companion to Theorem 3.1 which differs from it only in that b < a
rather than a b.

We must deal with the following problem before we can apply Theorem 3.1 to
proper cad’s. Suppose, for a proper cad D of E2 with defining polynomial F(x, y),
that we have constructed the induced cad D of E1. Consider a 0-cell co a of D
and the adjacent 1-cell d of D immediately to its right. Let t be a particular real
root of F(a, y). By isolating the real roots of F(a, y)we can obtain s and u such that
s t u and t is the unique real root of F(a, y)in Is, HI. Let b be the sample point
for d; F is delineable on (a, b]. Thus we have found a, b, s, t, and u which nearly
satisfy the hypotheses of Theorem 3.1, except that F(x, s) or F(x, u) might have a
real root in [a, b]. This can indeed occur, as we show in Figure 5 for F y2 x3,

t0, andu .aO, bl, s--,

I/.

0

Fig. 5

Theorem 3.2 establishes that we can "shrink" the width of the box, i.e., move b closer
to a, so that neither F(x, s) nor F(x, u) has a real root in [a, b].

THEOREM 3.2. Suppose that the hypotheses of Theorem 3.1 are fulfilled, except
that possibly either F(x, s) or F(x, u) has a real root in [a, b]. Then there exists b* in
E, < b*< b,  oot i. b*].

Proof. By hypothesis, F(x, s) 0 and F(x, u) A O. Hence each has finitely many
real roots, hence since F(a, s) 0 and F(a, u) O, there exists b*, a b*_( b, such
that neither F(x, s) nor F(x, u) has real roots in [a, b*].

The proof of the next theorem is similar to the proof of Theorem 3.1.
THEOREM 3.3. Let co a be a O-cell in E1, suppose for some b E E, a ( b,

that F(x, y) 12 is delineable on R (a, b], and suppose for s E that F(a, y) has
no real roots in (--0% s], and F(x, s) has no real roots in [a, b]. Then the number of
sections of S(F, R) which are adjacent to the --oo-section of S*(F, c) is equal to the
number of real roots of F(b, y) in

Consider an example. Let F xy 1, a 0, b 1, and 8 0. Figure 6 shows
the curve F 0, and Figure 7 illustrates the overall situation:
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Fig. 6 Fig. 7

From the fact that F(1, y) has one real root in (--oc, 0), we learn that there is one
section of S(F, I)adjacent to the c-section of S*(F, c).

There are companions to Theorem 3.3 with b a rather than a b, and with

--c in place of--oc. Also, a result similar to Theorem 3.2, but tailored for 3.3 instead
of 3.1, exists.

We now give algorithm SSADJ2. We adopt the convention that the sections of
a stack are numbered consecutively from bottom to top, starting with section 1 (the
lowest finite section), 2,..., n (the highest finite section). The sections of the stack’s
extension are numbered starting with section 0 (the --oc-section), 1 (the lowest finite
section), 2,..., n (the highest finite section), n + 1 (the +c-section).

SSADJ2(F(x, y),o,b ,b2;L1 ,L2)
Inputs: F(x, y) is an element of I2. a is a real algebraic number such that

F(a, y) A 0 (we view ( as also being the 0-cell c in the real line), bl and b2 are
rational numbers such that bl a b2, F is delineable on R1 [bl, c), and F is
delineable on/2 (c, bz].

Outputs: L1 is a list of all section-section interstack adjacencies between S*(F, c)
and S*(F,/I). L2 is a list of all section-section interstack adjacencies between
S*(F, c) and S*(F,/).]
(1) [Construct tops and bottoms of "ladder compartments" .] Set L1 - the empty list

and L. +- the empty list. Isolate the real roots tl,..., t,,, (m _> 0), of F(c, y),
obtaining rational s0,...,s,, such that So < < S 4".. t, < s,. (If
m 0, set So *-- an arbitrary rational number).

(2) [Construct left and right "sides" of "ladder".] Set u -- bl and v - b. While
there is an s., 0 >_ j >_ m, such that F(x, sj) has a real root in [u, v], set b* to a
rational approximate midpoint of (u, v) different from a. Set u, v to whichever of
bl,b* and b*,b2 yields the property that (u, v) contains c.

(3) [Adjacencies of the oc-section of S*(F, c) and sections of S*(F, R1).] Set n -the number of real roots of F(u, y) in (--oc, So). Record in L1 that section 0 of
S*(F, c) is adjacent to sections 0, 1,..., n of S*(F, R1).

(4) [Adjacencies of finite sections of S*(F, c) and finite sections of S*(F, R1).] For
j 1,..., m do the following three things: First, set nj the number of real
roots of F(u, y)in (8j--1, 8j). Second, record in L1 that section j of S*(F, c) is
adjacent to sections n + 1,..., n --[- nj of S*(F, R1). Third, set n - n + n..

(5) [Adjacencies of the +cw-section of S*(F,c) and sections of S*(F, R1).] Set
n,+l *- the number of real roots of F(u, y)in (Sm,---). Record in L1 that sec-
tion m+ 1 of S*(F, c) is adjacent to sections n+ 1,..., n+n,+1, n+nm+ + 1
of S*(F,/:1)"
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(6) [Adjacencies of sections of S*(F, c) and sections of S*(F, R2).] Repeat steps (3),
(4), and (5)with v in place of u, and L2 in place of L1. Exit. []

4. Construction of proper cylindrical algebraic decompositions. Theorem 4.1 tells
us how, given A C I2, to construct a proper A-invariant cad of E2. For nonzero
F E Ir Ir--l[Xr], the content of F is the greatest common divisor of its coefficients.
If F 0, its content is 1. F is primitive if its content is 1. The primitive part of F,
written pp(F), is F divided its content. The reader may wish to refer back to Section
2 of Part I for other terms and notation used in the theorem.

THEOREM 4.1. Let A C I2, let A* be the primitive part of the product of
the nonzero elements of A, and let D be the proper cad of E for which P(x)
I] PROJ(A) is a defining polynomial. Then
(1) A* is delineable on every c D’.
(2) [.JceD, S(A*, c) is a proper A-invariant cad of E2, and A* is a defining polynomial
for it.

Proof. (1) For any nonzero F I2, and any a E, one can easily see that
F(a, y) 0 if and only if a is a root of content (F). Hence since A* is primitive,
A*(a, y) 5A 0 for all a E, and so A* is delineable on every 0-cell of D’. Let c be a
1-cell of D’. Let Ai be any nonzero element of A. content(Ai) divides ldcf(A), hence
since ldcf(A) PROJ(A), and D’ is PROJ(A)-invariant, content(Ai) is nonvanishing
at all points of c, hence A(a, y) g 0 for all a E c, hence by Theorem 3.4 of Part I,
Ai is delineable on c. By another application of the same theorem, it is clear that the
product F of the nonzero elements of A is delineable on c. Since the content of F is
the product of the contents of the nonzero A’s, V(F)t Z(c) V(pp(F))[ Z(c), and
so since A* pp(F), A* is delineable on c.

(2) Since A* is delineable on every c D’, [JcD, S(A*, c)is a cad of E. By Theorem
2.1 it is proper, and clearly A* is a defining polynomial for it. Let Ai be any nonzero
element of A. If c is a 1-cell of D, then as just shown, Ai is delineable on c, and every
Ai-section of Z(c) is an A*-section of Z(c), hence S(A*, c) is Ai-invariant. If c is a 0-cell
with sample point a, then either content(Ai) vanishes at a and Ai is identically zero
on c, or content(Ai) does not vanish at a, Ai is delineable on c, and every Ai-section of
Z(c) is an A*-section of Z(c). In either case, S(A*, c)is Ai-invariant. Hence S(A*, c)
is A-invariant. []

Here now is our algorithm for construction of a proper A-invariant cad of E2, and
its adjacencies. It is not difficult to see that the arguments we pass to SSADJ2 each
time we call it in step (3) satisfy the hypotheses on its inputs. Theorem 2.4 implies
that the adjacencies we get back from SSADJ2 are indeed aljacencies of our cad of
E2

CADA2(A;I,L,S)
Input: A is a subset of I2.
Outputs: I is a list of the indices of the cells of a proper A-invariant cad D of E2. L
is a list of all adjacencies of D, plus the adjacencies involving infinite sections. S is a
list of sample points for D.
(1) [Construct sample points for induced cad D’ of E1.] Set P PROJ(A). Isolate

the real roots of the irreducible factors of the nonzero elements of P to determine
the 0-cells of D. Construct a sample point for each cell of D. Set A*- primitive
part of the product of the nonzero elements of A.

(2) [Construct cell indices, determine intrastack adjacencies for D.] Let a a2

a2n a2nd-1, n

_
O, be the sample points for D (Each a2id_ is a rational

sample point for a 1-cell; each a2i is an algebraic sample point for a 0-cell). Set
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I *-- the empty list. Set L - the empty list. For i 1,...,2n+ 1 do the
following three things" first, isolate the real roots of A*(a, y) to determine the
sections of a stack T in E2, second, construct cell indices for the cells of T and
add to I, third, record the intrastack adjacencies for T in L.

(3) [Section-section adjacency determination.] For i 1,..., n, call SSADJ2 with
inputs A*, a2i, a2i--1, and a2i+l, and add the contents of its outputs L1 and L2
to L. (The section numbers which occur in the adjacencies returned by SSADJ2
must first be converted into the indices of the corresponding cells of D. For
example, if the list L1 returned by the th call to SSADJ2 contains the adjacency
{3, 2}, it must be converted to {(2i, 6), (2i- 1, 4)} before being added to L).

(4) [Inference of remaining interstack adjacencies.] Use the current contents of L to
infer the remaining interstack adjacencies of D, as described at the end of Section
2. Add them to L.

(5) [Construct sample points.] Set S - the empty list. Use the sample points for
and the isolating intervals constructed in step (2) to construct sample points for
the cells of D, adding them to S. Exit.

5. An example. We now trace CADA2 for the .sample cad of E2 discussed in

Section 6 of Part I. The input polynomials are:

A(x, y) 144y2 96x2y--9x4 105x2 --70x- 98,

A2(x, y) xy2 -- 6xy X
3 - 9x,

As in Part I, we may take PROJ(A) to consist of the two elements p(x)
x4 15x2 10x 14 and p2(x) x. The four real roots of p, which are -3.26, -1.51,
0.7, 4.08 (the presence of a decimal point in a number will indicate that its value is
approximate), and the unique root x 0 of P2, become the 0-cells of DI. We take the
1-cell sample points to be-4,-2,-1, 1/2, 4, and 9. We set A* to be the primitive part

of AIA2. Since A1 has content 1 and A2 has content x, A*-- (A1A2) which is

144y4 -- 96xy3 864y3 9x4y 825x2y2 - 70xy2 -- 1198y2 -- 150x4y
--1494xy -- 420xy 588y d- 9x6 186x4 -- 70x3 - 847x2 - 630x 882.

After constructing cell indices and determining intrastack adjacencies, CADA2
makes a total of five calls to SSADJ2, moving from left to right along the cells of
the induced cad of 1-space. Let us look at the third of these calls. The inputs to
SSADJ2 are F A*, a 0, a --1, and a2 1/2. Let c, c, and c denote
the cells of D whose respective sample points are a, al, and a2. SSADJ2 begins
by isolating the real roots of A*(0, y), which are -3.0, -0.82, and 0.82. We obtain
So,..., s3 --4, --1, 0, 1. At the start of step 2, we set u --1 and v 1/2. We check
to see if F(x, so) F(x,--4) has a root in [u, v]. The real roots of F(x,--4) are-4.58
and -3.30, so this does not happen. However, the real roots of F(x, s) F(x,--1) are
-1.39 and-0.79, so since u --0.79 v, we shrink our "ladder". We set u
and continue checking for the new u and v. We find that F(x, 0) has real roots of
-1.25 and 0.68, and F(x, 1) has no real roots, so we have completed step 2.

Figure 8 illustrates what occurred in step 2. We see that with the wide "ladder" we
started with, the curve crosses one of the horizontal "rungs" (i.e. y Sl --1), but
when we shrink the "ladder", this no longer occurs. Thus for the narrower "ladder",
the intersections of the curve with the vertical sides of a "compartment" are in 1-1
correspondence with the adjacencies in that compartment.

In step 3, we find that F(--1/4, y) has no real roots in (--oc,--4), and so we record
only that section 0 of S*(c) is adjacent to section 0 of S*(c]). In step 4, we have
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-5

-4
-I -I/4 0 112.

Fig. 8

m 3, so the loop will be executed three times. The real roots of F(--, y) are
-0.89 and 0.85; comparing these with so,..., s3 --4,--1, 0, 1, we can see what will
happen as we do the loop. The first time through we record no adjacencies (section 1
of S*(c) is an isolated point). The second time we record that section 2 of S*(c) is
adjacent to section 1 of S*(c). The third time we record that section 3 of S*(c) is
adjacent to section 2 of S*(c). In Step 5 we record only that section 4 of S*(c) (its
-c-section) is adjacent to section 3 of S*(c])(its d-cx)-section). The events of step
6 are similar.

We saw above that A*(O, y) has three real roots, and thus the cad D constructed
by CADA2 has three sections over the 0-cell co 0 of D. Yet the cad constructed
by algorithm CAD of Part I for the same input, shown in Figure 5 of Part I, has only
two sections over co 0. We have another example of how CAD and CADA2 may
construct different cad’s for the same input. Since content(A2) x, A2(0, y) 0,
and CAD ignores the fact that the point < 0,--3 is in V(pp(A2)), whereas CADA2
makes that point a section of S(c).
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